projector lcd panel datasheet brands
Due to the increasingly widespread use of data projectors, there are now even stronger desires for brighter and higher resolution projectors. To respond to these desires, Sony has developed a product line of 786K-dot XGA data projector LCDs based on the unique Sony-developed DMS structure and taking full advantage of high light resistance technology and a newly-developed high aperture ratio structure. All three sizes, cm (0.9-type), and cm (1.3-type), achieve the highest brightness in their size class in the industry, and can be used in a wide range of applications, from mobile PC-based presentations to conference rooms, and even in large conference halls.
To respond to our customers desires for even brighter images with even higher picture quality, we are simultaneously releasing three new XGA data projector LCDs, a high-brightness 1.3-type device, a 0.9-type device, and a 0.7-type device. All us on this project team grappled with the main development issues, which were to achieve both high optical transmittance and high light resistance. We are convinced that Sony"s customers will be fully satisfied with this new lineup of XGA LCD products for use in applications from ultrasmall mobile projectors to high picture quality portable projectors.
tance of 26% (with ML), and the cm (1.3-type) models achieve an aperture ratio of 67% and an optical transmittance of 30% (with ML). For the cm (0.9-type) models this corresponds to an improvement by a factor of 1.2 over conventional products. To improve the light resistance, we developed the DMS structure used in previous products even further, and achieved light resistances of 1000 ANSI lm in the 0.7-type models, 1500 ANSI lm in the 0.9-type models, and 3000 ANSI lm in the 1.3-type models. In particular, the LCX038ART/AST is the industry"s first cm (0.7-type) XGA data projector LCD, and can be used to implement ultraportable data projectors. (See table 1.)
thus these devices can achieve highpicture quality images with greater evenness. All three of the model types in this release feature a contrast of 400:1 (typical), which was achieved by optimizing both the LCD design and the LCD orientation technology.
To support a wide range of applications, Sony data projector LCDs include both up/down and/or right/left inversion functions and input level shifter circuit to allow 5 V drive of the timing system. Related Sony products create an environment that allows users to get the best performance from the characteristics provided by the LCDs themselves. These products include, for the analog system, the CXA2111R signal driver and the CXA3512R high voltage drive sample-and-hold IC, which has been well-received by the market, and the CXD2467AQ, which integrates a programmable TG and RGB drivers on a single chip as the digital system structure.
The three model types in this release all adopt the TFT circuit technology developed in Sony"s previous data projector LCD products, and achieve crosstalkfree and ghost-free display. The device structure is a high-brightness structure consisting of a high light resistance DMS structure and an OCS structure, and achieves excellent uniformity. Furthermore, by adopting this device structure and the CXD3503R color shading correction IC, it is possible to correct not only for color shading in the LCD panel itself, but also for color shading in the illumination system, and
The NEC P603X brings brightness of up to 6,000 ANSI lumen to your meeting and learning spaces. Enjoy smooth operation over five years* with low maintenance, long lamp life and the NEC patented LCD panel dust protection. The NEC P603X is the perfect replacement device for preceding models because it offers the same mounting options and with its wide zoom range, it is easy to adjust the projection to the existing screen. LCD technology delivers natural colours with a high contrast whilst the wide horizontal and vertical lens shift offers broad flexibility in installation. With its low power consumption, the NEC P603X offers a low total cost of ownership (TCO) and helps you to reduce your carbon footprint.
With a long life cycle, the PE506UL brings an exceptionally low cost of ownership for cost-conscious users requiring professional and reliable projection performance. Lighter in weight and more compact compared to its predecessor, yet this powerful projector generates a higher brightness level at 5,200 ANSI lumen and the vivid brilliance of 3 LCD technology.
Multi Monitoring & Control Software, Early Warning Software, Logo Transfer Software, Presenter Light Software (for Windows®)*7, Wireless Projector for iOS/Android™*8
Multi Monitoring & Control Software, Early Warning Software, Logo Transfer Software, Presenter Light Software (for Windows®)*7, Wireless Projector for iOS/Android™*8
Multi Monitoring & Control Software, Early Warning Software, Logo Transfer Software, Presenter Light Software (for Windows®)*7, Wireless Projector for iOS/Android™*8
*3 ET-WML100 Series and AJ-WM50 Series devices are both compatible with supported projectors in this series, and either can be used to enable the wireless network function.
