plasma vs lcd screen factory
If you"re in the market for a flat-screen television, then you probably have one big question you want answered: plasma vs. LCD; which one is right for you?
The two different camps of flat-panel display standards will, of course, gladly spruik the advantages of their own standard and the deficiencies of the other. But what type of display — plasma or LCD — is actually better? And which will give you more bang for your buck?
Plasma and LCD panels may look similar, but the flat screen and the thin profile are where the similarities end. Plasma screens, as the name suggests, use a matrix of tiny gas plasma cells charged by precise electrical voltages to create a picture. LCD (liquid crystal display) screens are in layman"s terms sandwiches made up of liquid crystal pushed in the space between two glass plates. Images are created by varying the amount of electrical charge applied to the crystals. Each technology has its strengths and weaknesses, as you"ll read below.
It"s not what"s happening behind the screen that"s important — it"s how the screen performs as a television that matters the most. In that regard, both plasma and LCD TV sets produce excellent pictures, and the differences between them aren"t as pronounced as they used to be. While the latest plasmas are particularly good, LCD sets are quickly catching up in terms of quality, with advances like LED backlighting.
For basic home cinema-like usage, plasma screens have a slight edge over LCDs. This is because plasma screens can still display blacks more accurately than LCDs can, which means better contrast and detail in dark scenes. The nature of LCD technology, where a backlight shines through the LCD layer, means that it"s hard for it to achieve true blacks because there"s always some light leakage from between pixels. As LCD/LED technologies such as polarising filters and dynamic backlights improve, the quality gap between the technologies grows narrower.
Apart from better contrast due to its ability to show deeper blacks, plasma screens typically have better viewing angles than LCD. Viewing angles are how far you can sit on either side of a screen before the picture"s quality is affected. You tend to see some brightness and colour shift when you"re on too much of an angle with LCDs, while a plasma"s picture remains fairly solid. Plasmas can also produce richer, more natural colours, due to both light leakage and to a limit on the hues that LCD can reproduce.
Plasma pundits will also tell you that some LCD screens have a tendency to blur images, particularly during fast-moving scenes in movies or in sport. While that was true for older generation LCD screens, newer models have improved significantly — so much so that the differences in performance between LCDs and plasmas in this regard is almost negligible. (While the pixel response time, measured in milliseconds (ms), can give you some indication of an LCD"s performance with fast-moving scenes, it"s not always reliable.)
Traditionally, the biggest advantage that plasmas have had over their LCD cousins is price, particularly in the large screen end of the market. Depending on the resolution, plasma is still able to beat most equivalently priced LCD screens. Plasmas currently sold in Australia generally run between 42 and 65 inches wide, with the cheapest 1024x768 standard-definition 42-inch selling for under AU$1000.
At present, the mainstream plasma size is 50 inches, but sizes of 60 inches and above are becoming more common. At these sizes, plasmas tend to be two thirds or less than the price of the equivalent LCD, due to the high manufacturing cost of LCD panels.
Apart from becoming increasingly price-competitive, LCD has the edge over plasma in several other key areas. LCDs tend to have a higher native resolution than plasmas of similar size, which means more pixels on the screen.
LCDs also tend to consume less power than plasma screens, with some of the newer "Eco" LCD panels able to use half of the power than equivalent plasmas, with the trade-off being lower brightness.
In terms of bulk, LCDs are also generally lighter than similar-sized plasmas, making it easier to move around or wall-mount. This is because LCDs use plastic in their screen make-up, whereas plasmas tend to use glass.
LCD pundits point to the belief that LCDs have a longer lifespan than plasma screens. While this may have been true of earlier plasma models — which dropped to half-brightness at 20,000 hours — many modern plasmas have the same 60,000-hour lifespan as LCDs. This means that both types of TVs will last for almost seven years if left on 24 hours a day.
You might have also heard that plasmas suffer from screen burn-in, an affliction not commonly associated with LCDs. Screen burn-in occurs when an image is left too long on a screen, resulting in a ghost of that image "burned in". Newer plasmas are less susceptible to this, thanks to improved technology and features such as screensavers, but burn-in can still be a problem. However, after a few days most burnt-in images will fade — they are no longer permanent.
If you"re in the market for a big-screen television — and we"re talking 50 inches and above — then we"d suggest plasma as a safe bet. Plasmas give you more bang for your buck at the big end of town, and while LCDs can give you better resolution, plasma still has the edge in terms of picture quality.
At the smaller end of things (17- to 42-inch TVs), LCD is the only way to go if you want something slim and tasteful. And the best thing is that LCDs are getting cheaper all the time.
There has also been a lot of debate surrounding use in bright environments versus dark, cinema-like conditions. The traditional wisdom is that LCD performs better during the day due to its backlighting system, and that plasma works best in a dark environment, as it uses a glass front. Nonetheless, products like the non-reflective glass plasmas and LED-backlit LCD panels with their better blacks completely turn this logic on its head.
In the past couple of years, several new features have cropped up, but the most pertinent to this discussion is 3D. While it"s possible to manufacture a 3D screen with both LCD technology and plasma, based on our extensive testing, a plasma screen is the best at producing 3D images and reducing the artefact known as crosstalk, or ghosted imaging. Be aware that there is still very little content available in 3D, and that the technology is still evolving. Buy a set for its 2D abilities first, and then consider 3D.
While most screens are now full high-definition (1080p), resolution is a consideration when you"re looking at budget screens. Budget LCDs and plasmas feature either 1366x768 or 1024x768 (720p) resolutions. If you"re buying a screen that"s 42 inches or larger, though, there"s now no reason to get anything less than 1080p.
It isn"t all about the resolution, however; it"s not the pixels, it"s what you do with them. Most modern TVs, and even budget ones, will accept a 1080p input, and it depends on the quality of the scaler on-board as to how good a picture you"ll get. The big names — Panasonic, Sony, Samsung and LG — usually have very good image processors that can resize the source content — whether it"s DVD, Blu-ray or
Plasma TV production ended in 2015. However, they are still being used and sold in the secondary market. As a result, it"s helpful to understand how a Plasma TV works and how it compares to an LCD TV.
Within each cell, a narrow gap that contains an insulating layer, address electrode, and display electrode, separates two glass panels. In this process, neon-xenon gas is injected and sealed in plasma form during the manufacturing process.
When a Plasma TV is in use, the gas is electrically charged at specific intervals. The charged gas then strikes red, green, and blue phosphors, creating an image on the screen.
