crt tft lcd led oled and amoled factory

What are the key differences between leading electronic visual displays available in the market? Such are the times that we live in that today most of us cannot possibly imagine a life without an electronic device. In fact, we have managed to surround ourselves and depend on a growing number of electronic appliances. Several of these devices - as it happens - also have an electronic visual display; be it a mobile phone, a tablet, a desktop monitor or the television set. Without a doubt, these electronic screen devices have revolutionised the way we lead our lives now as all of the four devices have become increasingly commonplace to the point of becoming basic necessities. Which brings to our blog topic: what exactly is an electronic screen and which are the leading screen technologies available today? Read on to know more…
An electronic screen or an electronic visual display, informally called a screen, is basically a device used to display / present images, text, or video transmitted electronically, without creating a permanent record. As mentioned earlier, electronic visual displays include television sets, computer monitors, and digital signage in information appliances. As per the definition, an overhead projector (along with screen onto which the text, images, or video is projected) can also be called an electronic visual display.
1. Cathode Ray Tube (CRT) display:A vacuum tube containing one or more electron guns and a phosphorescent screen, the cathode-ray tube (CRT) is used to display images. It modulates, accelerates, and deflects electron beams onto the screen to make the images. The images could be electrical waveforms (oscilloscope), pictures (television, computer monitor) or radar targets. CRTs have also been used as memory devices, wherein the visible light from the fluorescent material (if any) does not really have any significant meaning to a visual observer, but the visible pattern on the tube face could cryptically represent the stored data. In television sets and computer monitors, the front area of the tube is scanned systematically and repetitively in a pattern called a raster. Thanks to the intensity of each of the three electron beams - one for each additive primary color (red, green, and blue) - being controlled with a video signal as a reference, an image is produced. In modern CRT monitors and TVs, magnetic deflection bends the beams; magnetic deflection is essentially a varying magnetic field generated by coils and driven by electronic circuits around the neck of the tube, although electrostatic deflection is often used in oscilloscopes, a type of electronic test instrument. CRT is one of the older screen/ display technologies.
2. Flat-Panel display: Flat-panel displays are electronic viewing technologies that are used to allow people to see content (still images, moving images, text, or other visual material) in a range of entertainment, consumer electronics, personal computer, and mobile devices, and several kinds of medical, transportation and industrial equipment. They are much lighter and thinner than traditional cathode ray tube (CRT) television sets and video displays and are typically less than 10 centimetres (3.9 in) thick. Flat-panel displays can be classified under two display device categories: volatile and static. Volatile displays need pixels to be periodically electronically refreshed to retain their state (say, liquid-crystal displays). A volatile display only shows an image when it has battery or AC mains power. Static flat-panel displays rely on materials whose color states are bistable (say, e-book reader tablets from Sony), and they retain the text or images on the screen even when the power is off. In recent times, flat-panel displays have almost completely replaced old CRT displays. Most flat-panel displays from the 2010s use LCD and/or LED technologies. Majority of the LCD screens are back-lit as color filters are used to display colors. Being thin and lightweight, flat-panel displays offer better linearity and have higher resolution than the average consumer-grade TV from the earlier decades. The highest resolution for consumer-grade CRT TVs was 1080i, whereas many flat-panels can display 1080p or even 4K resolution.
3. Plasma (P) display: A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma; ionized gas that responds to electric fields. Earlier, plasma displays were commonly used in larger televisions (30 inches and larger). But since more than a decade now, they have lost almost all market share due to competition from low-cost LCDs and more expensive but high-contrast OLED flat-panel displays. Companies stopped manufacturing plasma displays for the United States retail market in 2014, and for the Chinese market in 2016.
4. Electroluminescent display (ELD):Electroluminescent Displays (ELDs) are screens that make use of electroluminescence. Electroluminescence (EL) is an optical and electrical phenomenon where a material emits light in response to an electric current passed through it, or to a strong electric field.
So ELD then is a kind of flat panel display produced by sandwiching a layer of electroluminescent material between two layers of conductors. When the current flows, the layer of material emits radiation in the form of visible light. Basically, electroluminescence works by exciting atoms by passing an electric current through them, leading them to emit photons. By varying the material being excited, the color of the light being emitted is changed. The actual ELD is built using flat, opaque electrode strips running parallel to each other, covered by a layer of electroluminescent material, followed by another layer of electrodes, running perpendicular to the bottom layer. This top layer has to be transparent so as to allow light to escape. At each intersection, the material lights, creating a pixel.
5. Liquid Crystal Display (LCD): A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that makes use of the light-modulating properties of liquid crystals. Liquid crystals do not give out light directly; they use a backlight or reflector to create images in color or monochrome. LCDs display arbitrary images like in a general-purpose computer display or fixed images with low information content, that can be displayed or hidden, such as preset words, digits, and seven-segment displays, like in a digital clock. They use the same core technology, apart from the fact that arbitrary images are made up of a large number of small pixels, while other displays have larger elements. LCDs could be on (positive) or off (negative), as per the polarizer arrangement. For instance, a character positive LCD with a backlight has black lettering on a background the same color as the backlight, and a character negative LCD has a black background with the letters matching the backlight color. Blue LCDs typically get their characteristic appearance from optical filters being added to white.
LCD screens are being used in several applications such as LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are seen in portable consumer devices such as digital cameras, watches, calculators and mobile telephones, including smartphones. LCDs are also found in consumer electronics products such as DVD players, video game devices and clocks. It is interesting to note that these displays are available in a wide range of screen sizes as compared to CRT and plasma displays. Also, while LCD screens have replaced heavy, bulky cathode ray tube (CRT) displays in almost all applications, they are slowly being replaced by OLEDs, which can be easily made into different shapes, and boast other advantages such as having a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile and potentially lower power consumption. OLEDs, however, are more expensive for a given display size and they can suffer from screen burn-in when a static image is displayed on a screen for a long time (for instance, the table frame for an airline flight schedule on an indoor sign), not to mention that there is currently no way to recycle OLED displays. LCD panels, on the other hand, are susceptible to image persistence but they rarely suffer image burn-in as they do not use phosphors, plus they can be recycled, although this technology is not exactly common as yet. Not surprisingly, attempts have been made to increase the lifespan of LCDs in the form of quantum dot displays, which provide performance to that of an OLED display, but the Quantum dot sheet that gives these displays their characteristics can not yet be recycled. LCDs are also more energy-efficient and can be disposed of more safely than a CRT display.
