ascii lcd display supplier
Winstar offers a wide range of standard Character LCD modules for customers" application. Our LCD character displays are available from 8x2, 12x2, 16x1, 16x2, 16x4, 20x2, 20x4, 24x2 through to 40x4 formats with 5x8 dot matrix characters. The LCD panel technologies include TN, STN, FSTN, FFSTN types and also with polarizer positive mode and negative mode options. There are different LED backlights are available in various colors including yellow/green, white, red, blue, green, amber, and RGB LEDs as well as no backlight option.
To meet the demands of customer applications, these character LCD displays are available with viewing angles of 6:00, 12:00, 3:00, and 9:00 o"clock. Winstar offers various IC options of character fonts including English/Japanese, western European, eastern European, Scandinavian European, Cyrillic (Russian), and Hebrew/Arabic. These LCD character module and LCM Modules can be used on industrial and consumer"s applications including entrance guard"s equipment, telegram, medical device, car and home audio, white goods, game machine, toys and etc.
This 2×16 character LCD Module with BLUE Backlight uses an I2C interface to communicate with the host microcontroller. This budget-conscious LCD is used on projects requiring the display of text, data, or ASCII characters of all types. Connect to Vcc, Gnd, SDA (serial data line), and SCL (serial clock line). This is a 5VDC device and will be found on the I2C bus at address 0x27 / 0x3F.
This 2×16 character LCD Module with YELLOW Backlight uses an I2C interface to communicate with the host microcontroller. This budget-conscious LCD is used on projects requiring the display of text, data, or ASCII characters of all types. Connect to Vcc, Gnd, SDA (serial data line), and SCL (serial clock line). This is a 5VDC device and will be found on the I2C bus at address 0x27 / 0x3F.
LCD character modules are “characteristically” simple display devices known for their very low power consumption, low cost and long-term reliability. They are designed to display alpha-numeric characters in preset patterns and do not have much. In most cases, they are small displays with only 8 or 16 or 32 characters, utilized for status reports and simple communication. It is the most popular display for hobbyist because of its ease of operation.
Orient Display offers many standard sizes including (characters x lines) 8×1, 8×2, 16×2, 16×4 , 20×2, 20×4 , 24×4, 40×4, and many more. Orient Display’s character LCD displays cover small LCD character display modules for tiny devices to large character LCD displays for medical equipments.
Orient Display character LCD modules use industrial standard Hitachi HD44780 controller or compatible controllers such as Sitronix ST7066U, Samsung S6A0069, so they can be quickly integrated into a new product or used as a replacement in your existing products.
The LCD panel technologies include TN, STN, FSTN, FFSTN or VA (Vertical Alignment) types and also with positive mode and negative mode and options of reflective, transflective or transmissive polarizers. There are different LED backlights available in various colors including yellow-green, white, red, blue, green, amber, and RGB LEDs as well as no backlight option.
The viewing angles for these character LCD displays are available with 6:00, 12:00, 3:00, and 9:00. Orient Display offers various IC options of character fonts including English/Japanese, western European, eastern European, Scandinavian European, Cyrillic (Russian), and Hebrew/Arabic. These LCD character modules and LCD modules can be used on industrial and consumer’s applications including printers, microwaves, water machines, medical devices, car and home audio, white goods, game machines, toys, industrial meters, etc.
Please see our character LCD display list here. If you can’t find any in the list, please check with our engineers to search our factory database or have a custom-made option.
This is20×4 Character LCD Displaywith Blue Backlight ASCII Alphanumeric Character. 20×4 character LCD Display can be Interface with almost All Digital Microcontroller such as Arduino, 8051, PIC, AVR, ARM, MSP, COP8, STM, Raspberry Pi etc. 4x20 Display also used in Industrial Research and Development R&D, Student Hobby DIY Project. About20×4 Character LCD Display: 20×4 LCD is a basic 20 character by 4 line display Blue White Back light.