Each group of red, green, and blue phosphors is called a pixel (picture element — the individual red, green, and blue phosphors are called sub-pixels). Since Plasma TV pixels generate their light, they are referred to as "emissive" displays.
Plasma TVs can be made thin. However, even though the need for the bulky picture tube and electron beam scanning of those older CRT TVs is not required, Plasma TVs still employ burning phosphors to generate an image. As a result, Plasma TVs suffer from some of the drawbacks of CRT TVs, such as heat generation and possible screen burn-in of static images.
LCD crystals do not produce light, so they need an external source, such as fluorescent (CCFL/HCFL) or LEDs, for the picture created by the LCD to become visible to the viewer.
Unlike a Plasma TV, since there are no phosphors that light up, less power is needed for operation, and the light source in an LCD TV generates less heat than a Plasma TV. There is no radiation emitted from the screen.
Plasma TVs are more vulnerable to burn-in of static images. However, this problem diminished over the years due to "pixel orbiting" and related technologies.
Potentially shorter display lifespan. Early models had 30,000 hours or 8 hours of viewing a day for nine years, which was less than LCD. However, screen lifespan improved and 60,000-hour lifespan rating became the standard, with some sets rated as high as 100,000 hours, due to technology improvements.
Not as good at tracking motion (fast-moving objects may exhibit lag artifacts). However, this has with the implementation of 120Hz screen refresh rates and 240Hz processing in most LCD sets, but that can result in the "Soap Opera Effect," in which film-based content sources look more like a videotape than film.
Narrower effective side-to-side viewing angle than Plasma. On LCD TVs, it is common to notice color fading or color shifting as you move your viewing position further to either side of the center point.
Although LCD TVs do not suffer from burn-in susceptibility, single pixels can burn out, causing small but visible, black or white dots to appear on the screen. Individual pixels are not fixable. Replacing the whole screen is the sole option if the pixel burnout becomes unbearable.
An LCD TV was typically more expensive than an equivalent-sized (and equivalent featured) Plasma TV. However, that is no longer a factor, since companies have ceased manufacturing Plasma TVs.
Manufacturers chose to incorporate 4K resolution only in LCD TVs, using LED back and edge-lighting, and, in the case of LG and Sony, incorporating 4K into TVs using OLED technology.
Although it was possible to incorporate 4K resolution display capability into a Plasma TV, it was prohibitively expensive. When the sales of Plasma TVs started declining, TV makers decided against bringing consumer-based 4K Ultra HD Plasma TVs to market, which was another factor in their demise. The only 4K Ultra HD Plasma TVs manufactured were for commercial application use.
Plasma TVs contain tiny pockets of gas, and when a voltage is applied to them, they turn into a plasma state. The voltage then strikes the mercury within the plasma to emit ultraviolet (UV) rays, which pass through phosphor cells to produce an image. Each pixel in the TV contains three phosphor cells: red, green, and blue, and these three colors combine to produce a color. Essentially, plasma TVs don"t require a backlight, and each pixel is self-emissive as it produces its own light.
Unlike plasma TVs, LCD TVs use a backlight. Initially, LCD TVs used Cold-Cathode Fluorescent Lamp (CCFL) as their backlight. These are long tubes that are placed horizontally across the screen behind the LCD panel. When the light is turned on, it applies a voltage to the pixels, which makes them rotate a certain way to allow light through and produce an image. When it wants to display black, the pixels are rotated to create an opaque screen so that light doesn"t get through. This is what makes them different from plasma TVs because each pixel isn"t self-emitting.
Light-Emitting Diode (LED) TVs are the same as traditional LCD TVs, but instead of using CCFL backlights, they use many smaller LED lights. It produces an image the same way as a regular LCD TV because it still uses an LCD panel, but it has more control over the backlighting. The LEDs can be placed along the edges, which is called edge-lit LED, or all over the back panel, which is either called direct LED or full-array backlighting. You can see the differences between LCD and LED TVs below.
It"s also important to note LED is simply a marketing term used by manufacturers to describe their backlight. They"re still technically LCD TVs, but since calling them LED is so common now, we even label them as LED, and we"ll continue to do so throughout this article.
Plasma and LED TVs each present their own advantages and disadvantages in terms of picture quality, price, build, and availability. It"s generally thought that plasma produces a better picture quality due to their superior contrast ratio, but LED TVs became more popular because of other factors, like a lower cost and greater availability.
Below you can see the differences in picture quality between two older TVs from 2013. It"s clear the plasma was better at the time, but LED TVs have also gotten better since then, so picture quality has greatly improved.
Contrast ratio was one of the main advantages and selling points of plasma TVs. Since each pixel emitted its own light, it simply turned itself off when it wanted to display a black image. This allowed the TV to display very deep blacks, but because there was always a bit of charge left in the plasma, it still wasn"t a perfect black level.
On the other hand, LED TVs can"t achieve a perfect black level because the backlight is always on. However, technology has evolved to greatly improved the contrast of LED TVs, even to the point where it"s also as good as what plasma once was. There are two main types of LCD panels in TVs: Vertical Alignment (VA) and In-Plane Switching (IPS). VA panels produce a better contrast than IPS, and high-end TVs also have local dimming features that turn off certain zones of the LED backlights. Still, you won"t get a perfect black level, but most modern LED TVs produce such deep blacks that even in a dark environment it looks like perfect black levels. For reference, plasma TVs had a max contrast of about 4,000:1, according to DisplayMate.com, but some recent LED TVs can reach a contrast of over 20,000:1 with local dimming enabled, like the Samsung QN90A QLED.
LED TVs are a clear winner here, and it"s one of the reasons why they surpassed plasmas in terms of popularity. LED TVs get significantly brighter, so they can fight glare from light sources easier. Additionally, plasma TVs had to use glass on their front panel, which caused intense glare if you had any lamps or windows around the TV. LED TVs can use a coating on their glass panel to help reflect and diffuse light, making it a better choice for well-lit rooms.
Plasmas were designed for dark-room viewing, but since most people don"t have dedicated home theater setups and often watch with a few light sources around, they weren"t that useful. As you can see below, the plasma TV had pronounced reflections, to the point where it"s even hard to see the image, and instead you"re watching yourself watch TV. Reflections are still noticeable on an LED TV, but at least you can see the image.
Pixels on plasma TVs emitted light in all directions, creating extremely wide viewing angles, much better than most LED TVs. This means that the image remained accurate when viewing from the side, which was great for watching sports or a show with a few people. Out of the two main panel types for LED TVs, IPS has wider viewing angles than VA panels, but it"s still not as good as plasma.