6. Light-Emitting Diode (LED) display:An LED display is a flat panel display that uses an array of light-emitting diodes as pixels for a video display. Their brightness lets them be used outdoors where they are visible in the sun for store signs and billboards. It was in 1962 that LED diodes first came into being; this was when the first practical LED was invented by General Electric’s Nick Holonyak Jr. This was also when they were mainly red in color. While the early models had a monochromatic design, the efficient Blue LED completing the color triad became available in the market only in the late 1980s. Today, large displays use high-brightness diodes to generate a wide spectrum of colors. In fact, recently, LEDs have also become a popular choice among destination signs on public transport vehicles and variable-message signs on highways. LED displays can offer general illumination in addition to visual display, as when used for stage lighting or other decorative (as opposed to informational) purposes. Several big corporations such as Apple, Samsung and LG are currently looking to develop MicroLED displays. These displays are easily scalable, and help with making the production process more streamlined. That said, production costs continue to be quite high and thus remain a limiting factor.
7. Organic Light-Emitting Diode OLED display: An organic light-emitting diode (OLED), also called an organic EL (organic electroluminescent) diode, is a light-emitting diode (LED), where the emissive electroluminescent layer is a film of organic compound that gives out light in response to an electric current. The organic layer is located between two electrodes, at least one of which is transparent. OLEDs are used to build digital displays in devices such as television screens, computer monitors, portable systems such as smartphones, handheld game consoles and digital assistants. Typically, an OLED display works without a backlight because it emits visible light. This means that it can display deep black levels and can be thinner and lighter than a liquid crystal display (LCD). In low ambient light conditions, say in a dark room, an OLED screen can achieve a higher contrast ratio than an LCD, irrespective of whether the LCD uses an LED backlight or cold cathode fluorescent lamps.
Also important to note an OLED display can be driven with a passive-matrix (PMOLED) or active-matrix (AMOLED) control scheme. In the former, each row (and line) in the display is controlled sequentially, one by one, as opposed to in the AMOLED where a thin-film transistor backplane is used to directly control and switch each individual pixel on or off, thus offering higher resolution and larger display sizes.
Lastly, there are two main families of OLED: those based on small molecules and those making use of polymers. A big area of research is the development of white OLED devices for use in solid-state lighting applications.
8. Active-Matrix Organic Light-Emitting Diode (AMOLED) display: AMOLED (Active-Matrix Organic Light-Emitting Diode) is a display device technology being used in smartwatches, mobile devices, laptops, televisions, media players and digital cameras. As mentioned earlier, it is a type of OLED; rather a specific type of thin-film-display technology where organic compounds form the electroluminescent material. What distinguishes it from PMOLED is the active matrix technology behind the addressing of pixels. An AMOLED display basically comprises an active matrix of OLED pixels generating light (luminescence) upon electrical activation that have been positioned or integrated onto a thin-film transistor (TFT) array, which in turn operates as a series of switches to control the current flowing to each individual pixel. AMOLED technology has continued to work towards consuming low power, becoming low-cost and offering scalability (mainly by offering larger sizes.
9. Super AMOLED display: Super AMOLED is essentially an AMOLED display but it is a term coined for marketing purposes by leading device manufacturers. It is used to denote AMOLED displays that come with an integrated digitizer, i.e. the layer that detects touch is integrated into the screen, instead of overlaid on top of it. The display technology however is not an improvement on the AMOLED. For instance, Samsung claims that Super AMOLED displays reflect one-fifth as much sunlight as the first generation AMOLED. In fact, Super AMOLED displays that are part of the Pentile matrix family, are also at times known as SAMOLED. Other variations of this term include Super AMOLED Advanced, Super AMOLED Plus, HD Super AMOLED, HD Super AMOLED Plus and Full HD Super AMOLED.
10. Quantum Dot (QD) display:A quantum dot display is a display device that uses quantum dots (QD), basically semiconductor nanocrystals that can generate pure monochromatic red, green, and blue light. Photo-emissive quantum dot particles are used in a QD layer which converts the backlight to give out pure basic colors that in turn enhance display brightness and color gamut by decreasing light loss and color crosstalk in RGB color filters. This technology is used in LED-backlit LCDs, though it applies to other display technologies as well (such as white or blue/UV OLED).
Among devices employing QD screens, one can find electro-emissive or electroluminescent quantum dot displays, which are currently an experimental type of display based on quantum-dot light-emitting diodes (QD-LED). These displays are similar to active-matrix organic light-emitting diode (AMOLED) and MicroLED displays, as in light is produced directly in each pixel by applying an electric current to inorganic nano-particles. QD-LED displays are supposed to support large, flexible displays and not degrade as readily as OLEDs, making them good bets for flat-panel TV screens, digital cameras, mobile phones and handheld game consoles. As of 2018, all commercial products like LCD TVs that use quantum dots and are called QLED, use photo-emissive particles, whereas electro-emissive QD-LED TVs are only to be found in laboratories today.

In market, LCD means passive matrix LCDs which increase TN (Twisted Nematic), STN (Super Twisted Nematic), or FSTN (Film Compensated STN) LCD Displays. It is a kind of earliest and lowest cost display technology.
LCD screens are still found in the market of low cost watches, calculators, clocks, utility meters etc. because of its advantages of low cost, fast response time (speed), wide temperature range, low power consumption, sunlight readable with transflective or reflective polarizers etc. Most of them are monochrome LCD display and belong to passive-matrix LCDs.
TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy without running out of operation.
Normally, we say TFT LCD panels or TFT screens, we mean they are TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology. TFT is active-matrix LCDs, it is a kind of LCD technologies.
TFT has wider viewing angles, better contrast ratio than TN displays. TFT display technologies have been widely used for computer monitors, laptops, medical monitors, industrial monitors, ATM, point of sales etc.