Utilizes the extremely common AIP31066 interface chipset. You will need 7 general I/O pins (If use in 4-bit Mode) to interface to this LCD screen. Includes LED Backlight. Features of 20×4 LCD Display : Commonly Used in: Student Project, Collage, copiers, fax machines, laser printers, industrial test equipment, networking equipment such as routers and storage devices.SIZE: 20×4 (4 Rows and 20 Characters per Row), Can display 4-lines X 20-characters. Operate with 5V DC, Wide viewing angle and high contrast. Built-in industry standard HD44780 equivalent LCD controller. LCM type: Character, Package Contents: 1 X LCD 20×4.
Data Care Systems Pvt. Ltd. was established in the year 1989. We are one of the leading manufacturer and supplier of Digital Clocks, Data Transmission Systems, Nurse Call Systems, Display Systems, Annunciator Panels, Data Communication Systems, etc. promoted by technocrats with extensive expertise and over a decade of experience in R & D establishment. Started with the objective of Designing, Developing and Manufacturing user friendly Data Communication products committed to provide state-of-art world class equipments.
5V DC 16 x 2 Lines ASCII Character LCD Display With Yellow Backlight Product Description: o LCD display module with Yellow Backlight o SIZE : 20x4 (2 Rows and 16 Characters Per Row) o Can display 2-lines X 16-characters o Operate with 5V DC o Wide viewing angle and high contrast o Built-in industry standard HD44780 equivalent LCD controller o Commonly Used in: Student Project, Collage,copiers, fax machines, laser printers, industrial test equipment, networking equipment such as routers and storage devices o LCM type: Characters ABOUT This is a basic 16 character by 2 line display Yellow Back light . Utilizes the extremely common HD44780 parallel interface chipset (datasheet). Interface code is freely available. You will need 7 general I/O pins(If use in 4-bit Mode) to interface to this LCD screen. Includes LED backlight. Package Contains: 1 X 16X2 LCD.
This is not official manufacturer"s information. It is distilled from information on many different data sheets and from my own experience. I have never used some of these displays. I have extrapolated what I know about the displays that I have used to the ones that I have just read about. I welcome any suggestions and corrections. Contact information is at the bottom of the page.
The HD44780 type controller chip is used with a wide variety of Liquid Crystal Displays. These LCDs come in many configurations each with between 8 and 80 viewable characters arranged in 1, 2, or 4 rows.
The problem is that there is no way to inform the controller of the configuration of the display that it is driving. The controller operates exactly the same way for all displays and it is up to the programmer of the device that is controlling the LCD controller (usually a host microcontroller) to deal with this situation.
The controller contains 80 bytes of Display Data Random Access Memory which is usually referred to as DDRAM. When the controller is used with a 40 x 2 display (forty characters on each of two rows) the operation is quite straightforward and that operation will be explained first. Each of the other configurations introduces one or more quirks so it is best to understand the operation of the 40 x 2 before proceeding to the description of the operation of any of the others.
Each of these DDRAM memory addresses corresponds to a character position on an attached display, but the specific position varies depending on the configuration of that display. As part of the initialization sequence the display is cleared by storing the ASCII code for a space in each of the 80 memory locations. Subsequently if a different ASCII code is stored in any of those memory locations then the character corresponding to that ASCII code is automatically displayed at a specific location on the display.
You can tell the controller where you want the first ASCII character that you send it to be stored, this is usually address 00h. After receiving that character it will automatically update its address pointer and put the next ASCII character you send into an adjacent memory location with no more addressing work on your part. You can specify whether to increment or decrement the address counter but normally it is incremented, so the next character will be put into address 01h. The LCD controller automatically accounts for the gap in addresses and after storing an ASCII code in address 27h it puts the next code in address 40h. Similarly it increments from address 67h back to 00h.
Here is a simplified diagram of the display on a 40 x 2 LCD Module. Each of the boxes in the diagram represents a location where a character can be displayed.
Here is a copy of the memory map of the controller. Remember, each of the memory locations in the controller chip is directly associated with one of the character locations on the display.
By some miracle of modern technology there is actually a one for one relationship between these two diagrams. If an ASCII code is stored at address 00h in memory the corresponding character will appear at the left end of the top row of the display. If an ASCII code is stored at address 63h in memory the corresponding character will appear five locations in from the right end of the second row of the display.