*6 When [LAMP POWER] is set to [NORMAL] and the projector is operated at an elevation of 1,400 m (4,593 ft) or less, if the ambient temperature exceeds 35 °C (95 °F), [LAMP POWER] will be switched to [ECO] automatically to protect the projector. When [LAMP POWER] is set to [NORMAL] and the projector is operated at an elevation between 1,400 m (4,593 ft) and 2,700 m (8,858 ft), if the ambient temperature exceeds 30 °C (86 °F), [LAMP POWER] will be switched to [ECO] automatically to protect the projector.
*8 When using the Wireless Projector app, display resolution differs depending on your iOS/Android™ device and the display device. The maximum supported display resolution is WXGA (1280 x 800).
Home theater projectors range in price from a few hundred to tens of thousands of dollars, but you don"t need to spend that much to get a high-quality image. But what features do you need? What technology is best? How do you decode UHP, ANSI, LCoS, DLP and countless other abbreviations and acronyms?
One of the most important specifications for projectors is "lumens," which describes how much light a projector can create. This, in turn, determines how bright the image is and how big you can make it. There are a lot of problems with this spec. For one, other than the distinct "ANSI lumens" there"s no agreed-upon way to measure lumens. One company"s 3,000 might be another"s 3,500. Most manufacturers don"t specify ANSI lumens, which would be easier to compare across brands.
So how many lumens do you need? Well there are some considerations we"ll get to, but generally speaking you probably won"t regret getting the brightest projector you can. Other aspects, like color accuracy, contrast ratio, and more, are vital, but for an initial sweep of potentially promising projectors, see what kind of lumen output is available in your price range. It"s worth keeping in mind that you can usually turn down the brightness of a projector, but you can"t turn up an otherwise dim projector. That is, unless you make the image smaller.
To give you a rough idea, a 2,000-lumen projector will create a bright, watchable image on a 100-inch screen in a dark room. A 1,000-lumen projector will be "fine" but won"t really punch. 3,000 and over will be very bright, perhaps too much so for some viewers. These are all very rough numbers which, again, are hard to compare since the specs themselves are suspect. If you look at our reviews, and what results we"ve gotten with measurement gear, it might give you a better idea what you"re looking at.
Projectors create light and image separately. A light source creates the light, which is then focused on an image-creating chip. Modern projectors use one of three technologies as light sources: LEDs, lasers and UHP (ultra high pressure) lamps.
UHP lamps, which are basically high-powered light bulbs, are by far the most common. These are capable of creating a lot of light and have the added bonus of being fairly inexpensive. The downside is they degrade over time. A UHP projector will never be as bright as that first time you turn it on -- until you replace the lamp.
I absolutely understand the appeal of LED/laser, especially since they"re often rated for 30,000 hours. Not having to replace the lamp, aka spend money on something you"ve already spent money on, is completely understandable. However, the price/performance ratio of UHP lamp projectors still can"t be beat. Having to spend ~$150 every 5 to 10 years doesn"t seem outrageous. You also have a much wider range of UHP projectors available, from many different companies.
After the UHP lamp/LED/laser creates the light, some kind of chip manipulates that light into an actual image. There are three technology types when it comes to projector chips: DLP, LCD and LCoS. We go into these technologies into greater detail in
The image chips are one of the most confusing, but also most interesting, aspects of projectors. Despite dozens of companies making projectors, the chips are almost all made by just four companies. Every DLP-based projector uses a "light engine" made by Texas Instruments. This includes the chip and the color wheel (to make all the colors you see). How it"s implemented in a case, the overall airflow, what lamp is used, how the settings are tweaked and more, are often done by the projector maker, aka the name on the outside. Some companies just use a reference design and slap their name on it. Others might use the base reference design, and then tweak it to their specs. That all said, two DLP-projectors that cost the same, but are from two different companies, are going to look more similar than different. Probably not identical, though. There"s still a lot that can be tweaked.