Actually, IPS technology is a kind of TFT display with thin film transistors for individual pixels. But IPS displays have superior high contrast, wide viewing angle, color reproduction, image quality etc. IPS screens have been found in high-end applications, like Apple iPhones, iPads, Samsung mobile phones, more expensive LCD monitors etc.
Both TFT LCD displays and IPS LCD displays are active matrix displays, neither of them can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to make LCD showing colors. If you use a magnifier to see your monitor, you will see RGB color. With switch on/off and different level of brightness RGB, we can get many colors.
Neither of them can’t release color themselves, they have relied on extra light source in order to display. LED backlights are usually be together with them in the display modules as the light sources. Besides, both TFT screens and IPS screens are transmissive, it will need more power or more expensive than passive matrix LCD screens to be seen under sunlight. IPS screens transmittance is lower than TFT screens, more power is needed for IPS LCD display.

TFT LCD is a mature technology. OLED is a relatively new display technology, being used in more and more applications. As for Micro LED, it is a new generation technology with very promising future. Followings are the pros and cons of each display technology.
TFT Liquid Crystal Display is widely used these days. Since LCD itself doesn"t emit light. TFT LCD relies on white LED backlight to show content. This is an explanation of how TFT LCD works.
Relatively lower contrast:Light needs to pass through LCD glasses, liquid crystal layer, polarizers and color filters. Over 90% is lost. Also, LCD can not display pure black.
Organic Light-Emitting Diode is built from an electro-luminescent layer that contains organic compounds, which emit light in response to an electric current. There are two types of OLED, Passive Matrix OLED (PMOLED) and Active Matrix OLED (AMOLED). These driving methods are similar to LCD"s. PMOLED is controlled sequentially using a matrix addressing scheme, m + n control signals are required to address a m x n display. AMOLED uses a TFT backplane that can switch individual pixels on and off.
Low power consumption and flexible: OLED doesn"t rely on backlight and consumes less power. OLED is essentially created on plastic film. It is bendable and easy to process.
High contrast and vivid color: OLED emits light itself, can produce very bright image with beautiful color. And because OLED can be turned off, it can produce true black.
Stroboscopic effect: most OLED screen uses PWM dimming technology. Some people who are easy perceive stroboscopic frequency may have sore eyes and tears.
Micro LED, sometimes called μLED is made up of tiny LED, measure less than 100μm. Another way of looking at this is that MicroLEDs are simply traditional LEDs shrunk down and placed into an array.
Replacing organic material with inorganic GaN material eliminates the need of polarizing and encapsulation layer, found in OLED. Micro LED is smaller and thinner, consumes less power.

We always hear LCD, LED, OLED and AMOLED, but what is the principle of these four? And what"s the differences between LED and LCD, LED and OLED, AMOLED and OLED?
The full name of LCD is "Liquid Crystal Display". As a substitute for CRT display, its lightweight and cheap characteristics are the two most important factors that occupy the market. The LED refers to the backlight source of the LCD, before the OLED is listed, the LCD panel itself can not glow and need backlight support, this and the advertising box on the street is a working nature, the content on the light box can not be seen at night, can only be seen inside the light box.
According to the difference of "backlight", LCD can be divided into "CCFL display" (cold cathode fluorescent lamp) and "LED display" (light emitting diode). If it is distinguished according to the "working principle", LCD can be divided into TN-LCD, TFT-LCD, STN-LCD and FSTN-LCD, etc., and the main difference between them lies in the "twisting angle of liquid crystal molecules". At present, most of the mainstream LCD displays on the market are products like TFT-LCD, and the others are relatively few.
In other words, LCD contains LED, and the full name of LED should be "LED backlit LCD screen". Compared with CCFL, it has the advantages of "small size" and "low power consumption". It achieves "higher brightness" while taking into account both thinness and lightness, but it is slightly inferior in color performance, so in professional drawing LCD, traditional CCFL is mostly used as backlight source.
a. the glowing principle of LED screen is different from that of OLED screen. The LED panel has a light-emitting layer, which is composed of several red light-emitting diodes, which uses the molecular deflection of the liquid crystal layer to show different images; each pixel of OLED can emit monochromatic light, so it does not need the light-emitting layer, but can directly drive the organic film to emit light by current.
b. the structure of the LED screen is different from that of the OLED screen. The structure of the LED screen is more complex, but it is composed of several layers; but the OLED is very thin because it does not need backlight, so the OLED screen is about 1/3 of the thickness of the LED screen, or even thinner; the OLED panel also has a bendable feature, which is completely impossible for the LED panel to do.
c. The display effect of LED screen is different from that of OLED screen. The LED screen can generally achieve 72% of the color gamut of NTSC, while the color of OLED is more conspicuous, reaching NTSC 100%, which can meet the needs of the more demanding color gamut such as BT 2020, but there may be problems of color temperature and color deviation.
d. LED screens have a longer life than OLED screens. There is no burning screen on the LED screen, and it is easy to burn the screen if the OLED screen has been used for a long time, and LED has more advantages in terms of service life.
AMOLED originated from OLED display technology, and it is also an extension of OLED technology. It can be said that AMOLED belongs to OLED, but OLED does not belong to AMOLED. In addition, the two are also different in the field of active luminescence control and application.
The main materials used for AMOLED screens and OLED screens are different. The AMOLED screen is a screen based on AMOLED material, while the OLED screen uses a very thin organic coating and glass substrate (or flexible organic substrate) that glows as the current passes through.
In addition, the AMOLED screen has the characteristics of faster response, higher contrast and wider viewing angle. The OLED display screen can be made lighter, thinner, with a larger viewing angle, and can greatly save power consumption.

Have you ever wonder where TFT derive from? Why is TFT referred to as LCD? The phenomenon started in early days, when bulky CRT displays were thing of the past and LCD was its replacement, but as time progresses, there were still room for improvement, which leads to the birth of TFT’s.
TFT is a variant of an LCD which uses thin film transistor technology to improve an image quality, while an LCD is class of displays that uses modulating properties of liquid crystals to form what we call an LCD (liquid crystals display) which in fact does not emits light directly.
Even though LCDs were very energy efficient, light weight and thin in nature, LCD were falling behind to the CRT display, which then leads to a change in LCD manufacturing, where performance became a big problem.