TV manufacturers have tried different technologies to improve viewing angles on VA panels. Samsung has an "Ultra Viewing Angle" layer, and Sony uses their "X-Wide Angle" technology to increase the viewing angles, both at the cost of a lower contrast ratio. It"s still not as good as plasma, but they"re wide enough for watching TV in a fairly large seating area.
Below you can see the differences in viewing angles between a plasma and a VA panel. These TVs were tested on different test benches, so you shouldn"t directly compare the videos, but we included them to give you an idea of how each technology affects the viewing angle.
Plasma TVs were great for motion handling, like with sports and video games due to their quick response time. Since each pixel had to retain a certain charge at any given moment, it was ready to display an image almost instantly. This meant fast-moving scenes looked crisp and smooth, with no motion blur behind them. However, for LED TVs, it can be a toss-up; some lower-end models have a slow response time that causes motion blur, while other high-end TVs have a really fast response time.
Some LED TVs also use Pulse Width Modulation to dim their backlight, and this causes the backlight to flicker, which may create image duplication in fast-moving scenes. This can be particularly annoying, especially if you"re watching sports with fast-moving content.
In terms of refresh rate, plasma TVs had a higher internal refresh rate, up to 600Hz, while LED TVs tend to be 60 or 120Hz. However, the refresh rate depends on the content, and since most content doesn"t go past 120 frames per second, having a higher refresh rate TV isn"t very useful.
Screen uniformity is another area where plasma TVs win. Since they didn"t have a backlight, they could evenly control each pixel. LED TVs can suffer from uniformity issues, like darker edges or Dirty Screen Effect in the center, because the backlight output may not be even across the panel. However, this is only really noticeable when watching content with large areas of uniform color, like a hockey or basketball broadcast, or if you"re going to use the TV as a PC monitor. It shouldn"t be noticeable with other types of content, and since uniformity can vary between units, you shouldn"t worry about it too much.
One of the reasons plasma TVs didn"t last too long at the top of the TV world is because of their risk of temporary image retention and permanent burn-in. Plasmas lose their brightness over the years, and in the worst case, would have permanent burn-in with certain colors staying on the screen, as you can see here. Even after watching content with static elements, like the news, for an extended period, the outline of the static elements would stay on the screen for a few minutes after changing the channel.
These problems are particularly annoying, especially if you watch a lot of TV. There was no way to help reduce this issue, and after a few years, depending on how much you used the TV, your plasma would need replacing. LEDs don"t suffer from this same permanent burn-in, so you won"t have to worry about replacing your LED TV down the line because of burn-in.
Due to their different technologies, LED and plasma TVs are built differently. Plasma TVs tended to be heavier and thicker because the panel itself was larger. Although plasmas were the first flat-screen TVs available at a consumer level at the end of the 20th century, LCD TVs quickly became even thinner, easier to package, and lighter to carry from the store to your house. These days, LED TVs are as thin as 1", like the Samsung QN85A QLED.
Plasma TVs also required a lot of power to work and tended to get very hot. With the growth of environment-friendly consumer practices, it became clear LED TVs would win out since they required a lot less electricity, and in a way were better for the environment.
Both plasma and LED TVs were made with larger sizes, but LED had a slight advantage because they were also made in displays smaller than 32 inches, like with monitors. Although small TVs are rare now, you can still find a basic 28 or 32 inch TV for a kitchen or bedroom with an LED panel. Plasma TVs weren"t made that small. LED TVs also cost less to produce and are cheaper on the market, so at the end of the day, the lower cost drove LED sales.
When 4k TVs started to become the norm over 1080p and 720p TVs in the mid-2010s, manufacturers started to produce 4k LED TVs, while plasma TVs were stuck at 1080p. This presented a major advantage for LED TVs, as a higher resolution helps create a crisper image, and this essentially was the nail in the coffin for plasma TVs. Since manufacturers were focused on making 4k LED TVs, plasma TVs became less available, and by 2014, Panasonic, LG, and Samsung all stopped their plasma production. LED TVs surpassed plasma sales in 2007, and they haven"t looked back since.
There were a few other problems that contributed to the decline of plasma TVs. First of all, plasma TVs didn"t work at high altitudes because of the change in air pressure with the gasses inside. They would create a buzzing noise, and the image wouldn"t look the same, so this could have been problematic if you lived at a high altitude. LED TVs can be used at any altitude; you shouldn"t use them in extreme cold or extreme heat, but this is standard practice for any electronic, and temperature is easier to control than your altitude. Also, plasma TVs emitted a radio frequency that could have interfered with other devices around, like if you had a radio in the same room. Each of these issues are simply inconvenient for most people.
The simple answer is yes, but it doesn"t mean you should go out tomorrow and buy a new TV just because you read this article. If you aren"t experiencing any issues with your plasma, then you probably don"t need to replace it right away. However, if you notice your plasma is starting to show some signs of permanent burn-in, it"s probably a good idea to get a new TV before the burn-in becomes worse.
There could be other advantages if you upgrade your TV, like technological advancements and a higher 4k resolution. Modern TVs come with a built-in smart system, which isn"t something that most plasmas had, and this allows you to directly stream your favorite content without the need for an external streaming device. As mentioned, LED TVs aren"t very costly, and you can easily find the best 4k TVs for under $500.
At the same time that plasma TVs met their end, OLEDs grew from the ashes of their predecessor. After LG released the first commercially available 55 inch OLED in 2012, it soon competed with LED TVs. OLED, which stands for Organic Light-Emitting Diode, is different from plasma, but shares many of the same characteristics, while also avoiding some of plasma"s downfalls.
OLEDs use self-emissive pixels, but what sets them apart is how the pixels completely shut off, creating an infinite contrast ratio and perfect black uniformity. This is an improvement from plasma because it was never able to reach those perfect blacks. OLEDs also have wide viewing angles and a near-instant response time like plasmas. Sadly, they don"t get extremely bright, but they"re still better for well-lit rooms than plasma because they get a bit brighter and have much better reflection handling. Also, OLEDs have the same burn-in risk as plasma, but this only happens with constant exposure to the same static elements, and we don"t expect it to be a problem for people who watch varied content.
Another advantage for OLED is how thin they are, especially compared to plasma, and they aren"t as heavy. For example, the LG GX OLED is a TV designed to sit flush against the wall and it"s only 0.94" thick!