For LCD, Epson is by far the biggest name. Lower-end models typically have very poor contrast ratios. It"s just harder to get a good black level with LCD, something that"s true with TVs as well. However, Epson has come a long way in recent years. Its
In terms of overall picture quality, LCoS is usually the winner. The two biggest manufacturers of LCoS (or liquid crystal on silicon) chips are Sony, as SXRD, and JVC, as D-ILA. These are found in more expensive projectors, even the cheapest being a few thousand dollars. Their contrast ratios are significantly higher than either DLP or LCD. They"re all 3-chip designs, so they typically have excellent color as well.
Now that you"ve got the basic tech down, it"s worth considering where in your house you"re going to put the projector. That might limit which projectors you can buy, as some might not fit where you want them to.
Affordable single-chip DLP projectors typically have very little, if any, lens shift. This means that you can"t adjust the height of the image without moving the projector. These units also typically have an upward throw angle, meaning the bottom of the image is at or above the top of the projector. Because of this, they have to be mounted either on the ceiling, or on a coffee table. It"s difficult, if not impossible, to place them behind a couch on a stand and still have a normal-looking image.
You also need to consider how far back you have to place the projector to create a large-enough image. Projectors have a limited zoom range, though some are greater than others. To create a specific size image, aka the size of your screen, there will be a limited range of distances that will work -- a spec typically listed as throw distance. For inexpensive projectors, this "sweet spot" could be as narrow as a few feet. Higher-end models might be far greater. Typically these numbers, along with a distance calculator, are available on a manufacturer"s website.
Just like TVs, projectors have numerous features to mire you down in acronyms and marketing. Some of these features have real value, others, not so much.
Dynamic lamp: Another way to achieve the same dynamic dimming of the image brightness is by reducing the power on the lamp. This has the added benefit of extending its life. Just like with the iris, on certain content you might notice the projector dimming on dark scenes. On other projectors, you might notice the fan speed ramping up and down at the same time. Like the auto iris, this doesn"t improve the native
4K: Great picture quality is reliant on many factors, including contrast ratio, brightness, color, and yes, of course, resolution. The latter, being the easiest to understand and quantify, typically gets far too much weight when comparing projectors. 4K on a 100-plus inch screen is very cool, but it is just one aspect of a projector"s overall performance. Personally, I"d take a bright projector with accurate color and a great contrast ratio over a dim projector with a poor contrast ratio that happens to be 4K.
3D: Many projectors are still 3D-capable, though they rarely come with the glasses. If you"re super into 3D, you"ll be able to find lots of options. If you"re not already into 3D, I can"t imagine now is the time you"d get into it.
Short throw: This isn"t really a feature as much as a category of projectors. A much shorter throw distance means so you can place them closer to a screen for the same size image. For certain rooms it"s very useful. The opposite would be a long throw projector, which, as you"d guess, means you can place it much farther from the screen than a typical projector.
The Sony VPL-ES3 is an LCD projector that is ideal for small businesses and home offices as well as for entertainment. Display specifications of this Sony projector include an image brightness of 2,000 ANSI lumens, SVGA resolution of 800x600 pixels, and a contrast ratio of 300:1. The image size of the Sony VPL-ES3 ranges from 40.2 inches to 300 inches and can be projected from a distance of 4 feet to 35 feet. Additional features of the Sony projector include six selectable picture modes, a component input terminal, monitor out, front exhaust, and three selectable black level adjustment modes. Furthermore, the LCD projector incorporates manual zoom with a zoom factor of 1.2 times, vertical keystone correction, and sound emission of 36 dB. Other general specifications of the Sony projector are its weight of 6.4 lbs, width of 12.1 inches, depth of 9.9 inches, and height of 3.9 inches.
The term Digital Projectors is typically used loosely to include any projector capable of connecting to a computer, or other device displaying data. However, for a projector to be considered truly digital, theoretically it would use a digital device, such as a DLP chip as opposed to LCD or LCoS panels, and would be equipped with an LED light source – instead of a conventional lamp that is considered analog. The completely digital projector would also require digital source material coming over to the projector via a digital connection such as HDMI or DVI. The idea would be for the content to be in digital form from capture to delivery on your screen.