For example, having a 2001 Mustang vs a 2014 Mustang, the dimensions and engine of the 2014 has been redesign for performance reasons, not mentioning user friendly, so does the LCD to TFT.
As the birth of TFT, the elements are deposited directly on the glass substrate which in fact the main reason for the switch was because TFTs are easier to produce, better performance in terms of adjusting the pixels within the display to get better quality.
LCDs became ineffective over a period of time, almost all aspect of watching a TV, playing video games or using a handheld device to surf the net became daunting, this phenomenon is known as high response time with low motion rate.
Another problem with LCD was crosstalking, in terms of pixelating, this happens when signals of adjacent pixels affects operations or gives an undesired effect to the other pixel.
As TFT’s become very popular throughout the century due to its elaborate low charge associate and outstanding response time, LCDs became a thing of the past, and TFT became the predominant technology with their wider viewing angles and better quality this technology will be around for a long time.

Firstly polarization, in this we will get to another terms which are polarized light and unpolarized light. So a polarized light wave is that light wave in which vibration occur in a single plane and an unpolarized light wave is that light wave in which vibration occur in more than one plane. Now let’s finally understand polarization. Polarization is a process of transforming unpolarized light wave into polarized light wave.
This is older technology which is not used today. In CRT monitors there was a cathode ray tube due to which it is called CRT monitors. It consists of the electron gun which emits electron on the phosphorous screen and with the help of it image is formed on the screen. The signals that is send from the video adapter reaches to the electronic gun through cables. There are three electronic guns for each RGB color Red, Green, and Blue. These three color mixes with each other and form other colors. The electrons beams emitted from the electronic gun can be focussed in different direction using magnetic force. So that it can reach on the whole screen and produce display. The electron beams when hit the phosphorus screen it produces Red, Green, and Blue colours. The CRT monitor was heavy, large and bulky in size. It consumes more energy. The disadvantage of this technology is that it emits radiations which are harmful for human eyes and health. Due to this reason the CRT monitor is now replaced with the LCD monitor.
The flat panel display replaced the CRT. The flat panel display takes small space as compare to the CRT. It is small in size and consumes less power. Now days mostly computer and laptops uses flat panel display. Flat panel display does not emit any harmful radiation. Flat panel display uses three types of technology:
Now the first display panel type we have got is liquid crystal display or LCD it is a type of display panel that uses liquid crystals technologyalong with polarizers and a cold cathode fluorescent lamp as backlight to provide lightning. These liquid crystals do not emit light directly instead of it. They use a backlight or reflector to illuminate screen and produce image in colour or monochrome. The LCD works better in sunlight. The electricity passes through the liquid crystal and produce image.The color accuracy of the LCD is not very good. The LCD works on three things:
When light emits from source then the light wave vibrates in different direction in horizontal, vertical and diagonal. Then the polarization filters which are sheet of plastic which consists of vertical lines which are very near to each other. The important thing about filter is that when it is place in front of light then only vertical waves can pass through this filter. The horizontal waves are blocked by the filter. If we rotate this filter by 90 degree then this filter will block the vertical waves and pass the horizontal waves. Then we have liquid crystals which was discovered by an Australian scientist in 1888 which is state between the solid and liquid. The interesting thing about liquid crystal is that when the current is passes through it. The molecules changes its direction.
This type of LCD used active matrix technology which means that at every pixel transistor and capacitor is separately attached. The TFT contrast is better than LCD. But the disadvantage is that it consume more power due to which the battery timing of the mobile or laptop is minimum and also from the side the display view is not good. TFT technology is not available in the latest mobiles.
IPS LCD is the advanced form of the TFT technology the viewing angle and colour contrast is better than TFT. In IPS technology there are two transistors for each pixel and also the back light is maximum. It consumes less power as compare to TFT due to which it’s battery life is better than TFT.
The next display panel is light emitting diode or simply led. A led display panel also uses liquid crystal technology but instead of cold cathode fluorescent lamps as back lightning led display panel use an area of small light emitting diodes or LEDs as backlighting to illuminate the screen.
LED might seem like a new type of screen but in fact the LED is just an LCD screen but instead of using fluorescent light as the backlight it uses LEDs this gives the LED screen some new advantages for example it’s more energy efficient since LEDs consume less power also LED screens can be made very thinner than LCDs because they don’t have that bulky backlight. LEDs also have slightly more accurate colors than LCDs what’s also nice about LEDs is that black is slightly more black than on an LCD screen.
So the next display panel is organic light emitting diode or simply OLED. OLED display panel is made by putting a series of organic thin films between two conductors and when electric current is applied to this type of structure it emits a bright light unlike LCDS and LEDS.They don’t require backlight so they can be thinner and way lesser.So finally OLED uses an organic substance that glows when electric current is introduced and these displays can be thin and flexible too. Now to show something in OLED display it do not require all the display to turn on and only those pixel work which want to display something and other pixels will remain off. Due to which the black portion of the OLED display looks very good compare to LCD. It also consumes less power due to which the battery life will be good. The contrast ratio of OLED technology is better than LCD because the black pixels remain off. The disadvantage is that in sunlight its light is compromised and we may face problem in watching compare to an LCD display. LCD based phone is relatively cheaper than OLED display phone. The screen of the OLED display is very thinner because it does not need back light. Due to which OLED display phone is very thinner and more flexible than LCD phones. The very important benefit of it is that it is folded display. So we can decrease the phone size by folding the screen.
Now the next display panel is active matrix organic light emitting diode or simply AMOLED in AMOLED display panel. The first two words a and m refers to active and matrix respectively. The active matrix refers to the technology which is used for addressing pixels. AMOLED display panel uses a thin film transistor or TFT which contains a storage capacitor which maintains the line pixel states. So AMOLED display panel is a type of OLED which uses active matrix technology.The AMOLED is called active matrix because it consists of different layers for display formation. The anode layer is integrated with thin film transistor TFT which means it does not depend upon on the external circuit to glow the pixel.