Here is a diagram showing how the two rows of the display are mapped into the two lines of memory. It is basically a combination of the two diagrams just above.
When the host controller wants to display a string of characters on the display all it has to do is specify a starting DDRAM address and then start sending the string of ASCII codes corresponding to the desired characters to the LCD controller, one after another. The LCD controller takes the first code that it receives, stores it at the specified address, and simultaneously displays the corresponding character on the display. It then increments it"s internal address counter and stores the next ASCII code that it receives in the next DDRAM location which causes the corresponding character to appear in the next location on the display. As mentioned before the LCD controller automatically accounts for the gap in addresses and after storing an ASCII code in address 27h it puts the next code in address 40h. Similarly it increments from address 67h back to 00h.
This display also has 80 characters, but the relationship between the DDRAM addresses and the character locations on the LCD is not quite as straightforward as the LCD with two rows of 40 characters. Here is a diagram of the device.
The memory map is always the same regardless of the display configuration, but in this drawing I have shown a small space between addresses 13h and 14h on the first line and another between addresses 53h and 54h on the second line.
Here is the same memory map, rearranged this time to show how the memory addresses relate to the character positions on a 20 x 4 LCD. Note how the right half of the previous diagram is now below the left half and note the resulting sequence of starting addresses for each display row (00h, 40h, 14h, 54h).
Remember that the LCD controller still considers this to be two lines of RAM. It is important to understand that this way of picturing the DDRAM addresses helps relate the memory addresses to the character locations but does not change the fact that as far as the controller is concerned there are only two lines of memory. In other words, although this diagram shows the DDRAM differently than before, the actual DDRAM configuration and operation is exactly the same as described above for the 40 x 2 display since there is no way of telling the LCD controller that there are now 4 rows of 20 characters instead of 2 rows of 40 characters.
When a long string of ASCII codes is sent to this LCD controller the action is not quite as simple as for the 40 x 2 display. After the first row is full the characters will continue on to the third row. The normal automatic incrementing from 27h to 40h will then cause the display to continue on the second row, and from there it will continue to the fourth row. After that the following characters will appear back on the first row, and so on.
In order to get a coherent display on sequential rows it is necessary to compensate for the design of the LCD controller when programming the host microcontroller. Basically the program on the host microcontroller can keep track of the DDRAM addresses, and when appropriate it can set up a new starting DDRAM address.
For each of the above displays there are 80 addresses in memory and there are 80 character locations on the display so it should be obvious that any time you send an ASCII code to the controller the corresponding character will show up somewhere on the display. If you mess up the address the character may not show up where you expected it, but it will be visible somewhere. If you work back from where it actually appears you can usually figure out where you made your mistake. All of the displays that follow have fewer character locations on the display than memory addresses in the controller. This makes the operation somewhat more complicated and troubleshooting more difficult.
This can be thought of as a truncated 40 x 2 display, but there are some ramifications of this truncation that may not be readily apparent. Here is a drawing of the device.
It is important to understand that, although this diagram shows only the part of the DDRAM that is normally used to display information on the 20 x 2 LCD, the actual memory map and controller operation is exactly the same as described above for the previous displays. Again that is because there is no way of telling the LCD controller that there are only 40 characters on the attached display.
Here is a drawing of the complete memory map. Note that this drawing is the same as the one for the 20 x 4 display except that the addresses on the right side are greyed out.
Although this display has only 40 characters there are still 80 bytes of DDRAM and they are still configured the same as they were before. The greyed out addresses are the locations in DDRAM that do not have corrresponding locations on the display. Any ASCII codes that are written to those locations are not lost, and it is possible to display them by "shifting" the display window, but in normal use as described here they are simply not displayed.