Compared to LED competitors, OLEDs are much more costly, and even though they offer superior picture quality, LEDs are still the favorite. Also, LED TVs are available in smaller sizes, while the smallest OLED TV we"ve tested is 48 inches. LEDs are generally the better choice for well-lit rooms since they still get much brighter, but OLEDs are a fantastic choice for dark room viewing.
Although plasma TVs once dominated the TV market for a short time at the turn of the 21st century, their disadvantages outweighed their advantages, and LED-backlit LCD TVs soon held the market share of sales. There were a few reasons for this, like burn-in issues, low peak brightness, and a thick and heavy design compared to LED TVs. Despite plasma TVs" superior overall picture quality, improved contrast, and very quick response time, it wasn"t enough to convince consumers to keep buying them once 4k LED TVs became readily available. If you still have a plasma, it"s likely you"ll need to replace it within the next few years, and you"ll probably buy a new LED TV.
Plasma screens contain tiny pockets of gas that get excited when voltage is applied to them, turning them into a state of plasma. In that state, the voltage then strikes electrons of mercury, turning them into ultraviolet (UV) light, which isn"t visible to the human eye. The UV light then passes through phosphor cells; each pixel contains red, green, and blue phosphor cells. Thanks to these phosphor cells, the TV can turn the UV light into colors that are visible on the light spectrum. Essentially, plasma TVs don"t require a light, and each pixel is self-emissive, so how one pixel displays itself is independent of the next pixel.
The pixels aren"t excited continuously, but in short pulses, and some plasma TVs can pulse up to 600 times every second. The naked eye perceives this as flickering, and some people are very sensitive to this. There can also be some advantages to this; since each pixel holds a certain charge, it"s ready to turn on and off as needed, resulting in minimal motion blur. This means that fast-moving content, like in sports or video games, appears smooth.
One of the downsides of plasmas was how they suffered from occasional image retention if they displayed the same image for a long period. So if you watched the news for about an hour, with all of its static displays, then switch channels, you"d still see the outline of the static elements. Eventually, they disappeared, but it could have been particularly annoying. Also, after several years in use, plasmas suffered from permanent burn-in. This happened when the phosphor cells simply stayed stuck in one color and couldn"t display any colors. Unfortunately, there was no way to avoid eventual burn-in, and almost every plasma TV suffered from it.
OLED TVs have similar characteristics to plasmas with their infinite contrast ratio, wide viewing angles, near-instant response time, and to a lesser extent, the risk of permanent burn-in. Since 2012, they"ve replaced plasma as a competitor to LCD TVs, and to learn more about OLEDs and how they differ from LCD TVs, see here.
An LCD screen is composed of two parts: the actual liquid crystal display and a light source at the back of the screen (called backlight). A light diffuser is placed between the backlight and the LCD screen to make the source of light uniform across the screen.
The LCD panel doesn"t emit light by itself, and this is why it needs a backlight; it only acts as a filter to block the light on a per-pixel basis. The backlight is always on, and the pixels in the display rotate to allow light through, creating the colors needed for the image. If the screen wants to display black, the LCD pixels rotate to try to block the light completely. If it wants to display white, it lets all light through. Since the display is only a filter, the blacks will not be as deep as with a plasma screen because an LCD panel will always let a small portion of light through.
There are different types of LCD panels, each with its unique characteristics. Vertical Alignment (VA) panels generally have a high contrast ratio and narrow viewing angles, while In-Plane Switching (IPS) panels have a low contrast ratio with wide viewing angles. You can read about their differences here.
By using a backlight, LCD TVs use much less power than plasmas, which you can read about here. Also, LCD TVs tend to get much brighter than plasmas, making them more suitable for well-lit rooms. There are two main types of backlights used in LCD screens: CCFL and LEDs.
When someone refers to an LCD TV, they usually mean a Cold-Cathode Fluorescent Lamp (CCFL) backlit LCD screen. The first LCD TVs were lit by CCFLs, but they"re extremely rare as of the start of the 2020s. The backlight is a series of light tubes placed behind the screen. These tubes are very similar to fluorescent lamps used in buildings but smaller.
CCFL-backlit LCD TVs were eventually replaced by LED TVs because they cost less, were made thinner, and required less power. Also, LED TVs have more control over their backlight, resulting in vivid colors and better picture quality.
An LED (Light-Emitting Diode) screen is an LCD screen, but instead of having a normal CCFL backlight, it uses LEDs as the source of light behind the screen. Companies label their TVs as LED, even though they"re technically LCD; it can be confusing at times, but if you see an LED TV, you know it has an LCD panel. These TVs are more energy-efficient and a lot smaller than CCFLs, enabling a thinner television screen.
In a full-array LED screen, the LEDs are distributed evenly behind the entire screen. This produces a more uniform backlight and provides more effective use of local dimming, where it can turn off and dim complete zones of LEDs.
With an edge-lit LED screen, the LEDs are placed at the edges of the screen. Depending on the display, it can be all around the screen, on the left and right sides, or at the top and bottom. This allows the screen to be very thin.
However, it can cause some spots on the screen to be brighter than others, like the edges. This problem is called flashlighting or clouding. It can be seen when watching a dark scene in a dark environment. Also, edge-lit screens usually don"t result in good local dimming as they don"t have control over the dimming zones.
Like the full-array method, the LEDs are directly behind the screen. However, there are very few of them, and they can"t be controlled separately to match the luminosity of the picture.
As TV companies attempt to improve their technology, a new type of LED backlighting has emerged: Mini LED. It uses the same traditional LED backlighting behind an LCD panel, except the LED lights are even smaller. This allows for more lights, creating a brighter image and more control over local dimming. Only a handful of Mini LED TVs were produced before 2021, but it now seems that manufacturers are starting to use the technology more often. The Samsung QN90A QLED is an example of a Mini LED TV.
Another technology, Micro LED, is only in its initial phases of development. This doesn"t even have an LCD panel as each LED pixel is self-emissive, similar to OLEDs, but without the burn-in risk. Currently, there aren"t any Micro LED TVs available at the consumer level; Samsung has produced large Micro LED TVs (over 100 inches), and they"re very expensive. However, we may begin to see Micro LED technology in the consumer TV market soon.
Plasma and LCD each present advantages and disadvantages when it comes to picture quality. Plasma TVs generally offer better contrast, wider viewing angles, and improved response times, while LCD TVs get much brighter and have better reflection handling. LCDs also cost less and can be much thinner, which are two of the main reasons why they took over the market share from plasmas in the mid-2000s. Plasma TVs are now extinct, and although OLEDs share many of the same characteristics, LED-backlight LCD TVs are now the norm, and it"s likely your next TV purchase will have an LCD panel.