Now the last display type we have got is super active matrix organic light emitting diode or simply assemble it as S-AMOLED is an AMOLED display which has an integrated touch function. So instead of having a layer which recognizes touches on top of screen that layer is embedded directly into screen assembly is a marketing term that is used by Samsung which refers to a display technology. Now you may be thinking what is the difference between S-AMOLED and AMOLED. So the term super make it distinguishable from its older version AMOLED and S-AMOLED are not only similar by name but also similar in function. The difference between them is the integrated touch function technology which S-AMOLED have and AMOLED have not. The super AMOLED is integrated with the touch sensor. As in the AMOLED we were used touch sensor digitizer which was integrated in the S-AMOLED due to which the thickness was decreased and due to removal of the touch sensor digitizer battery consumption is also decreased. In S-AMOLED light reflection is less as compare to the AMOLED. Both shares the same pixel arrangement
![]()
Gaspar, D. J. & Polikarpov, E. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes. (Taylor & Francis Group, Boca Raton, FL, 2015).
Tull, B. R. et al. High brightness, emissive microdisplay by integration of III-V LEDs with thin film silicon transistors. SID Symp. Digest Tech. Papers46, 375–377 (2015).
Takeda, A. et al. A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology. SID Symp. Digest Tech. Papers29, 1077–1080 (1998).
Lee, S. H., Lee, S. L. & Kim, H. Y. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl. Phys. Lett.73, 2881–2883 (1998).
Kim, H. J. et al. Optical efficiency enhancement in wide color gamut LCD by a patterned quantum dot film and short pass reflector. SID Symp. Digest Tech. Papers47, 827–829 (2016).
Soh, M. Y. et al. Design and characterization of micro-LED matrix display with heterogeneous integration of GaN and BCD technologies. IEEE Trans. Electron Devices66, 4221–4227 (2019).
Ahn, H. A., Hong, S. K. & Kwon, O. K. An active matrix micro-pixelated LED display driver for high luminance uniformity using resistance mismatch compensation method. IEEE Trans. Circuits Syst. II: Express Briefs65, 724–728 (2018).
Chaji, G. R. & Nathan, A. Parallel addressing scheme for voltage-programmed active-matrix OLED displays. IEEE Trans. Electron Devices54, 1095–1100 (2007).
Templier, F. et al. A novel process for fabricating high-resolution and very small pixel-pitch GaN LED microdisplays. SID Symp. Digest Tech. Papers48, 268–271 (2017).
Templier, F. et al. Advanced solutions for high-performance GaN MicroLED displays. Proceedings of SPIE 10918, Gallium Nitride Materials and Devices XIV. (SPIE, San Francisco, 2019).
Takita, Y. et al. Highly efficient deep-blue fluorescent dopant for achieving low-power OLED display satisfying BT.2020 chromaticity. J. Soc. Inf. Disp.26, 55–63 (2018).
Olivier, F. et al. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl. Phys. Lett.111, 022104 (2017).
Chen, S. M., Sun, X. W. & Kwok, H. S. Hybrid analog-digital driving method for high definition AMOLED. SID Symp. Digest Tech. Papers45, 1514–1517 (2014).
Hosoumi, S. et al. Ultra-wide color gamut OLED display using a deep-red phosphorescent device with high efficiency, long life, thermal stability, and absolute BT.2020 red chromaticity. SID Symp. Digest Tech. Papers48, 13–16 (2017).
Utsumi, Y. et al. Improved contrast ratio in IPS-Pro LCD TV by using quantitative analysis of depolarized light leakage from component materials. SID Symp. Digest Tech. Papers39, 129–132 (2008).
Hoffman, D. M., Stepien, N. N. & Xiong, W. The importance of native panel contrast and local dimming density on perceived image quality of high dynamic range displays. J. Soc. Inf. Disp.24, 216–228 (2016).
Guarnieri, G., Albani, L. & Ramponi, G. Minimum-error splitting algorithm for a dual layer LCD display—part I: background and theory. J. Display Technol.4, 383–390 (2008).
Guarnieri, G., Albani, L. & Ramponi, G. Minimum-error splitting algorithm for a dual layer LCD display—part II: implementation and results. J. Display Technol.4, 391–397 (2008).
Daly, S. et al. Viewer preferences for shadow, diffuse, specular, and emissive luminance limits of high dynamic range displays. SID Symp. Digest Tech. Papers44, 563–566 (2013).
Nishimura, J. et al. Super bright 8K LCD with 10,000 nit realized by excellent light-resistance characteristics of IGZO TFT backplane. SID Symp. Digest Tech. Papers51, paper 3.1 (2020).
Daly, S. & Feng, X. F. Bit-depth extension: overcoming LCD-driver limitations by using models of the equivalent input noise of the visual system. J. Soc. Inf. Display13, 51–66 (2005).
Guo, W. J. et al. The impact of luminous properties of red, green, and blue mini-LEDs on the color gamut. IEEE Trans. Electron Devices66, 2263–2268 (2019).
Kim, H. M. et al. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display. J. Soc. Inf. Disp.27, 347–353 (2019).
Chen, H. W. et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light: Sci. Appl.7, 17168 (2018).
AU Optronics Corp. AUO Showcases Mini LED Backlit LCDs Across Diverse Verticals to Seize Smart Living Market Opportunities. https://www.auo.com/en-global/New_Archive/detail/News_Archive_Technology_190513 (2019).
Handschy, M. A., McNeil, J. R. & Weissman, P. E. Ultrabright head-mounted displays using LED-illuminated LCOS. Proceedings of SPIE 6224, Helmet- and Head-Mounted Displays XI: Technologies and Applications. (SPIE, Florida, 2006).
Zhang, L. et al. Monochromatic active matrix micro-LED micro-displays with >5,000 dpi pixel density fabricated using monolithic hybrid integration process. SID Symp. Digest Tech. Papers49, 333–336 (2018).
Fan, R., Zhang, X. N. & Tu, Z. T. Influence of ambient temperature on OLED lifetime and uniformity based on modified equivalent lifetime detection. J. Soc. Inf. Disp.27, 597–607 (2019).

OLED displays have higher contrast ratios (1 million : 1 static compared with 1,000 : 1 for LCD screens), deeper blacks and lower power consumption compared with LCD displays. They also have greater color accuracy. However, they are more expensive, and blue OLEDs have a shorter lifetime.
