sainsmart tft lcd mega free sample
SainSmart 3.2" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller SSD1289, it"s a support 8/16bit data interface , easy to drive by many MCU like STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is ADS7843 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.
1.SainSmart 3.2" TFT LCD Display is a LCD touch screen module. It is a powerful and multifunctional module for your project. The Screen include a controller SSD1289, it"s a support 8/16bit data interface, easy to drive by many MCU like STM32, AVR and 8051. It is designed with a touch controller in it. The touch IC isXPT2046
7. This TFT LCD Screen Module, 40pins interface, not just a LCD screen but include the Touch, SD card and Flash design. So it’s a powerful extension module for your project.
1. SainSmart TFT LCD adjustable shield is 100% compatible for the Mega2560 to expend more Pins and make the connection between the Mega 2560 and 3.2"LCD display easier.
2. SainSmart 3.2 TFT LCD module works in 3.3V voltage level and you need to use cables to connect with SainSmart Mega. And this shield can help you out of the bothers to use other cables. You just need to plug the module to Mega through this shield.
3. This shield supports both 16 bit modes. And Mega board has enough pins for using SD card and touch function at the same time. It also has an adjustable button for contrast of the LCD display.
This is SainSmart MEGA2560 + 7 inch TFT LCD module with the TFT LCD shield kit For arduino enthusiasts.It includes one pcs of SainSmart MEGA2560 , 7 inch TFT LCD display and a TFT LCD shield for Arduino MEGA2560.This kit helps you to avoid complicated wiring processes and save you much time to accomplish your goal. You can feel free to enjoy the touch function and SD card function by using our codes.We will provided you the whole document including the example project of the kit. We will supply you the technical support after your purchase.
This is the new MEGA2560 R3. In addition to all the features of the previous board, the MEGA now uses an ATMega16U2 instead of the ATMega8U2 chip. This allows for faster transfer rates and more memory. No drivers needed for Linux or Mac (inf file for Windows is needed and included in the Arduino IDE), and the ability to have the Uno show up as a keyboard, mouse, joystick, etc.
The MEGA2560 R3 also adds SDA and SCL pins next to the AREF. In addition, there are two new pins placed near the RESET pin. One is the IOREF that allow the shields to adapt to the voltage provided from the board. The other is a not connected and is reserved for future purposes. The MEGA2560 R3 works with all existing shields but can adapt to new shields which use these additional pins.
It is 100% compatible with the normal MCU like ARM AVR PIC and 8051,especially on Arduino family such as Arduino Due and Arduino MEGA2560(R3). The module uses the LCD controller Chip SSD1963 with 7 inch LCD including the touchscreen.
LCD-specificed intialization code is provided, so that you can save time to optimize power control register and gamma curves for best display performance. We have test the provided code, it gives the best display performanace
This is Sainsmart TFT LCD Extend shield for arduino due .Using this shield can help you out of the bothers to use other cables. You just need to plug the module to arduino due through this shield.
This shiled is just for Arduno MEGA2560. If you need the LCD Extend shield for Arduino Due,you need a similar shield which is also provided from our store.
This shiled is just for 7 inch TFT LCD.If you need the LCD Extend shield for 3.2/3.5/...,you need a similar shield which is also provided from our store.
Adafruit_ST7735 is the library we need to pair with the graphics library for hardware specific functions of the ST7735 TFT Display/SD-Card controller.
Basically, besides the obvious backlight, we tell the controller first what we are talking to with the CS pins. CS(TFT) selects data to be for the Display, and CS(SD) to set data for the SD-Card. Data is written to the selected device through SDA (display) or MOSI (SD-Card). Data is read from the SD-Card through MISO.
So when using both display and SD-Card, and utilizing the Adafruit libraries with a SainSmart display, you will need to connect SDA to MOSI, and SCL to SCLK.
Note: Adafruit displays can have different colored tabs on the transparent label on your display. You might need to adapt your code if your display shows a little odd shift. I noticed that my SainSmart display (gree tab) behaves best with the code for the black tab – try them out to see which one works best for yours.
#define sclk 4 // SainSmart: SCL#define mosi 5 // SainSmart: SDA#define cs 6 // SainSmart: CS#define dc 7 // SainSmart: RS/DC#define rst 8 // SainSmart: RES
#define sclk 13 // SainSmart: SCL#define mosi 11 // SainSmart: SDA#define cs 10 // SainSmart: CS#define dc 9 // SainSmart: RS/DC#define rst 8 // SainSmart: RES
You can name your BMP file “parrot.bmp” or modify the Sketch to have the proper filename (in “spitftbitmap” line 70, and in “soft_spitftbitmap” line 74).