When deciding whether to use plasma or liquid crystal diode (LCD) displays for your applications, you need to consider many factors. Both provide brilliant colour, sharp text contrast, and crystal-clear images. But the way in which plasma and LCD screens process and display incoming video/computer signals is markedly different.
Both plasma and LCD technology provide stark enough contrasts to make displays sharp and pleasing. But when it comes to contrast output, plasma technology outperforms LCD screens. Some plasma displays have a 3000:1 contrast ratio, which is the measure of the blackest black compared to the whitest white. LCDs use electric charges to untwist liquid crystals, thereby blocking light and emitting darker pixels. Despite this process, LCD displays don’t produce more than a 1000:1 contrast ratio.
Pixels contain enough information to produce every colour in the spectrum. Because plasmas use each and every pixel on their screens, colour information is reproduced more accurately. Plasma screens display moving images with remarkable clarity, though burn-in can be an issue. For displays with lots of light and dark imagery, plasma panels provide excellent performance with their high-contrast levels, colour saturation, and overall brightness.
LCD displays, on the other hand, manipulate light waves and reproduce colours by subtracting colours from white light. Though this makes it more difficult to maintain colour accuracy and vibrancy compared to plasma screens, LCDs have an advantage with their higher-than-average number of pixels per square inch. These additional pixels make LCD technology better at displaying static images from computers or VGA sources in full-colour detail. Plus, there’s no flicker and very little screen burn-in.
With LCD screens, there are essentially no parts to wear out. LCD screens last as long as their backlights do, with displays lasting, on average, 50,000–75,000 hours. That’s why LCD screens are especially good for long-term applications, such as digital signage or displays that require around-the-clock use.
Plasma screens, however, use a combination of electric currents and noble gases (argon, neon, and xenon) to produce a glow, which in turn yields brilliant colour. The half-life of these gases, however, is only around 25,000 hours. The glow they produce grows dimmer over time.
Plasmas light every pixel on the screen, making the brightness on the screen consistent and giving plasmas the edge when it comes to viewing angles. In fact, plasma screens have as much as a 160° viewing angle compared to LCDs. This makes viewing the images on the screen easier to see from a variety of angles. In doing so, however, plasmas consume much more power.
LCDs display at 130–140° angles, but their use of fluorescent backlighting requires much less power to operate than plasmas. This also makes LCDs less prone to burn-in or ghosting of images.
A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large (over 32 inches diagonal) flat panel displays to be released to the public.
Until about 2007, plasma displays were commonly used in large televisions (30 inches (76 cm) and larger). By 2013, they had lost nearly all market share due to competition from low-cost LCDs and more expensive but high-contrast OLED flat-panel displays. Manufacturing of plasma displays for the United States retail market ended in 2014,
Plasma displays are bright (1,000 lux or higher for the display module), have a wide color gamut, and can be produced in fairly large sizes—up to 3.8 metres (150 in) diagonally. They had a very low luminance "dark-room" black level compared with the lighter grey of the unilluminated parts of an LCD screen. (As plasma panels are locally lit and do not require a back light, blacks are blacker on plasma and grayer on LCD"s.)LED-backlit LCD televisions have been developed to reduce this distinction. The display panel itself is about 6 cm (2.4 in) thick, generally allowing the device"s total thickness (including electronics) to be less than 10 cm (3.9 in). Power consumption varies greatly with picture content, with bright scenes drawing significantly more power than darker ones – this is also true for CRTs as well as modern LCDs where LED backlight brightness is adjusted dynamically. The plasma that illuminates the screen can reach a temperature of at least 1,200 °C (2,190 °F). Typical power consumption is 400 watts for a 127 cm (50 in) screen. Most screens are set to "vivid" mode by default in the factory (which maximizes the brightness and raises the contrast so the image on the screen looks good under the extremely bright lights that are common in big box stores), which draws at least twice the power (around 500–700 watts) of a "home" setting of less extreme brightness.
Plasma screens are made out of glass, which may result in glare on the screen from nearby light sources. Plasma display panels cannot be economically manufactured in screen sizes smaller than 82 centimetres (32 in).enhanced-definition televisions (EDTV) this small, even fewer have made 32 inch plasma HDTVs. With the trend toward large-screen television technology, the 32 inch screen size is rapidly disappearing. Though considered bulky and thick compared with their LCD counterparts, some sets such as Panasonic"s Z1 and Samsung"s B860 series are as slim as 2.5 cm (1 in) thick making them comparable to LCDs in this respect.
Wider viewing angles than those of LCD; images do not suffer from degradation at less than straight ahead angles like LCDs. LCDs using IPS technology have the widest angles, but they do not equal the range of plasma primarily due to "IPS glow", a generally whitish haze that appears due to the nature of the IPS pixel design.
Superior uniformity. LCD panel backlights nearly always produce uneven brightness levels, although this is not always noticeable. High-end computer monitors have technologies to try to compensate for the uniformity problem.
Earlier generation displays were more susceptible to screen burn-in and image retention. Recent models have a pixel orbiter that moves the entire picture slower than is noticeable to the human eye, which reduces the effect of burn-in but does not prevent it.
Due to the bistable nature of the color and intensity generating method, some people will notice that plasma displays have a shimmering or flickering effect with a number of hues, intensities and dither patterns.
Uses more electrical power, on average, than an LCD TV using a LED backlight. Older CCFL backlights for LCD panels used quite a bit more power, and older plasma TVs used quite a bit more power than recent models.
Fixed-pixel displays such as plasma TVs scale the video image of each incoming signal to the native resolution of the display panel. The most common native resolutions for plasma display panels are 852×480 (EDTV), 1,366×768 and 1920×1080 (HDTV). As a result, picture quality varies depending on the performance of the video scaling processor and the upscaling and downscaling algorithms used by each display manufacturer.
Early plasma televisions were enhanced-definition (ED) with a native resolution of 840×480 (discontinued) or 852×480 and down-scaled their incoming high-definition video signals to match their native display resolutions.
The following ED resolutions were common prior to the introduction of HD displays, but have long been phased out in favor of HD displays, as well as because the overall pixel count in ED displays is lower than the pixel count on SD PAL displays (852×480 vs 720×576, respectively).
Early high-definition (HD) plasma displays had a resolution of 1024x1024 and were alternate lighting of surfaces (ALiS) panels made by Fujitsu and Hitachi.