As much as the DLP crowd would argue that LCD panels are analog, rather than digital, the bottom line, they’re all basically comparable. What matters is the end result – what ends up on your screen. And while each technology has its advantages, no technology is in all major ways better than the others.
Vivitek H9080FD Projector One of the first LED projectors for home theater, using DLP technology. Impressive picture quality, ideal for dedicated rooms and smaller screens. However, it’s pricey due to the 20,000 hour LED light source.
Casio XJ-140 Portable Projector Casio’s Green Slim series digital projector uses a hybrid light source of LED and Laser for 20,000 hours life. Casio has lowest total cost of ownership around. Excellent, portable or mountable, 2:1 zoom. Most impressive!
Optoma PK301 Pico Projector This is our favorite Pico projector so far. Up to 50 lumens – way more than almost all others, lots of everything. So far, it’s “THE pico to own.” LED light source and DLP technology. 20 lumens on battery, but 50 with AC or lightweight battery pack.
First, you need to check whether this display has On-cell or In-cell touch panel, if has, it only needs to add a cover glass on it. If not, it needs an external touch panel.
Because the shape of the cover glass depends on the design of the clients, to avoid infringement of appearance, most of the developers need different customized touch panels.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Barco"s video wall display solutions are always the highest quality available on the market. Available in different technologies (LCD, LED rear-projection and RGB laser rear-projection), sizes and resolutions, our portfolio always contains the perfect solution for your application. Our dedicated software and a range of professional services make sure you get the most out of your video wall.
A video wall (also known as display wall) is a large visualization surface consisting of multiple displays. Originally, they consisted of multiple televisions or monitors that were put closely together. The objective was to make it seem as one large display surface. The problem however was the large frame (or bezel) that surrounded the useful display surface of each television. This completely tore down the effect of a single canvas and ruined the visual performance. Therefore, new technologies were introduced to minimize the ‘dead pixel space’ between the different displays. Today’s display wall solutions are generally using tiled LCD panels, rear-projection cubes, or direct LED tiles.
An LCD video wall consists of multiple specifically designed LCD displays. Contrary to the panels used in television sets, these LCD displays have a very narrow bezel. This minimizes the gap between the panels, making it look like one big canvas. Over the years, this gap has gradually decreased. Today, Barco UniSee has the smallest gap in the industry.
LCD video walls are designed for long term and intensive use, often playing in a 24/7 mode — which means they are rarely switched off. Specific measures to prevent burn-in effects are applied to allow them to play for many years, in optimal conditions.
The traditional benefits of LCD video wall solutions include the high brightness, good image quality, and relatively low cost. Also the limited real estate space needed is a plus. The disadvantages are the risk for burn-in and the lower lifetime. Recent models however have successfully reduced these drawbacks.
Typical markets for LCD display walls include meeting and crisis rooms, lobbies, and experience centers. You can also find them in the control rooms of traffic and security centers.
Using projection instead of LCD or direct-view LED technology, rear-projection video walls target different applications. They are mainly used in control rooms that operate in a 24/7 mode. Utilities providers, for example, generally rely on rear-projection technology to monitor their network.
A rear-projection video wall consists of multiple cubes, which feature a projector and a screen. The projectors are positioned upwards. A mirror under a 45° angle then reflects the image and casts it onto the projection screen. In this way, the required depth is cut dramatically. For example, Barco’s OverView ODLF series only requires a depth of 60 cm/23.6”. This advanced video wall can also be serviced from the front, so there is no need for a rear maintenance area.
Technology: There are 3 main video wall technologies (described above), all with their specific benefits AND price tag. Historically, ultra narrow bezel LCD is the most economic option, followed by rear-projection cubes and direct-view LED displays. Price erosion on narrow pixel pitch LED video walls in recent years has brought this technology within reach of all corporations, so that new markets (including control rooms, corporate lobbies, television studios, etc.) can also benefit from LED.
Size: The cool thing about video walls is that they are modular, so they really take the size and aspect ratio you want. But it should be no surprise that large video walls cost more than small ones. Not only the price of the panels raises the costs: large video walls also need more driving controllers and processing power to handle the high resolution. This is a significant extra cost that should not be overlooked!