OLED displays offer a much better viewing angle. In contrast, viewing angle is limited with LCD displays. And even inside the supported viewing angle, the quality of the picture on an LCD screen is not consistent; it varies in brightness, contrast, saturation and hue by variations in posture of the viewer.
There are no geographical constraints with OLED screens. LCD screens, on the other hand, lose contrast in high temperature environments, and lose brightness and speed in low temperature environments.
Blue OLEDs degrade more rapidly than the materials that produce other colors. Because of this, the manufacturers of these displays often compensate by calibrating the colors in a way that oversaturates the them and adds a bluish tint to the screen.
With current technology, OLED displays use more energy than backlit LCDs when displaying light colors. While OLED displays have deeper blacks compared with backlit LCD displays, they have dimmer whites.
LCDs use liquid crystals that twist and untwist in response to an electric charge and are lit by a backlight. When a current runs through them, they untwist to let through a specific amount of light. They are then paired with color filters to create the display.
AMOLED (Active-Matrix Organic Light-Emitting Diode) is a different form of OLED used in some mobile phones, media players and digital cameras. It offers higher refresh rates with OLEDs and consume a lot less power, making them good for portable electronics. However, they are difficult to view in direct sunlight. Products with AMOLED screens include Galaxy Nexus, Galaxy S II, HTC Legend and PlayStation Vita.

AMOLED and TFT are two types of display technology used in smartphones. AMOLED (active-matrix organic light-emitting diode) displays are made up of tiny organic light-emitting diodes, while TFT (Thin-Film Transistor) displays use inorganic thin-film transistors.
AMOLEDs are made from organic materials that emit light when an electric current is passed through them, while TFTs use a matrix of tiny transistors to control the flow of electricity to the display.
Both technologies have their own advantages and disadvantages. So, how do you know which one is best for your needs? We compare these two technologies below.
Refresh Rate: Another key difference between AMOLED and TFT displays is the refresh rate. The refresh rate is how often the image on the screen is updated. AMOLED screens have a higher refresh rate than TFT screens, which means that they can display images more quickly and smoothly.
Response Time: The response time is how long it takes for the pixels to change from one colour to another. AMOLED screens have a shorter response time than TFT screens..
Colour Accuracy/Display Quality: AMOLED screens are more accurate when it comes to displaying colours. This is because each pixel on an AMOLED screen emits its own light, which means that the colours are more pure and true to life. TFT screens, on the other hand, use a backlight to illuminate the pixels, which can cause the colours to appear washed out or less vibrant.
Viewing Angle: The viewing angle is the angle at which you can see the screen. AMOLED screens have a wider viewing angle than TFT screens, which means that you can see the screen from more angles without the colours looking distorted.
Power Consumption: One of the main advantages of AMOLED displays is that they consume less power than TFT displays. This is because the pixels on an AMOLED screen only light up when they need to, while the pixels on a TFT screen are always illuminated by the backlight.
Production Cost: AMOLED screens are more expensive to produce than TFT screens. This is because the manufacturing process for AMOLED screens is more complex, and the materials used are more expensive.
Availability: TFT screens are more widely available than AMOLED screens and have been around for longer. They are typically used in a variety of devices, ranging from phones to TVs.
Usage: AMOLED screens are typically used in devices where power consumption is a concern, such as phones and wearable devices. TFT screens are more commonly used in devices where image quality is a higher priority, such as TVs and monitors.
AMOLED and TFT are two different types of display technology. AMOLED displays are typically brighter and more vibrant, but they are more expensive to produce. TFT displays are cheaper to produce, but they are not as bright or power efficient as AMOLED displays.
The display technology that is best for you will depend on your needs and preferences. If you need a screen that is bright and vibrant, then an AMOLED display is a good choice. If you need a screen that is cheaper to produce, then a TFT display is a good choice. However, if you’re worried about image retention, then TFT may be a better option.
Nauticomp Inc.provides world-class fully customizable touchscreen displays for commercial and industrial settings. With features like sunlight readability, brightness adjustability, infrared lighting, full backlighting, all-weather capabilities, etc., our displays are second to none. Contact us today to learn more.

"Between 0.0001 and 0.00001 nits" "Sony claims an OLED contrast range of 1,000,000:1. When I asked how the contrast could be so high I was told that the surface is SO black the contrast is almost infinite. If the number representing the dark end of the contrast scale is nearly zero then dividing that number into the brightest value results in a very, very high contrast ratio."
Does not normally occur at 100% brightness level. At levels below 100% flicker often occurs with frequencies between 60 and 255 Hz, since often pulse-width modulation is used to dim OLED screens.
No native resolution. Currently, the only display technology capable of multi-syncing (displaying different resolutions and refresh rates without the need for scaling).Display lag is extremely low due to its nature, which does not have the ability to store image data before output, unlike LCDs, plasma displays and OLED displays.

Advantages: thin body and space saving. Compared with the more bulky CRT display, the liquid crystal display only needs one third of the space of the former; it saves electricity and does not produce high temperature. It is a low power consumption product, which can be achieved compared to CRT displays. No heat at all; no radiation, which is good for health, and the liquid crystal display is completely free of radiation.
The screen is soft and does not hurt the eyes. Unlike CRT technology, the LCD screen will not flicker, which can reduce the damage of the display to the eyes and make the eyes less fatigued.
Disadvantages: The visual deflection angle is small; it is easy to cause image tailing phenomenon (such as the rapid shaking of the mouse pointer). This is because the ordinary LCD screen is mostly 60Hz (60 frames per second), but this problem mainly occurs when the LCD is just popular The brightness and contrast of the LCD monitor is not very good.
LCD "dead pixels" problem; life is limited; when the resolution is lower than the default resolution of the monitor, the picture will be blurred; when the resolution is greater than the default resolution of the monitor (mandatory setting by software is required), the color of the details Will be lost.
Advantages: OLED is a self-luminous material, no backlight is required, at the same time, wide viewing angle, uniform picture quality, fast response speed, easier colorization, light emission can be achieved with a simple driving circuit, simple manufacturing process, and flexible The panel conforms to the principle of lightness, thinness and shortness, and its application range belongs to small and medium size panels.