Later HDTV plasma televisions usually have a resolution of 1,024×768 found on many 42 inch plasma screens, 1280×768 and 1,366×768 found on 50 in, 60 in, and 65 in plasma screens, or 1920×1080 found on plasma screen sizes from 42 inch to 103 inch. These displays are usually progressive displays, with non-square pixels, and will up-scale and de-interlace their incoming standard-definition signals to match their native display resolutions. 1024×768 resolution requires that 720p content be downscaled in one direction and upscaled in the other.
Ionized gases such as the ones shown here are confined to millions of tiny individual compartments across the face of a plasma display, to collectively form a visual image.
A panel of a plasma display typically comprises millions of tiny compartments in between two panels of glass. These compartments, or "bulbs" or "cells", hold a mixture of noble gases and a minuscule amount of another gas (e.g., mercury vapor). Just as in the fluorescent lamps over an office desk, when a high voltage is applied across the cell, the gas in the cells forms a plasma. With flow of electricity (electrons), some of the electrons strike mercury particles as the electrons move through the plasma, momentarily increasing the energy level of the atom until the excess energy is shed. Mercury sheds the energy as ultraviolet (UV) photons. The UV photons then strike phosphor that is painted on the inside of the cell. When the UV photon strikes a phosphor molecule, it momentarily raises the energy level of an outer orbit electron in the phosphor molecule, moving the electron from a stable to an unstable state; the electron then sheds the excess energy as a photon at a lower energy level than UV light; the lower energy photons are mostly in the infrared range but about 40% are in the visible light range. Thus the input energy is converted to mostly infrared but also as visible light. The screen heats up to between 30 and 41 °C (86 and 106 °F) during operation. Depending on the phosphors used, different colors of visible light can be achieved. Each pixel in a plasma display is made up of three cells comprising the primary colors of visible light. Varying the voltage of the signals to the cells thus allows different perceived colors.
Control circuitry charges the electrodes that cross paths at a cell, creating a voltage difference between front and back. Some of the atoms in the gas of a cell then lose electrons and become ionized, which creates an electrically conducting plasma of atoms, free electrons, and ions. The collisions of the flowing electrons in the plasma with the inert gas atoms leads to light emission; such light-emitting plasmas are known as glow discharges.
Relative spectral power of red, green and blue phosphors of a common plasma display. The units of spectral power are simply raw sensor values (with a linear response at specific wavelengths).
In a monochrome plasma panel, the gas is mostly neon, and the color is the characteristic orange of a neon-filled lamp (or sign). Once a glow discharge has been initiated in a cell, it can be maintained by applying a low-level voltage between all the horizontal and vertical electrodes–even after the ionizing voltage is removed. To erase a cell all voltage is removed from a pair of electrodes. This type of panel has inherent memory. A small amount of nitrogen is added to the neon to increase hysteresis.phosphor. The ultraviolet photons emitted by the plasma excite these phosphors, which give off visible light with colors determined by the phosphor materials. This aspect is comparable to fluorescent lamps and to the neon signs that use colored phosphors.
Every pixel is made up of three separate subpixel cells, each with different colored phosphors. One subpixel has a red light phosphor, one subpixel has a green light phosphor and one subpixel has a blue light phosphor. These colors blend together to create the overall color of the pixel, the same as a triad of a shadow mask CRT or color LCD. Plasma panels use pulse-width modulation (PWM) to control brightness: by varying the pulses of current flowing through the different cells thousands of times per second, the control system can increase or decrease the intensity of each subpixel color to create billions of different combinations of red, green and blue. In this way, the control system can produce most of the visible colors. Plasma displays use the same phosphors as CRTs, which accounts for the extremely accurate color reproduction when viewing television or computer video images (which use an RGB color system designed for CRT displays).
Plasma displays are different from liquid crystal displays (LCDs), another lightweight flat-screen display using very different technology. LCDs may use one or two large fluorescent lamps as a backlight source, but the different colors are controlled by LCD units, which in effect behave as gates that allow or block light through red, green, or blue filters on the front of the LCD panel.
Contrast ratio is the difference between the brightest and darkest parts of an image, measured in discrete steps, at any given moment. Generally, the higher the contrast ratio, the more realistic the image is (though the "realism" of an image depends on many factors including color accuracy, luminance linearity, and spatial linearity). Contrast ratios for plasma displays are often advertised as high as 5,000,000:1.organic light-emitting diode. Although there are no industry-wide guidelines for reporting contrast ratio, most manufacturers follow either the ANSI standard or perform a full-on-full-off test. The ANSI standard uses a checkered test pattern whereby the darkest blacks and the lightest whites are simultaneously measured, yielding the most accurate "real-world" ratings. In contrast, a full-on-full-off test measures the ratio using a pure black screen and a pure white screen, which gives higher values but does not represent a typical viewing scenario. Some displays, using many different technologies, have some "leakage" of light, through either optical or electronic means, from lit pixels to adjacent pixels so that dark pixels that are near bright ones appear less dark than they do during a full-off display. Manufacturers can further artificially improve the reported contrast ratio by increasing the contrast and brightness settings to achieve the highest test values. However, a contrast ratio generated by this method is misleading, as content would be essentially unwatchable at such settings.
Each cell on a plasma display must be precharged before it is lit, otherwise the cell would not respond quickly enough. Precharging normally increases power consumption, so energy recovery mechanisms may be in place to avoid an increase in power consumption.LED illumination can automatically reduce the backlighting on darker scenes, though this method cannot be used in high-contrast scenes, leaving some light showing from black parts of an image with bright parts, such as (at the extreme) a solid black screen with one fine intense bright line. This is called a "halo" effect which has been minimized on newer LED-backlit LCDs with local dimming. Edgelit models cannot compete with this as the light is reflected via a light guide to distribute the light behind the panel.
Image burn-in occurs on CRTs and plasma panels when the same picture is displayed for long periods. This causes the phosphors to overheat, losing some of their luminosity and producing a "shadow" image that is visible with the power off. Burn-in is especially a problem on plasma panels because they run hotter than CRTs. Early plasma televisions were plagued by burn-in, making it impossible to use video games or anything else that displayed static images.
Plasma displays also exhibit another image retention issue which is sometimes confused with screen burn-in damage. In this mode, when a group of pixels are run at high brightness (when displaying white, for example) for an extended period, a charge build-up in the pixel structure occurs and a ghost image can be seen. However, unlike burn-in, this charge build-up is transient and self-corrects after the image condition that caused the effect has been removed and a long enough period has passed (with the display either off or on).
