spt lcd module lcd 12864 free sample
ST7920 is a so-called LCD which stands for Liquid Crystal Display. This screen is made up of segments that can be turned on or off. These segments are placed as an "8" in some screens like a digital clock, in others as pixels.
With LCD it looks like the boxes can become black. Technically this is not true. The light is transmitted differently making it appear black. More details on Wikipedia
The next step is to provide 5V to the LCD. To do this, we use the "Vcc" and "GND" pins on the far right of the display. Connect these to the + rail and- rail on the breadboard.
This module is engineered for high volume production. It uses a "TAB" (tape automated bonding) or "COF" (chip on flex) style flex tail mated with a "COG" (chip on glass) display. The TAB connector is soldered directly to corresponding pads on your PCB using a hot-bar soldering machine. High volume contract manufacturers will be familiar with this type of construction and its assembly methods. Hot-bar soldering machines designed for prototype, rework or repair of TAB connections are available from equipment suppliers at reasonable cost.
This is an extremely low-power 128x64 graphic LCD display module. It has an integrated white LED backlight that illuminates the display easily in low-light conditions. This display is perfectly suited for hand-held or any application requiring low-power or a very a thin display. It has an integrated controller and the FFC tail is designed to mate with standard 18-conductor 0.5mm pitch ZIF connectors (typical would be Omron XF2L18351A/ DigiKey P/N OR754CT-ND).
In this project, I will show you how to interface a 128X64 Graphical LCD with Arduino UNO. This particular LCD Module is based ST7920 LCD Controller. So, we will first see a little bit about the Graphical LCD Module and its LCD Controller ST7920.
In the previous Arduino project, I have interfaced a Nokia 5110 LCD Module with Arduino. It is also a graphical LCD which can display some basic bitmap images and graphics. But the issue with Nokia 5110 LCD Module is its resolution.
At 84 x 48 pixels, the Nokia 5110 LCD can be used for implementing a menu-based user interface. Due to its small size, the resulting menu will be limited to 3 or 4 items per page.
If we want a bigger display with more real estate to work with, then the obvious choice is to go for the bigger and better 128×64 Graphical LCD Module.
As a demonstration, after making all the hardware connections, I will display a bitmap image on the Graphical LCD Module. If you are interested in implementing a simple 16×2 Alpha-Numeric LCD with Arduino, then check out this tutorial.
At first glance, the 128×64 Graphical LCD Module seems like a bigger brother to the famous 16×2 LCD or 20×4 LCD Modules, with their similar construction and almost similar pin layout.
But there is a significant difference between those two. 16×2 or 20×4 LCDs are essentially character displays. They can only display alpha-numeric characters and some simple custom characters that are confined to a 5×8 matrix.
By using different combinations of pixels, we can basically display characters of various sizes. But the magic doesn’t end there. You can display images and graphics (small animations) as well. In a 128×64 LCD Module, there are 64 rows and 128 columns.
There are several versions of the Graphical LCD in the market. Even though the usage, application and implementations are almost identical, the main difference lies in the internal LCD Controller used to drive the dot matrix display.
Some of the commonly used LCD Controllers are KS0108, SSD1306, ST7920, SH1106, SSD1322, etc. The pin out of the final LCD Module might vary depending on the LCD Controller used. So, please verify the LCD Controller as well as the pin out before making a purchase.
The Graphical LCD Module I purchased consists of ST7920 Controller. It is manufactured by Sitronix and supports three types of bus interfaces i.e., 8-bit mode, 4-bit mode and Serial interface.
If you have used 16×2 LCD Display earlier, then you might be familiar with both 4-bit as well as 8-bit parallel interfaces. The serial interface is something new and we will explore this option in this project.
As I already mentioned, double-check with the manufacturer about the pinout of the Graphical LCD Module. The following table describes the pinout of the 128×64 LCD Module that I have.
Now that we have seen a little bit about the Graphical LCD and its controller ST7920, let us now proceed with interfacing the 128×64 Graphical LCD with Arduino. I will implement a simple circuit to demonstrate how easy it is to interface the LCD and Arduino using very few external components.