Support: The more panels, the heavier the video wall system becomes. This poses additional requirements on the supporting infrastructure. The heaviest load for rear-projection walls is on the floor, which is only rarely an issue. For LED walls and LCD video walls, on the other hand, it is the supporting wall that catches the full load. It may need some additional support to handle the pressure.
Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.
A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.
LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.
Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.
Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.
The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.
Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.
LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.
The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).
Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.
LCDs, along with OLED displays, are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:
Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.
In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.
In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.
The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.
On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.
In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.
In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,
In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,
The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.
In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.
Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,
In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.
In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.
Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.
CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.
EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.
WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.
RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.
Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.
Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).
The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),
Due to the LCD layer that generates the desired high resolution images at flashing video speeds using very low power electronics in combination with LED based backlight technologies, LCD technology has become the dominant display technology for products such as televisions, desktop monitors, notebooks, tablets, smartphones and mobile phones. Although competing OLED technology is pushed to the market, such OLED displays do not feature the HDR capabilities like LCDs in combination with 2D LED backlight technologies have, reason why the annual market of such LCD-based products is still growing faster (in volume) than OLED-based products while the efficiency of LCDs (and products like portable computers, mobile phones and televisions) may even be further improved by preventing the light to be absorbed in the colour filters of the LCD.
A pink elastomeric connector mating an LCD panel to circuit board traces, shown next to a centimeter-scale ruler. The conductive and insulating layers in the black stripe are very small.
A standard television receiver screen, a modern LCD panel, has over six million pixels, and they are all individually powered by a wire network embedded in the screen. The fine wires, or pathways, form a grid with vertical wires across the whole screen on one side of the screen and horizontal wires across the whole screen on the other side of the screen. To this grid each pixel has a positive connection on one side and a negative connection on the other side. So the total amount of wires needed for a 1080p display is 3 x 1920 going vertically and 1080 going horizontally for a total of 6840 wires horizontally and vertically. That"s three for red, green and blue and 1920 columns of pixels for each color for a total of 5760 wires going vertically and 1080 rows of wires going horizontally. For a panel that is 28.8 inches (73 centimeters) wide, that means a wire density of 200 wires per inch along the horizontal edge.
The LCD panel is powered by LCD drivers that are carefully matched up with the edge of the LCD panel at the factory level. The drivers may be installed using several methods, the most common of which are COG (Chip-On-Glass) and TAB (Tape-automated bonding) These same principles apply also for smartphone screens that are much smaller than TV screens.anisotropic conductive film or, for lower densities, elastomeric connectors.
Monochrome and later color passive-matrix LCDs were standard in most early laptops (although a few used plasma displaysGame Boyactive-matrix became standard on all laptops. The commercially unsuccessful Macintosh Portable (released in 1989) was one of the first to use an active-matrix display (though still monochrome). Passive-matrix LCDs are still used in the 2010s for applications less demanding than laptop computers and TVs, such as inexpensive calculators. In particular, these are used on portable devices where less information content needs to be displayed, lowest power consumption (no backlight) and low cost are desired or readability in direct sunlight is needed.
STN LCDs have to be continuously refreshed by alternating pulsed voltages of one polarity during one frame and pulses of opposite polarity during the next frame. Individual pixels are addressed by the corresponding row and column circuits. This type of display is called response times and poor contrast are typical of passive-matrix addressed LCDs with too many pixels and driven according to the "Alt & Pleshko" drive scheme. Welzen and de Vaan also invented a non RMS drive scheme enabling to drive STN displays with video rates and enabling to show smooth moving video images on an STN display.
Bistable LCDs do not require continuous refreshing. Rewriting is only required for picture information changes. In 1984 HA van Sprang and AJSM de Vaan invented an STN type display that could be operated in a bistable mode, enabling extremely high resolution images up to 4000 lines or more using only low voltages.