Active light emission, wide viewing angle range; fast response speed, stable image; high brightness, rich colors, and high resolution. Low driving voltage, low energy consumption, and can be matched with solar cells, integrated circuits, etc.
Disadvantages: It is difficult to increase the size. In order to maintain the brightness of the entire panel, it is necessary to increase the brightness of each Pixel and increase the operating current, which will reduce the life of the OLED Device. Current Drive control is not easy. The manufacturing process is more complicated and the variability of TFT is higher.
![]()
Apple has brought mini LED toiPad Pro, and is also working on micro LED technology. Here"s what to expect from the new display technologies set to take over from TFT LCD and OLED.
Display technology has been slow to change, with the industry seemingly taking decades to move from one to the next. Cathode ray tube (CRT) screens hung around for ages until thin and light TFT LCD screens became cheap and attractive enough for consumers to adopt.
Inevitably, when a technology has started to see wide adoption by the industry, the attention then turns to what is on the way. With supply chain reports of Apple"s interest in microLED and mini LED, the use of mini LED in the 12.9-inch iPad Pro, and the potential use of both technologies in future products, this has prompted a lot of interest from observers.
The two technologies are interesting, and each provides its own benefits to the device table. In the case of microLED, it introduces a major fundamental change in the way devices are designed, produced, and appear to consumers.
One of the older and more established display technologies in use today, TFT LCD stands for Thin Film Transistor Liquid Crystal Display. It has been in use in screens for decades, most commonly in notebooks, but it is also used in tablets, smartphones, and other mobile devices.
The technology is relatively similar to the segmented screen of a calculator, in that it relies on a series of layers to sandwich a liquid crystal material. When a current is applied, the properties of the liquid crystal material can change, and so it affects how light passes through it.
In a simple calculator display, pockets are formed in the layers to contain the liquid crystal material in a specific formation, and applying current in these areas allows certain segments to become opaque while others remain transparent or translucent. Controlling which of these segments have current applied to them in different combinations shows different numbers.
Instead of a segment of a number, there are instead millions of little pockets across the screen in a grid of pixels. Using pockets with color filters for red, green, and blue, these segments can be used to show different combinations of colors.
Polarizing filters are on either side of the display sandwich, used to force light to pass through in a specific way. The LCD sections can block the light from passing through, resulting in a dark or black pixel in that section.
An important element of the system is light, which is transmitted from behind the TFT LCD stack. Without that light, the screen will appear dark and largely unviewable to the user.
For many years, this has involved the use of LEDs in a backlight, spread out across the edges of the screen and funneled across to illuminate the entire backlight.
TFT LCD offers a cheap, cost-efficient, and highly reliable way to include a display in their device for device producers. The long lifespan of the technology means it is already quite mature, though with relatively few ways to expand the technology in new directions.
TFT LCD has been a staple of Apple"s product range for many years, from MacBooks and iMacs to the iPhone and iPad. While Apple is certainly looking into other areas to improve its products" displays, it at least has a well-worn technology it can fall back on if required.
The next major display technology for thin portable screens after TFT LCD was OLED, which means Organic Light Emitting Diode. While the names are dramatically different, there are many elements of OLED that borrow heavily from TFT LCD, but there are still some fundamental differences.
Like TFT LCD, OLED uses thin film layers, a grid of pockets filled with a liquid to create pixels, and colored filters to change the color of light. Unlike TFT LCD, the big differentiator is the liquid that is put into that film sandwich.
An organic compound is used, one that emits light when a current is passed through it. This means that each pixel is self-illuminating and eliminates the need for a backlight.
This offers quite a few advantages over TFT LCD, such as an OLED screen being thinner by not requiring a backlight in order to function. This can also make the display assembly lighter and simpler to construct in some cases.
By having a light source per pixel, this also means that OLED can provide far higher contrast levels than TFT OLED. A TFT screen generally won"t show pure black for some pixels, as the backlight will be on for all pixels equally, and so some light will bleed through and show a very dark grey instead.
There is also the potential for power savings, as OLED requires power to illuminate only the pixels it requires. TFT LCD typically requires all of the LEDs in the backlight to be on, regardless of the type of image being shown.
Since there"s no backlight, OLED is also a great candidate for flexible displays, such as those used in foldable devices like the Samsung Galaxy Fold and the rumored "iPhone Fold."
While great, OLED panels have their own issues, such as the relatively high cost of production due to a need for clean environments devoid of dust and water. Each is easily capable of contaminating the display, ruining it partially useless.
There has been some talk about Apple using OLED instead of TFT LCD in some future iPad Pro models, which could allow for even thinner tablets with higher contrast levels. However, the typically longer use of a tablet could lead to burn-in or a loss of brightness over time for the OLED panels.
To fix this last point, it was rumored that Samsung was adding a distribution chamber to an OLED production line, which would allow the stacking of emitting layers. With these extra layers, the OLED screen"s lifespan could be extended beyond typical durations.
The use of the technology isn"t necessarily limited to tablets and smartphones. There have been rumors over the years claiming Apple was going to add OLED to its MacBook Pro line, though so far, that has yet to happen.
While the allure of TFT LCD is tempered in the face of OLED, there is a technology that could offer a compromise: Mini LED. As the name suggests, it is basically an LED, but at a much smaller scale.
The easiest way to understand what the use of mini LED is to a device maker is to realize that it"s basically TFT LCD but with a much better backlight. Instead of using a backlight with a few larger LEDs, consider one that is instead made up of thousands of smaller mini LEDs in a grid.
The overall light output of LED and mini LED may ultimately be comparable, and it doesn"t change how TFT LCD fundamentally works. But, it does offer some tricks that can give it usability comparable to OLED.
For a start, by using thousands of mini LEDs, you have the opportunity to tune the amount of light emitted from the backlight system itself. Instead of seeing a bleed-through of light in a part of the screen that is supposed to be dark, you can instead turn the relevant mini LED down or off to get much darker shades.
The entire rear of the 12.9-inch iPad Pro display houses a layer of over 10,000 mini LEDs as a backlight. Each group of four is a localized dimming zone. [via Apple]
This is a trick that is already being performed with some televisions, using an array of LEDs in the back and changing their brightness to better suit that area of the screen.