Plasma manufacturers have tried various ways of reducing burn-in such as using gray pillarboxes, pixel orbiters and image washing routines, but none to date have eliminated the problem and all plasma manufacturers continue to exclude burn-in from their warranties.
The first practical plasma video display was co-invented in 1964 at the University of Illinois at Urbana–Champaign by Donald Bitzer, H. Gene Slottow, and graduate student Robert Willson for the PLATO computer system.Owens-Illinois were very popular in the early 1970s because they were rugged and needed neither memory nor circuitry to refresh the images.CRT displays cheaper than the $2500 USD 512 × 512 PLATO plasma displays.
Burroughs Corporation, a maker of adding machines and computers, developed the Panaplex display in the early 1970s. The Panaplex display, generically referred to as a gas-discharge or gas-plasma display,seven-segment display for use in adding machines. They became popular for their bright orange luminous look and found nearly ubiquitous use throughout the late 1970s and into the 1990s in cash registers, calculators, pinball machines, aircraft avionics such as radios, navigational instruments, and stormscopes; test equipment such as frequency counters and multimeters; and generally anything that previously used nixie tube or numitron displays with a high digit-count. These displays were eventually replaced by LEDs because of their low current-draw and module-flexibility, but are still found in some applications where their high brightness is desired, such as pinball machines and avionics.
In 1983, IBM introduced a 19-inch (48 cm) orange-on-black monochrome display (Model 3290 Information Panel) which was able to show up to four simultaneous IBM 3270 terminal sessions. By the end of the decade, orange monochrome plasma displays were used in a number of high-end AC-powered portable computers, such as the Compaq Portable 386 (1987) and the IBM P75 (1990). Plasma displays had a better contrast ratio, viewability angle, and less motion blur than the LCDs that were available at the time, and were used until the introduction of active-matrix color LCD displays in 1992.
Due to heavy competition from monochrome LCDs used in laptops and the high costs of plasma display technology, in 1987 IBM planned to shut down its factory in Kingston, New York, the largest plasma plant in the world, in favor of manufacturing mainframe computers, which would have left development to Japanese companies.Larry F. Weber, a University of Illinois ECE PhD (in plasma display research) and staff scientist working at CERL (home of the PLATO System), co-founded Plasmaco with Stephen Globus and IBM plant manager James Kehoe, and bought the plant from IBM for US$50,000. Weber stayed in Urbana as CTO until 1990, then moved to upstate New York to work at Plasmaco.
In 1994, Weber demonstrated a color plasma display at an industry convention in San Jose. Panasonic Corporation began a joint development project with Plasmaco, which led in 1996 to the purchase of Plasmaco, its color AC technology, and its American factory for US$26 million.
In 1995, Fujitsu introduced the first 42-inch (107 cm) plasma display panel;Philips introduced at CES and CeBIT the first large commercially available flat-panel TV, using the Fujitsu panels.Sears locations in the US for $14,999, including in-home installation. Pioneer and Fujitsu
In the year 2000, the first 60-inch plasma display was developed by Plasmaco. Panasonic was also reported to have developed a process to make plasma displays using ordinary window glass instead of the much more expensive "high strain point" glass.
In late 2006, analysts noted that LCDs had overtaken plasmas, particularly in the 40-inch (100 cm) and above segment where plasma had previously gained market share.
Until the early 2000s, plasma displays were the most popular choice for HDTV flat panel display as they had many benefits over LCDs. Beyond plasma"s deeper blacks, increased contrast, faster response time, greater color spectrum, and wider viewing angle; they were also much bigger than LCDs, and it was believed that LCDs were suited only to smaller sized televisions. However, improvements in VLSI fabrication narrowed the technological gap. The increased size, lower weight, falling prices, and often lower electrical power consumption of LCDs made them competitive with plasma television sets.
Screen sizes have increased since the introduction of plasma displays. The largest plasma video display in the world at the 2008 Consumer Electronics Show in Las Vegas, Nevada, was a 150-inch (380 cm) unit manufactured by Matsushita Electric Industrial (Panasonic) standing 6 ft (180 cm) tall by 11 ft (340 cm) wide.
At the 2010 Consumer Electronics Show in Las Vegas, Panasonic introduced their 152" 2160p 3D plasma. In 2010, Panasonic shipped 19.1 million plasma TV panels.
Panasonic was the biggest plasma display manufacturer until 2013, when it decided to discontinue plasma production. In the following months, Samsung and LG also ceased production of plasma sets. Panasonic, Samsung and LG were the last plasma manufacturers for the U.S. retail market.
LED HDTVs (properly known as LED-backlit LCD TVs) use light emitting diodes (LEDs) as a backlight for the LCD. Some of this light is blocked by vertical or horizontal liquid crystals, creating an image. These should not be confused with actual LED or OLED TVs.
Plasma HDTVs create images using phosphors, tiny plasma containers placed between two sheets of glass. These emit ultraviolet light at colored spots of phosphor on the screen, which then glow to create the picture.
Plasma TVs tend to have deeper blacks, and stabler color over the screen"s breadth from a variety of angles, leading to smoother, more natural images than seen on LED-lit LCD screens. Plasma screens also show crisp, fast motion without blur or ghosting.
According to CNET, LED-lit LCD TVs are the brightest available. They are capable of 100 footlamberts, although this is bright enough to cause eye fatigue in a dark room. Plasmas are less bright, so they might be more difficult to see in a bright room, and will dim over time.
Plasma screens normally range from 42 inches to approximately 65 inches. Panasonic also offer some larger models, including a 152 inch TV. Plasma screens also weigh more than LED-lit LCD screens.
Plasma TVs are less energy efficient than LED-lit LCD TVs. According to Which magazine, a 42 inch screen LED-lit LCD TV will use an average of 64 watts, while an average 42 inch Plasma TV uses 195 watts.
HDTVs are generally highly reliable. LED-lit LCD TVs are considered to have a lifespan of 100,000 hours, although they have not been in use long enough to have extensive information on their long-term reliability.
According to PC World, users of Panasonic’s plasma TVs rate them highly reliable, with very few serious problems. In 2010, just 1 in 20 Panasonic users reported a major problem with their TVs. Older plasma TVs have a lifespan of 20,000 hours, although some newer TVs have up to 60,000 hours.
LED-lit LCD TVs are typically more expensive than Plasma TVs. For example, on Amazon.com a Panasonic LED-lit LCD 42 inch TV was listed for $900 while a Panasonic Plasma 42 inch TV costs $600.