When a long string of ASCII codes is sent to this LCD controller the action is not quite as simple as for either of the 80 character displays. Assume that the host controller is sending a string of characters as described above. Consider what happens after the LCD controller stores an ASCII code in address 13h and displays the corresponding character at the right end of the top row on the LCD. It then stores the next ASCII code in address 14h, which has no corresponding location on this 20x2 display. As more ASCII codes are sent to the LCD controller they are stored in the DDRAM but do not appear on the display until the LCD controller finally increments it"s address counter from 27h to 40h at which time subsequent characters start to appear on the second row of the display. As far as a viewer of the display is concerned there is a gap of 20 missing characters. The same thing will happen on the second row when ASCII codes are stored in addresses 54h - 67h.
In order to prevent any missing characters the program on the host microcontroller can keep track of the DDRAM addresses, and when appropriate it can set up a new starting DDRAM address. On the other hand the display can be shifted to display those missing characters, but the techniques to do that will not be covered here.
This is a commonly found configuration and its operation is almost identical to that of the 20 x 2. The relationship between the DDRAM addresses and the character locations on the LCD is a subset of the example shown above. Here is a drawing of the device.
Once again it is important to understand that although this diagram shows only the part of the DDRAM that is normally used to display information on the 16 x 2 LCD the actual DDRAM configuration and operation is exactly the same as described above for the 40 x 2 display. This is because there is no way of telling the LCD controller that there are only 32 characters on the attached display.
Here is a drawing of the complete memory map. Note that this drawing is the same as the one for the 20 x 2 display except that a different range of addresses on the right side are greyed out.
The operation of this display when a long string of characters is sent to it is that same as described for the 20 x 2 display except that there is a gap of 24 missing characters at the end of each line (instead of 20).
There are actually two different varieties of 16 x 1 LCD displays and the initialization and operation of each is different so it is important to determine which one you have.
When power is first applied to any of the multi-row LCD modules and before the controller is initialized you will see that the character locations corresponding to the first line of memory are dark and the others are light (assuming that the contrast adjustment is properly set). If you apply power to a 16 x 1 LCD module and only the left 8 character locations are dark you have what I will call a type 1 module. If only the right 8 character locations are dark this is also a type 1 module but it is upside down! If all 16 character locations are dark then it is what I will call a type 2 module. This is my own terminology used only for the purpose of keeping them differentiated while describing their operation. The type 1 modules will have only one IC on the back of the pcb while the type 2 will have 2 (I guess this tidbit gives away the source of my "type" designations). This distinction may apply to newer devices with epoxy blobs instead of ICs, but I believe that sometimes one blob may cover more than one equivalent IC function.
From this you can see that although the display has only a single row of characters, as far as the LCD controller is concerned it is using two lines of memory and it must be considered to be a 2 line device when initializing the controller.
Here is a drawing of the complete memory map. Note that this drawing is the same as the one for the 20 x 2 and 16 x 2 displays except that a different range of addresses on the right side are greyed out.
Here you can see that if the host controller sends a long string of characters without periodically adjusting the DDRAM starting address then after each 8 characters are displayed the next 32 will "disappear".
Also, to display a message of more than 8 characters on the 16 character display the host controller will have to readjust the DDRAM address after displaying the first 8 characters.
Here is a drawing of the complete memory map. Note that this memory map is different than all of the previous ones. This is the only device described here that is a true "one-line" display (see note 2) and as such it has a different memory map.
Here you can see that if the host controller sends a long string of characters after the first 16 characters are displayed the next 64 will "disappear".
At the expense of an extra IC you get some slightly easier programming since, in order to display a message of more than 8 characters on the 16 character display, the host microcontroller does not have to readjust the DDRAM address after displaying the first 8 characters.
Since only one line of memory is in use this LCD module should be configured as a 1-line device. As far as I can determine, this changes the multiplex frequency which changes the display brightness and/or contrast. Also, there are some single row LCDs that are capable of displaying a larger 5x10 font instead of the more common 5x7 font.
Here is the same memory map, rearranged this time to show how the memory addresses relate to the character positions on a 16 x 4 LCD. Note how the center of the previous diagram is now below the left part, the right part is missing, and the resulting sequence of starting addresses for each display row is different than for the 20 x 4 (00h, 40h, 10h, 50h).