In effect, this can provide contrast levels comparable to OLED. Whether it is the OLED self-illuminated pixel or the mini LED backlight behind a pixel being turned off, the absence of light still results in a black screen.
With the use of thousands of mini LEDs in use, this equates to thousands of "local dimming zones" in a future display, far more than the Pro Display XDR"s few hundred.
Obviously, this costs more than a traditional backlight to implement, but it may still be cheaper to use than OLED, and with comparable results. Add in the maturity of the underlying TFT LED technology, and it becomes a desirable proposition to device vendors like Apple.
Apple has started to dip its toe into mini LED with the 12.9-inch iPad Pro, which uses 10,000 mini LEDs for its backlight. Spread across the entire backlight area, the change introduces more than 2,500 local dimming zones, enabling extremely fine control over brightness and contrast.
The change also resulted in a contrast ratio of 1,000,000:1, an average brightness of 1,000 nits instead of 600, and a peak brightness of 1,600 nits for HDR content. Apple also managed to accomplish this while making the 12.9-inch iPad Pro only half a millimeter thicker than the previous model.
With a seemingly successful implementation in the iPad Pro, it"s highly likely that Apple will bring mini LED backlighting to other products in its range. Good candidates for this would be the MacBook Pro range, which could take advantage of mini LED to upgrade the displays without switching to OLED.
As the die cost for mini LED is fairly high due to being a relatively immature technology that is only beginning to be commercialized, Apple is keen to bring that cost down. Kuo reckoned that by bringing aboard production partners like Sanan Optoelectronics, Osram, and Seoul Semiconductor, Apple could bring the cost of production down considerably.
If true, Kuo estimated that Apple would see the cost of mini LED die costs cut by about 50% year-on-year in 2021, then by 35% in 2022. A price war could between producers could help Apple reduce the costs further down the line.
Much like mini LED, microLED uses much smaller LEDs, but at a very tiny scale. Instead of thinking of LEDs at the millimeter scale, microLEDs are instead at the micron level.
The microLEDs are deposited in a pattern, with each able to emit red, green, or blue light. Grouped together, a collection of microLEDs can become a pixel, all without requiring a color filtering layer.
Think of it like the giant screen in a stadium, where each pixel can be made up of an LED or a group of LEDs. A microLED display is the same principle, except much, much smaller.
By reusing LED technology in miniature, the system provides quite a few benefits in terms of picture quality. You have the same self-illuminating pixel as OLED that doesn"t have the backlight bleedthrough problem, and so it should reach OLED levels of contrast.
There are power savings through per-pixel illumination and general power efficiency over OLED. There"s also the potential to create an image with a considerably higher brightness than OLED, up to 30 times brighter.
For device producers, the lack of contamination issues from water and dust makes it better to work with OLED, increasing manufacturing yields. However, the relatively new technology will also be the most expensive to implement until it matures.
There are also applications for flexible and foldable displays, with microLED less likely to break or be damaged from stress than OLED panels if used with a flexible-enough substrate.
As the biggest departure from TFT-style displays with major potential improvements, Apple has put considerable work into developing microLED for its own uses.
The earliest reportable connection to microLED was Apple"s acquisition of LuxVue in May 2014. The company was a microLED specialist and held numerous patents related to microLED that Apple had the potential to use.
It was reported in March 2018 that Apple operates its own secret engineering and manufacturing facility, specifically for microLED research. The 62,000 square-foot facility is allegedly located a mere 15 minutes from Apple Park, and in 2018 was thought to house 300 engineers working on project "T159."
There was also talk at the time of Apple working with TSMC on the technology, with a view to making potential display panels for the Apple Watch. Assembly partner Foxconn was also linked to a microLED effort in 2019, though it seems that was more to explore the use of the technology down the line.
In May 2020, Apple was reportedly investing around $334 million into a factory in northern Taiwan for the production of mini LED and microLED display panels.
Apple has also received a patent about microLED production that could improve the reliability and quality of displays. The patent, granted on February 23, seeks to test microLEDs before they are placed onto a display, which can reduce wastage and the chance of defects passing through to final products.
Chairman of Epistar Lee Biing-jye said in August 2020 that the company was working on the technology, but that it and rivals have repeatedly encountered difficulty in producing the displays. The company suggested it would be able to produce a microLED display for an Apple Watch in two to three years, while volume adoption of microLED for larger displays like a television could be four to five years away.
In 2018, Samsung introduced "The Wall," a module-based professional display that used microLEDs. By late 2020, it had created a 110-inch microLED television, which it intended to sell from Q1 2021.
At the time of publication, Samsung has yet to put its microLED television on sale. While pricing has yet to be released by the company, it is expected to cost over 100 million won ($90,000) in Samsung"s home country, South Korea.
Aside from this early commercialization attempt, it seems unlikely that there will be any realistically-priced and high-volume devices that will go on sale with microLED in the immediate future. Its inclusion in common devices is still realistically years away, as producers work to bring the cost of it down to an acceptable level.
This will also include Apple, though its own private development of microLED technology arguably gives the iPhone maker a major advantage over its rivals. This includes both the actual production of the displays, and in potential use cases.
Taking into account its research and secret project work, it is probable that Apple will also be able to squeeze out all the cost savings it can from making the microLED screens in the first place.
Its control over production could even allow it to create a microLED display as part of the enclosure of a product. This may enable radical designs that incorporate the screen in the housing, rather than leaving the display as a discrete component.
It"s even plausible that microLED could result in future product categories that Apple doesn"t currently offer to consumers. For example, an Apple VR headset could use microLED for displays aimed at each eye.
There are many possibilities that Apple"s work on microLED could lead to, and many more results that could occur. However, like the rest of the industry, it will take time before those first products will become available to buy.
In the meantime, Apple has mini LED that it can offer to consumers. It may not be a seismic shift in display technology, but it will still provide a major upgrade to consumers as work on microLED marches on.

Jimmy Kim conducts research on a broad—and disparate—array of subject areas in display materials and components, including cost modeling for OLED displays, new developments in mini LED technology, and the emergence of new display form factors, such as rollables and foldables.
Jimmy joined the company in 2014 following the acquisition of DisplaySearch, where he served as a senior analyst cov
Ms.Josey
Ms.Josey