So, connect the RS, RW and E of the LCD to Digital IO pins 10, 11 and 13 of Arduino UNO. Also, in order to select the Serial Interface Mode, the PCB pin must be connected to GND.
The remaining connections are similar to a traditional 16×2 LCD. VCC and GND are connected to 5V and ground of the power supply. VO is connected to the wiper of a 10KΩ POT while the other two terminals of the POT are connected to 5V and GND respectively.
I have used the above “The Office” logo. Remember that the resolution of the 128×64 LCD is, well 128×64 pixels. So, the maximum image size should be 128×64. So, using Microsoft Paint, I have brought down the resolution of the above image to 128×64 pixels and also saved it as Monochrome Bitmap Image.
A simple project for interfacing the 128×64 Graphical LCD with Arduino is implemented here. Instead of displaying plain characters, I have displayed a bitmap image on the LCD to show its capability.
Reason: Controller IC ST7565R used on dislay ERC12864FS-1 is hard to source because of the global chip shortage.We now use the compatible IC ST7567S as replacement. The part number is updated to ERC12864FS-1-S7.
ERC12864FS-1-S7 is 1.4 inch white background with 128x64 monochrome black pixels cog(chip on glass) lcd module,ST7565S controller,compact size,high contrast,wide operating temperature,wide view angle,white led backlight,fstn lcd,fpc connection,optional zif connector and led backlight connector.It supports 6800 8-bit,8080 8-bit parallel and 4-wire serial spi interface.
You may wish ERC12864SBS-1 could come with frame backlight without backlight wires ,The part number ERC12864SBSF03-1 should meet this requirment. Except the backlight structure,the other spec is the totally same with ERC12864SBS-1.
ERC12864SBSF03-1 is still not our general product ,we don"t have enough stock .You have to email ([email protected]buydisplay.com) our sales to buy samples or orders. Besides the minimum order quantity is no lesss than 1000pcs per order.The production lead time is 5-6 weeks.
7 fonts and graphic engine embedded, touch screen and flash chip drivers embedded(if touch screen or 2 to 16MB flash chip installed), custom fonts can be downloaded to the module"s flash.
High level commands set (61 commands total) are easy to remember and understand, eg.: send 5 bytes: "CCabc" will draw a ratio=c pixels circle at coordinate (a,b) on the screen; 5 bytes "DNALL" will put the module to sleep mode(<0.1mA), and more...
This LCD module uses a 128x64 liquid crystal display that support Chinese character , English characters and even graphics. It can exhibit 4 lines and 12 English characters/6 Chinese characters per line. It is suitable for interactive work with Arduino.
The following sample is working under SPI mode. It demonstrates how to display integers on the LCD scrren. You will need the Arduino Library which can be downloaded here.
Yellow-Green Dot Matrix LCD Module 12864 (128 x 64 Pixel) with backlight. Controller ST7920. Libraries are available, for example for Arduino IDE. The ST7920 comes with parallel or ISP more. In SPI mode it only requires 4 GPIO ports on your microcontroller (Arduino etc.) to connect to the display. This display comes with an integrated contrast potentiometer, and does not need an external potentiometer for contrast adjustment like most other displays!
NHD-12864WG-BTMI-V#N | Monochrome Graphic Module | 128x64 Pixels | Transmissive LCD | White Backlight | STN (-) Negative Blue Display | Built-in Negative Voltage
Newhaven 128x64 graphic Liquid Crystal Display module shows white pixels on a dark blue background. This transmissive LCD Display requires a backlight for visibility and offers a wide operating temperature range from -20 to 70 degrees Celsius. This NHD-12864WG-BTMI-V#N display includes built-in negative voltage. It has an optimal view of 6:00, operates at 5V supply voltage and is RoHS compliant.
Note:if you’re using a module with a DHT sensor, it normally comes with only three pins. The pins should be labeled so that you know how to wire them. Additionally, many of these modules already come with an internal pull up resistor, so you don’t need to add one to the circuit.