Here you can see that if the host controller sends a long string of characters without periodically adjusting the DDRAM starting address then after the first row is full the characters will continue on to the third row. After the third row is full the next eight characters "disappear". The normal automatic incrementing from 27h to 40h will then cause the display to continue on the second row, and from there it will continue to the fourth row. After the fourth row is full the next eight characters will "disappear" and then it"s back to the first row.
The 40 x 4 LCD is treated essentially as two 40 x 2 devices stacked one on top of another in the same glass enclosure. Electrically it uses what amounts to two HD44780 controller chips and it therefore has two separate memory maps each with the same address range. One is used for the top two lines and the other is used for the bottom two lines. The memories are accessed individually by strobing the desired Enable pin of which there are now two. Here is a diagram of the device.
To display a really long string of characters on this display the host controller would start out just like it did for the 40 x 2 display. It would specify a starting DDRAM address (typically 00h) and then start sending the string of ASCII codes corresponding to the desired characters to the LCD controller, one after another, making sure to strobe the enable pin associated with the upper memory bank. After storing an ASCII code in address 67h the LCD controller will automatically increment to address 00h as before and at this time the host controller must stop strobing the enable pin for the upper bank and start strobing the one for the lower bank.
There are other LCD configurations available but I believe that any of them can be handled by a technique similar to one of the examples above. If you have a display that seems to be considerably different from any of these I would like to hear from you.
(1) The mysterious gap is due to considerations resulting from the multiplexing of the display. The DDRAM addressing uses seven bit addressing and the highest bit signifies which row of memory is involved. If you compare the addresses in the first row with those just below in the second row you will see that the only difference is in that one bit.
(2) As implied above the number of rows of characters that can be displayed on the LCD is not the same as the number of lines of memory used by its controller. Only some of the 16x1 displays use "one line" of memory, all of the other displays including most 16x1 displays, use "two lines" of memory.
This stems from the fact that the LCD controller itself does not inherently support the function and in fact treats the ASCII codes for and as displayable characters instead of control codes.
The fact that the LiquidCrystal library inherits from Print class and thus permits the use of println() essentially makes things worse. Instead of barfing and spitting out an error message it just happily displays two unrelated characters on the screen and the uninitiated have no idea of the cause.
In my opinion the basic LiquidCrystal library should concentrate on implementing all of the capabilities of the LCD controller and no more. If people want a library that more closely emulates a CRT (or LCD) terminal that is fine, but I think it should be done in a different library.
If you’ve ever tried to connect an LCD display to an Arduino, you might have noticed that it consumes a lot of pins on the Arduino. Even in 4-bit mode, the Arduino still requires a total of seven connections – which is half of the Arduino’s available digital I/O pins.
The solution is to use an I2C LCD display. It consumes only two I/O pins that are not even part of the set of digital I/O pins and can be shared with other I2C devices as well.
True to their name, these LCDs are ideal for displaying only text/characters. A 16×2 character LCD, for example, has an LED backlight and can display 32 ASCII characters in two rows of 16 characters each.
If you look closely you can see tiny rectangles for each character on the display and the pixels that make up a character. Each of these rectangles is a grid of 5×8 pixels.
At the heart of the adapter is an 8-bit I/O expander chip – PCF8574. This chip converts the I2C data from an Arduino into the parallel data required for an LCD display.
If you are using multiple devices on the same I2C bus, you may need to set a different I2C address for the LCD adapter so that it does not conflict with another I2C device.
An important point here is that several companies manufacture the same PCF8574 chip, Texas Instruments and NXP Semiconductors, to name a few. And the I2C address of your LCD depends on the chip manufacturer.
So your LCD probably has a default I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it.
Connecting an I2C LCD is much easier than connecting a standard LCD. You only need to connect 4 pins instead of 12. Start by connecting the VCC pin to the 5V output on the Arduino and GND to ground.
After wiring up the LCD you’ll need to adjust the contrast of the display. On the I2C module you will find a potentiometer that you can rotate with a small screwdriver.
Plug in the Arduino’s USB connector to power the LCD. You will see the backlight lit up. Now as you turn the knob on the potentiometer, you will start to see the first row of rectangles. If that happens, Congratulations! Your LCD is working fine.