LCD screen TVs are the most popular, followed by LED-backlit screens (which are also LCD screens, by the way). Plasma screens are less popular and more commonly available in larger sizes.1,274 LCD TVs
All major TV manufacturers sell LED-lit LCD TVs. Panasonic focuses its TV range on the Plasma TV, while other brands, such as LG and Samsung, only produce a few models, and some, such as Sony and Toshiba, no longer produce Plasma TVs at all.
Large screen high-definition flat panels make the top ten list in “must purchase†surveys this year-and for good reason. They bring a Jetsons-like future to the present, with the best models delivering bright, clear, sharp high-definition pictures with deep colors and rich life like sound, while they take up less space in the home. This guide will help you clear through confusing technical jargon and find a flat-panel TV that suits your viewing habits and lifestyle.Weighing the Pros and Cons
Many people become confused by what type of flat-panel TVâ€â€plasma or LCDâ€â€they should purchase. The technology you pick will depend on a number of factors, including screen size, viewing conditions, price and, ultimately, your perception of which one looks the best.In terms of size, LCD flat-panels start as small as 10 inches and go up to 65 inches. Sets above 52 inches, however, can get expensive. Unlike smaller LCD TVs which typically have old-style 4:3 aspect ratios, all plasmas are widescreen. Plasmas start at 37 inches and go up to 103 inches.
LCDs are available in smaller sizes, allowing them to go where a 37-inch plasma will not fit. They also provide incredibly bright images when viewed on center. If you plan on watching your TV in a room with a lot of light, LCD has the edge over plasma, both with its bright picture and its special surface coatings that reduce room reflections.
LCDs generally have slower video response times than plasmas, which is noticeable primarily on sports and fast action scenes. They also have a narrower viewing angle, meaning that as you move off center, the image contrast and brightness drop off. Most LCD panels (as well as plasmas) are factory preset to stand out in the very bright lighting at most stores. When you get them home and out of the box, however, they are way too intense. You should change the menu setting from factory preset (usually Vivid) to Movie, Cinema or Standard (depending on your set) and lower the contrast (also called Picture Control) to the halfway point for the best picture.
If your television is going to be in room with normal lighting, plasma will provide superb image quality, dark blacks and bright whites over the widest viewing angle. However, if you need a screen below 37 inches, LCD is really the only choice available. Enclosed patios, really bright rooms with skylights or untreated windows, and sunny kitchens are all excellent spots for LCD displays of all sizes.
Plasmas have wide viewing angles, meaning you can sit off-center and still see a very good picture. They have high contrast ratios, excellent color, deep blacks, fast response times for viewing scenes with a lot of motion such as sports, and generally lower prices than LCDs above 42 inches. Today’s plasmas have a long life expectancy. Many of the top tier brands are now rated at 60,000 hours, which is equal to over 16 years of use when operating the set 10 hours a day, every day.
Plasma disadvantages are few. In the early days, the most common criticism was that they suffered from “burn-in,†meaning that when a static image such as a video game logo is on the screen for too long, its shadow may linger even after it’s gone. Burn-in really is the uneven wear of the phosphors within the plasma panel. The risk of burn in has been greatly reduced by the set makers and can be minimized with a simple precaution. Like with LCD, upon unpacking and connecting the set, change the “picture mode setting†from factory preset (usually Vivid) to Movie, Cinema or Standard (depending on the TV) and lower the contrast (also called the “picture controlâ€Â) to about one half level for the best picture.
In the age of High Definition TV size matters most. What many shoppers and salesmen don’t realize, buying a screen that is too small or sitting too far away from the display will rob you from seeing all the high definition the set has to offer, thereby wasting your money. HDTV provides a more immersive viewing experience than old style 4:3 standard definition TV, as well more picture detail than you have ever seen on a home display. In order to fully resolve all the detail within HDTV, you must sit in the optimum viewing range. Sit further and your eyes will not be able discern all the detail within the image. There are three levels of resolution for flat TVs. The first level is not HDTV; it is called Enhanced Definition at 480 vertical lines. The two classes of HDTV grade displays are 720p/768p with the display showing either 720 lines (or 768 lines) of resolution from top to bottom and 1080 (i or p), the highest quality HDTV display, with 1080 lines of resolution. For ED sets you can sit as far as 3.4 times the screen diagonal to see all detail. This means up to 142.8 inches (just under 12 feet) from an ED (480p) 42†set. Using the same size screen a 720p/768p you need to be at a viewing distance of at 2.3 times the screen size or closer, which is equal to 96.6 inches or eight feet. With a 1080 (i or p) 42inch set you should at no more than 1.55 times the screen size or 65.1 inches (just under 5½ ft.) to distinguish ever pixel within the image.
There are a number of high-definition LCD and plasma displays that are sold without tuners. These are called “HD monitors,†and, like a computer monitor, they are useless without a signal source. Most monitors come with speakers, but some do not. With an HD monitor, you must connect it to a high-definition source to receive a true high-definition picture. You have three good high def options over-the-air tuner box, cable box and satellite. Do not confuse “digital cable†for high definition. Make sure your cable provider is supplying you with a high-definition signal. An integrated HDTV has a built-in digital tuner and can receive over-the-air HD broadcasts.
CableCARD – for cable subscribers a provider leased CableCARD slides into the back of the integrated HDTV. The TV with a CableCARD slot is called DCR for Digital Cable Ready. The CableCARD allows wall hanging of the HDTV without the need of an external cable box. The TV will receive all the SD and HD channels that you subscribe to including the premium ones (HBO, Showtime etc.) and tunes them in using the TVs supplied remote control. A bonus, the lease of the CableCARD is around $1.25-3.95 a month (depending on the cable provider), much less than the cost of leasing a high definition cablebox (around $7-13 month). In tests a CableCARD produced a sharper image than the leased cable boxes the HD Guru has sampled.
TV Guide On Screen (TVGOS) – CableCARD can not pass interactive cable programming, specifically impulse pay-per-view (you will have to call you cable provider to get Wrestlemaniaâ„¢), video on demand or your provider’s interactive program guide. TVGOS provides a full eight-day guide to all the shows and movies including specific program information. It’s free, there’s no subscription and the latest version works flawlessly. It is available on most major cable systems. It also allows automatic recording to a VCR or disc recorder, like a TiVo.
Sets that don’t properly deinterlace 1080i signals will drop up to one-half of the picture resolution off the screen, providing yo