#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)
#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)
tft.print("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ");
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (7" diagonal) bright (14 white-LED backlight) and colorfu 800x480 pixels with individual pixel control. As a bonus, this display has a optional capacitive and resistive touch panel attached on screen by default.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).
For 7 inch screen,the high current is needed.But the current of arduino uno or arduino mega board is low, an external 5V power supply is needed. Refer to the image shows the external power supply position on shield ER-AS-RA8875.
Wondering if I tried for something a bit to challenging, ok so was wondering about declaring the pins, and if that is something normally done in the utft.h and utouch.h files or if I need to declare them elsewhere, otherwise if checked the wiring against what the doc is sayin to do. Heres the header.
It is 100% compatible with the normal MCU like ARM AVR PIC and 8051,especially on Arduino family such as Arduino Due and Arduino MEGA2560(R3).The module uses the LCD controller Chip SSD1963 with 7 inch LCD including the touchscreen.
LCD-specificed intialization code is provided, so that you can save time to optimize power control register and gamma curves for best display performance. We have test the provided code, it gives the best display performanace
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.
I personally gave up on tinyFAT because ultimately it does not work on the DUE, but also because there were too many limitations. My approach was to use SdFATlib and modify UTFT_tinyFAT to use that instead, this allows large SD cards and folders. Maybe this is a possible solution for you, although I think you should try to figure out why your current setup is not working first!
Construction of the Oscilloscope is fairly simple. You just have to put the parts of the Sainsmart kit together. All you need to do is add two jumpers; one for ground, and the other to use as your oscilloscope test probe.
I was torn in deciding how many stars to give this. For starters, I must mention that I own 5 of these things -- 3 of the Mega2560R3 kits and 2 of the Due kits. This review is the collective findings of both varieties.I"m going to start with a key problem and warning that everyone who has bought or is thinking of buying these things should read:WARNING: The configuration jumpers on ALL five of the units I"ve received were jumpered incorrectly from the factory. The Mega2560R3 boards had both the 5v and 3.3v selection jumpers soldered, meaning if you plug it in as-is, you"ll short out the two power supplies. Their pictures of the board all show only the 3.3v jumpers selected, which is correct, but the three Mega boards I received, the LCD shield boards were jumpered wrong with both voltages selected. The two Due boards were also jumpered wrong. However, they didn"t have both jumper sets applied, they only had the 5v jumpers applied. Even if the LCD could stand 5v (and would be OK since all of its I/O pins are outputs from the processor), jumping it wrong would also mean powering the touchscreen chip from 5v causing the inputs to the Due processor to see 5v, and the input pins of the SAM micro are NOT 5v tolerant.This problem is likely why some of the other reviewers mentioned processors and things getting hot. So step one, regardless of which board set you get, check your jumpers! The LCD should be configured for 3.3v and only one voltage selection jumper should be applied per option so you don"t short out both supply voltages.Of the five units I received, one LCD screen glass was cracked. It still functions, but the crack renders the touchscreen portion somewhat unusable. Another LCD screen apparently has a panel that was wired backwards (between the driver chip and the LCD panel itself). I thought at first it was defective as the screen had the appearance of the old SSAVI style cable scrambling technique with a "torn" picture. But the pre-init white screen looked OK, so I was suspicious that it was functioning, but in a weird way. After some experimenting, I found that if I swapped the sync settings around and the horizontal/vertical addressing modes around it worked, but exactly backwards from what it should -- addressing was going the wrong way and scrolling was backwards, etc... It is usable, but only if I correct for their problem in software. I didn"t exchange either one of these because the cost and hassle of doing so wouldn"t have been worth it.I was also suspicious that the one screen that was behaving backwards simply had a different LCD driver chip. But, I read the Device ID out of all of them and they all reported 9325. So they should have all functioned the same. And, for what it"s worth, the LCD driver chip at least thinks it"s a 9325.As for software and support, I don"t understand the reviews that say there"s no software or support out there, as the item description posted on Amazon even has a link to a zip file from SainSmart with the CTE UTFT libraries already preconfigured for these screens (maybe those reviews were done before that was posted?). And in any case, this is a clone of the CTE (Cold Tears Electronics) boards and there"s plenty of documentation and software for it, including schematics and even board layouts, if you Google it.One reviewer mentioned it not being a true "CTE" board because no SPI Flash chip was installed. Well, even the original CTE boards don"t come with the flash chip by default -- that"s an optional add-on (as per their "official" website). This clone certainly has the pads, just get a chip and solder it on... Though you"ll probably still want to read the font data out and store it in memory, as the latency of reading it from flash every time text is rendered would serious slow down performance. So why not just put the font you want in the main flash of the micro? Though I guess you could use the chip to store anything you want and aren"t limited to just fonts.Another thing to look out for on the board is solder splash and cold solder joints, specifically on all of the through-hole parts. Two of my boards had a solder splash on the power input connector, shorting it out had I not seen and removed it. Various through-hole connectors were marginally soldered and needed some touch-up work. So expect to do some soldering right out of the gate. And be sure to look your board over thoroughly and fix these things before using it.The processor boards (apart from a couple of soldering issues) were fairly functional and I guess a decent value for the price. But, the Mega, for example, has a old bootloader version installed. One of the first things you"ll want to do is reflash it (via the ISP port) with the current stk500v2 bootloader. Also, it didn"t have the lock bits sets, meaning you could easily accidentally overwrite the bootloader during programming and end up with a brain-dead board until you reflashed the bootloader via the ISP port... So I suggest flashing the current bootloader and setting the lock fuses first thing.I"m suspicious, though, that the ATmega2560 processor is a counterfeit chip as the efuse bits don"t seem to want to stay set. You can program them, and they seem to program OK, even verify correctly, but later on will occasionally randomly read back as 0xFF. I have only seen that happen with the efuse bits, which is primarily just brownout voltage threshold setting, so it isn"t too critical (compared to the other fuse bits), but makes me wonder about the integrity of the processor as a whole and wonder if it"s possibly a "counterfeit chip".I haven"t done as much checking of bootloader code on the Due board, or its ARM micro. It came up and talked to the bossa loader without any issues, so I haven"t had a need to analyze it to the extent I have the Mega boards. Plus, being a newer Arduino board, it"s more likely to have a new bootloader and also the different nature of the programming process on the ARM of the Due isn"t as likely to have flash overwrite issues as the Mega does.The LCD screens themselves are decent, assuming yours isn"t cracked or wired backwards, but be aware that this 9325 chip, at least the way it"s configured on this LCD panel, does NOT support hardware scrolling in the vertical direction when in landscape mode. It does do hardware scrolling, but only vertical for portrait mode (or horizontal for landscape). If your project needs hardware scrolling in the vertical direction of landscape mode (as my project needs), this LCD screen won"t do it!The touchscreen, however, I found to work quite well -- but ONLY after you"ve calibrated it. It didn"t work at all until I did the calibration. Perhaps the reviewers saying they couldn"t get touchscreen to work didn"t calibrate it? You first need to get your LCD working with their demo. Then, load their UTouch calibration program and follow the prompts on the screen for creating the calibration parameters. Then plug those parameters into the UTouch source code, et voila. I was pleasantly surprised at how well the touchscreen seemed to function for the money -- it had good response, was accuracy and seemed repeatable, and didn"t require a lot of excess pressure, etc. From some of the other reviews I"ve seen on this screen, I wasn"t sure what to expect, but was pleasantly surprised to find the touchscreen performing well (at least on the screens I received -- maybe they too have quality control issues?).The UTFT code isn"t the best of code, but is functional and works well on both the Mega and Due. I did tweak it to work a little more efficiently and fix potential memory access faults, and to add hardware scrolling support (the library itself didn"t originally support hardware scrolling at all).A better software library to use with the screen is Andy Brown"s xmemtft, available on GitHub. To use it, you"ll have to use the Gpio16 include files for the ili9325 chip and properly set the port mapping for your processor. Speaking of port mapping, the correct settings on the UTFT library (that"s linked in the item description of these boards) for this 2.8" 320x240 TFT LCD in their example code is as follows:Mega:UTFT myGLCD(CTE28,38,39,40);UTouch myTouch(6,5,4,3,2);Due:UTFT myGLCD(CTE28,25,26,27,28);UTouch myTouch(6, 5, 32, 3, 2); (note: it will support "4" in place of the "32", but only if you add a jumper on the adapter shield)So all-in-all, it"s usable, but only if you do a little work on them, don"t get a bad LCD, and don"t need vertical scroll in landscape. It definitely isn"t a kit for a novice. Don"t expect to plug it together and start using it without doing some soldering and fixing things. And if you are new to programming, you may want to get some experience on a more ready-to-use package, like an Adafruit kit or something, first.But, if you don"t mind learning a little and working through the BS and you happen to get lucky and the one you receive isn"t defective, this is a decent deal for the money, as most vendors sell just the processor board for the cost of this entire kit.So, as a cheap, knock-off clone, it"s usable, but...