To drive an I2C LCD you must first install a library called LiquidCrystal_I2C. This library is an enhanced version of the LiquidCrystal library that comes with your Arduino IDE.
The I2C address of your LCD depends on the manufacturer, as mentioned earlier. If your LCD has a Texas Instruments’ PCF8574 chip, its default I2C address is 0x27Hex. If your LCD has NXP Semiconductors’ PCF8574 chip, its default I2C address is 0x3FHex.
So your LCD probably has I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it. Luckily there’s an easy way to do this, thanks to the Nick Gammon.
But, before you proceed to upload the sketch, you need to make a small change to make it work for you. You must pass the I2C address of your LCD and the dimensions of the display to the constructor of the LiquidCrystal_I2C class. If you are using a 16×2 character LCD, pass the 16 and 2; If you’re using a 20×4 LCD, pass 20 and 4. You got the point!
First of all an object of LiquidCrystal_I2C class is created. This object takes three parameters LiquidCrystal_I2C(address, columns, rows). This is where you need to enter the address you found earlier, and the dimensions of the display.
In ‘setup’ we call three functions. The first function is init(). It initializes the LCD object. The second function is clear(). This clears the LCD screen and moves the cursor to the top left corner. And third, the backlight() function turns on the LCD backlight.
After that we set the cursor position to the third column of the first row by calling the function lcd.setCursor(2, 0). The cursor position specifies the location where you want the new text to be displayed on the LCD. The upper left corner is assumed to be col=0, row=0.
There are some useful functions you can use with LiquidCrystal_I2C objects. Some of them are listed below:lcd.home() function is used to position the cursor in the upper-left of the LCD without clearing the display.
lcd.scrollDisplayRight() function scrolls the contents of the display one space to the right. If you want the text to scroll continuously, you have to use this function inside a for loop.
lcd.scrollDisplayLeft() function scrolls the contents of the display one space to the left. Similar to above function, use this inside a for loop for continuous scrolling.
If you find the characters on the display dull and boring, you can create your own custom characters (glyphs) and symbols for your LCD. They are extremely useful when you want to display a character that is not part of the standard ASCII character set.
CGROM is used to store all permanent fonts that are displayed using their ASCII codes. For example, if we send 0x41 to the LCD, the letter ‘A’ will be printed on the display.
CGRAM is another memory used to store user defined characters. This RAM is limited to 64 bytes. For a 5×8 pixel based LCD, only 8 user-defined characters can be stored in CGRAM. And for 5×10 pixel based LCD only 4 user-defined characters can be stored.
After the library is included and the LCD object is created, custom character arrays are defined. The array consists of 8 bytes, each byte representing a row of a 5×8 LED matrix. In this sketch, eight custom characters have been created.
Main Liquid Crystal Display (LCD):The main LCD is divided into eight columns, each with two lines of text. Each column displays information for the channel strip controls directly below it. The information displayed changes when you edit different parameters and when Mixer view or Channel view is active. In general, the upper row of each column displays the abbreviated track (or channel) name, and the lower row displays the abbreviated parameter name and its value.
In some modes, a long parameter name (or other text) appears briefly onscreen while you are moving the corresponding control. You can set the display and duration of long parameter names in Control Surfaces preferences. For information on setting preferences, see the Logic Pro User Guide.
Assignment display:The Assignment display (also referred to as the mode display), to the right of the main LCD, shows a two-digit abbreviation for the current assignment state. A period (.) appears at the bottom-right corner of the display when Channel view is active.
Time display:The Time display, to the right of the Assignment display, shows the current playhead position, either in musical time divisions (BEATS) or in SMPTE timecode format (SMPTE). A small LED to the left of the display indicates the current display format.When the format is set to Beats, the four segments of the Time display show the current playhead position as bars, beats, beat subdivisions, and ticks.
Press the SMPTE/BEATS button to switch between formats. You can also set the default format with the Clock Display parameter in the Control Surfaces Setup window. See the Logic Pro User Guide.