High-resolution color displays, such as modern LCD computer monitors and televisions, use an active-matrix structure. A matrix of thin-film transistors (TFTs) is added to the electrodes in contact with the LC layer. Each pixel has its own dedicated transistor, allowing each column line to access one pixel. When a row line is selected, all of the column lines are connected to a row of pixels and voltages corresponding to the picture information are driven onto all of the column lines. The row line is then deactivated and the next row line is selected. All of the row lines are selected in sequence during a refresh operation. Active-matrix addressed displays look brighter and sharper than passive-matrix addressed displays of the same size, and generally have quicker response times, producing much better images. Sharp produces bistable reflective LCDs with a 1-bit SRAM cell per pixel that only requires small amounts of power to maintain an image.
Segment LCDs can also have color by using Field Sequential Color (FSC LCD). This kind of displays have a high speed passive segment LCD panel with an RGB backlight. The backlight quickly changes color, making it appear white to the naked eye. The LCD panel is synchronized with the backlight. For example, to make a segment appear red, the segment is only turned ON when the backlight is red, and to make a segment appear magenta, the segment is turned ON when the backlight is blue, and it continues to be ON while the backlight becomes red, and it turns OFF when the backlight becomes green. To make a segment appear black, the segment is always turned ON. An FSC LCD divides a color image into 3 images (one Red, one Green and one Blue) and it displays them in order. Due to persistence of vision, the 3 monochromatic images appear as one color image. An FSC LCD needs an LCD panel with a refresh rate of 180 Hz, and the response time is reduced to just 5 milliseconds when compared with normal STN LCD panels which have a response time of 16 milliseconds.
Samsung introduced UFB (Ultra Fine & Bright) displays back in 2002, utilized the super-birefringent effect. It has the luminance, color gamut, and most of the contrast of a TFT-LCD, but only consumes as much power as an STN display, according to Samsung. It was being used in a variety of Samsung cellular-telephone models produced until late 2006, when Samsung stopped producing UFB displays. UFB displays were also used in certain models of LG mobile phones.
In-plane switching is an LCD technology that aligns the liquid crystals in a plane parallel to the glass substrates. In this method, the electrical field is applied through opposite electrodes on the same glass substrate, so that the liquid crystals can be reoriented (switched) essentially in the same plane, although fringe fields inhibit a homogeneous reorientation. This requires two transistors for each pixel instead of the single transistor needed for a standard thin-film transistor (TFT) display. The IPS technology is used in everything from televisions, computer monitors, and even wearable devices, especially almost all LCD smartphone panels are IPS/FFS mode. IPS displays belong to the LCD panel family screen types. The other two types are VA and TN. Before LG Enhanced IPS was introduced in 2001 by Hitachi as 17" monitor in Market, the additional transistors resulted in blocking more transmission area, thus requiring a brighter backlight and consuming more power, making this type of display less desirable for notebook computers. Panasonic Himeji G8.5 was using an enhanced version of IPS, also LGD in Korea, then currently the world biggest LCD panel manufacture BOE in China is also IPS/FFS mode TV panel.
In 2015 LG Display announced the implementation of a new technology called M+ which is the addition of white subpixel along with the regular RGB dots in their IPS panel technology.
In 2011, LG claimed the smartphone LG Optimus Black (IPS LCD (LCD NOVA)) has the brightness up to 700 nits, while the competitor has only IPS LCD with 518 nits and double an active-matrix OLED (AMOLED) display with 305 nits. LG also claimed the NOVA display to be 50 percent more efficient than regular LCDs and to consume only 50 percent of the power of AMOLED displays when producing white on screen.
This pixel-layout is found in S-IPS LCDs. A chevron shape is used to widen the viewing cone (range of viewing directions with good contrast and low color shift).
Vertical-alignment displays are a form of LCDs in which the liquid crystals naturally align vertically to the glass substrates. When no voltage is applied, the liquid crystals remain perpendicular to the substrate, creating a black display between crossed polarizers. When voltage is applied, the liquid crystals shift to a tilted position, allowing light to pass through and create a gray-scale display depending on the amount of tilt generated by the electric field. It has a deeper-black background, a higher contrast ratio, a wider viewing angle, and better image quality at extreme temperatures than traditional twisted-nematic displays.
Blue phase mode LCDs have been shown as engineering samples early in 2008, but they are not in mass-production. The physics of blue phase mode LCDs suggest that very short switching times (≈1 ms) can be achieved, so time sequential color control can possibly be realized and expensive color filters would be obsolete.
Some LCD panels have defective transistors, causing permanently lit or unlit pixels which are commonly referred to as stuck pixels or dead pixels respectively. Unlike integrated circuits (ICs), LCD panels with a few defective transistors are usually still usable. Manufacturers" policies for the acceptable number of defective pixels vary greatly. At one point, Samsung held a zero-tolerance policy for LCD monitors sold in Korea.ISO 13406-2 standard.
Dead pixel policies are often hotly debated between manufacturers and customers. To regulate the acceptability of defects and to protect the end user, ISO released the ISO 13406-2 standard,ISO 9241, specifically ISO-9241-302, 303, 305, 307:2008 pixel defects. However, not every LCD manufacturer conforms to the ISO standard and the ISO standard is quite often interpreted in different ways. LCD panels are more likely to have defects than most ICs due to their larger size. For example, a 300 mm SVGA LCD has 8 defects and a 150 mm wafer has only 3 defects. However, 134 of the 137 dies on the wafer will be acceptable, whereas rejection of the whole LCD panel would be a 0% yield. In recent years, quality control has been improved. An SVGA LCD panel with 4 defective pixels is usually considered defective and customers can request an exchange for a new one.
Some manufacturers, notably in South Korea where some of the largest LCD panel manufacturers, such as LG, are located, now have a zero-defective-pixel guarantee, which is an extra screening process which can then determine "A"- and "B"-grade panels.clouding (or less commonly mura), which describes the uneven patches of changes in luminance. It is most visible in dark or black areas of displayed scenes.
The zenithal bistable device (ZBD), developed by Qinetiq (formerly DERA), can retain an image without power. The crystals may exist in one of two stable orientations ("black" and "white") and power is only required to change the image. ZBD Displays is a spin-off company from QinetiQ who manufactured both grayscale and color ZBD devices. Kent Displays has also developed a "no-power" display that uses polymer stabilized cholesteric liquid crystal (ChLCD). In 2009 Kent demonstrated the use of a ChLCD to cover the entire surface of a mobile phone, allowing it to change colors, and keep that color even when power is removed.
In 2004, researchers at the University of Oxford demonstrated two new types of zero-power bistable LCDs based on Zenithal bistable techniques.e.g., BiNem technology, are based mainly on the surface properties and need specific weak anchoring materials.
Resolution The resolution of an LCD is expressed by the number of columns and rows of pixels (e.g., 1024×768). Each pixel is usually composed 3 sub-pixels, a red, a green, and a blue one. This had been one of the few features of LCD performance that remained uniform among different designs. However, there are newer designs that share sub-pixels among pixels and add Quattron which attempt to efficiently increase the perceived resolution of a display without increasing the actual resolution, to mixed results.
Spatial performance: For a computer monitor or some other display that is being viewed from a very close distance, resolution is often expressed in terms of dot pitch or pixels per inch, which is consistent with the printing industry. Display density varies per application, with televisions generally having a low density for long-distance viewing and portable devices having a high density for close-range detail. The Viewing Angle of an LCD may be important depending on the display and its usage, the limitations of certain display technologies mean the display only displays accurately at certain angles.
Temporal performance: the temporal resolution of an LCD is how well it can display changing images, or the accuracy and the number of times per second the display draws the data it is being given. LCD pixels do not flash on/off between frames, so LCD monitors exhibit no refresh-induced flicker no matter how low the refresh rate.
Brightness and contrast ratio: Contrast ratio is the ratio of the brightness of a full-on pixel to a full-off pixel. The LCD itself is only a light valve and does not generate light; the light comes from a backlight that is either fluorescent or a set of LEDs. Brightness is usually stated as the maximum light output of the LCD, which can vary greatly based on the transparency of the LCD and the brightness of the backlight. Brighter backlight allows stronger contrast and higher dynamic range (HDR displays are graded in peak luminance), but there is always a trade-off between brightness and power consumption.
Usually no refresh-rate flicker, because the LCD pixels hold their state between refreshes (which are usually done at 200 Hz or faster, regardless of the input refresh rate).
No theoretical resolution limit. When multiple LCD panels are used together to create a single canvas, each additional panel increases the total resolution of the display, which is commonly called stacked resolution.
As an inherently digital device, the LCD can natively display digital data from a DVI or HDMI connection without requiring conversion to analog. Some LCD panels have native fiber optic inputs in addition to DVI and HDMI.
As of 2012, most implementations of LCD backlighting use pulse-width modulation (PWM) to dim the display,CRT monitor at 85 Hz refresh rate would (this is because the entire screen is strobing on and off rather than a CRT"s phosphor sustained dot which continually scans across the display, leaving some part of the display always lit), causing severe eye-strain for some people.LED-backlit monitors, because the LEDs switch on and off faster than a CCFL lamp.
Fixed bit depth (also called color depth). Many cheaper LCDs are only able to display 262144 (218) colors. 8-bit S-IPS panels can display 16 million (224) colors and have significantly better black level, but are expensive and have slower response time.
Input lag, because the LCD"s A/D converter waits for each frame to be completely been output before drawing it to the LCD panel. Many LCD monitors do post-processing before displaying the image in an attempt to compensate for poor color fidelity, which adds an additional lag. Further, a video scaler must be used when displaying non-native resolutions, which adds yet more time lag. Scaling and post processing are usually done in a single chip on modern monitors, but each function that chip performs adds some delay. Some displays have a video gaming mode which disables all or most processing to reduce perceivable input lag.
Loss of brightness and much slower response times in low temperature environments. In sub-zero environments, LCD screens may cease to function without the use of supplemental heating.
The production of LCD screens uses nitrogen trifluoride (NF3) as an etching fluid during the production of the thin-film components. NF3 is a potent greenhouse gas, and its relatively long half-life may make it a potentially harmful contributor to global warming. A report in Geophysical Research Letters suggested that its effects were theoretically much greater than better-known sources of greenhouse gasses like carbon dioxide. As NF3 was not in widespread use at the time, it was not made part of the Kyoto Protocols and has been deemed "the missing greenhouse gas".
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.
Explanation of CCFL backlighting details, "Design News — Features — How to Backlight an LCD" Archived January 2, 2014, at the Wayback Machine, Randy Frank, Retrieved January 2013.
LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived August 1, 2017, at the Wayback Machine
New Cholesteric Colour Filters for Reflective LCDs; C. Doornkamp; R. T. Wegh; J. Lub; SID Symposium Digest of Technical Papers; Volume 32, Issue 1 June 2001; Pages 456–459; http://onlinelibrary.wiley.com/doi/10.1889/1.1831895/full
K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. 37 (1): 1079–1082. doi:10.1889/1.2433159. S2CID 129569963.
Jack H. Park (January 15, 2015). "Cut and Run: Taiwan-controlled LCD Panel Maker in Danger of Shutdown without Further Investment". www.businesskorea.co.kr. Archived from the original on May 12, 2015. Retrieved April 23, 2015.
NXP Semiconductors (October 21, 2011). "UM10764 Vertical Alignment (VA) displays and NXP LCD drivers" (PDF). Archived from the original (PDF) on March 14, 2014. Retrieved September 4, 2014.
"Samsung to Offer "Zero-PIXEL-DEFECT" Warranty for LCD Monitors". Forbes. December 30, 2004. Archived from the original on August 20, 2007. Retrieved September 3, 2007.
"Display (LCD) replacement for defective pixels – ThinkPad". Lenovo. June 25, 2007. Archived from the original on December 31, 2006. Retrieved July 13, 2007.
Explanation of why pulse width modulated backlighting is used, and its side-effects, "Pulse Width Modulation on LCD monitors", TFT Central. Retrieved June 2012.
An enlightened user requests Dell to improve their LCD backlights, "Request to Dell for higher backlight PWM frequency" Archived December 13, 2012, at the Wayback Machine, Dell Support Community. Retrieved June 2012.
Oleg Artamonov (January 23, 2007). "Contemporary LCD Monitor Parameters: Objective and Subjective Analysis". X-bit labs. Archived from the original on May 16, 2008. Retrieved May 17, 2008.