tft lcd 2 nodemcu arduino code in stock

The ILI9341 TFT module contains a display controller with the same name: ILI9341. It’s a color display that uses SPI interface protocol and requires 4 or 5 control pins, it’s low cost and easy to use.

The resolution of this TFT display is 240 x 320 which means it has 76800 pixels. This module works with 3.3V only and it doesn’t support 5V (not 5V tolerant).

The ILI9341 TFT display board which is shown in project circuit diagram has 14 pins, the first 9 pins are for the display and the other 5 pins are for the touch module.

Pins D5 (GPIO14) and D7 (GPIO13) are hardware SPI module pins of the ESP8266EX microcontroller respectively for SCK (serial clock) and MOSI (master-out slave-in).

The first library is a driver for the ILI9341 TFT display which can be installed from Arduino IDE library manager (Sketch —> Include Library —> Manage Libraries …, in the search box write “ili9341” and choose the one from Adafruit).

The ILI9341 TFT display is connected to NodeMCU hardware SPI module pins (clock and data), the other pins which are: CS (chip select), RST (reset) and DC (data/command) are defined as shown below:

Full Arduino code:The following Arduino code is from Adafruit ILI9341 library (graphicstest.ino) with some modifications in order to work with the above circuit diagram.

tft lcd 2 nodemcu arduino code in stock

The ST7789 TFT module contains a display controller with the same name: ST7789. It’s a color display that uses SPI interface protocol and requires 3, 4 or 5 control pins, it’s low cost and easy to use.

This display is an IPS display, it comes in different sizes (1.3″, 1.54″ …) but all of them should have the same resolution of 240×240 pixel, this means it has 57600 pixels. This module works with 3.3V only and it doesn’t support 5V.

Pins D5 (GPIO14) and D7 (GPIO13) are hardware SPI module pins of the ESP8266EX microcontroller respectively for SCK (serial clock) and MOSI (master-out slave-in).

The first library is a driver for the ST7789 TFT display which can be installed from Arduino IDE library manager (Sketch —> Include Library —> Manage Libraries …, in the search box write “st7789” and install the one from Adafruit).

tft lcd 2 nodemcu arduino code in stock

// https://www.aliexpress.com/store/product/3-2-TFT-LCD-Display-module-Touch-Screen-Shield-board-onboard-temperature-sensor-w-Touch-Pen/1199788_32755473754.html?spm=2114.12010615.0.0.bXDdc3

// https://www.aliexpress.com/store/product/OPEN-SMART-5V-3-3V-Compatible-UNO-R3-CH340G-ATMEGA328P-Development-Board-with-USB-Cable-for/1199788_32758607490.html?spm=2114.12010615.0.0.ckMTaN

tft lcd 2 nodemcu arduino code in stock

Hi, in this tutorial we will see how to control electrical devices like fan, light, etc., to turn on and off using esp8266 from a web browser. if you are bored with a dedicated device controller like an app or an remote which will be available for only one particular device but using this method all the device which support web browsing will be act as a controller for us.

Components that you need for completing this project are very simple, you need to have an esp8266 wifi module and a relay, make sure you buying a 5v relay which very easy to use with esp chips doesn"t require external supply too. we can make use of the Vin pin of the nodemcu or if you are using a generic chip, you need to supply an external 5v to the relay.

Copy the below arduino code and paste into your Arduino IDE and upload the program to your nodemcu or any other esp devices that you are using, make sure to choose the correct port and device name from the board. also don"t forget to change the SSID and password to your Wi-fi settings.

This program for the esp8266 wrote to return the status of the device , which will in turn notify us with the device state in the browser which will also make the user to know which device has currently turned on or off.

if you like the above tutorial and if you want try out with cool projects you can also check this link here , that"s the amazon book link where you can use that book to make IoT with Esp8266 or Nodemcu, that books gives you basic coverage on how to do simple things and get yourself started with arduino and goes on developing projects like sending data to webserver and creating a webserver, uploading and controlling data from a webpage, how to interface TFT LCD and I2C devices and many more things can find on the link.

tft lcd 2 nodemcu arduino code in stock

Learn how to establish a Wi-Fi communication (HTTP) between two ESP8266 NodeMCU boards to exchange data without the need to connect to the internet (you don’t need a router).

You’re going to set one ESP8266 as an Access Point (Server) and another ESP8266 as a Station (Client). Then, the server and the client will exchange data (sensor readings) via HTTP requests. We’ll program the ESP8266 boards using Arduino IDE.

The ESP8266 server creates its own wireless network (ESP8266 Soft-Access Point). So, other Wi-Fi devices can connect to that network (SSID: ESP8266-Access-Point, Password: 123456789).

As an example, the ESP8266 client requests temperature, humidity and pressure to the server by making requests on the server IP address followed by /temperature, /humidity and /pressure, respectively (HTTP GET).

These libraries are not available to install through the Library Manager. So, you need to unzip the libraries and move them to the Arduino IDE installation libraries folder.

The following libraries can be installed through the Arduino Library Manager. Go to Sketch> Include Library> Manage Libraries and search for the library name.

To interface with the OLED display you need the following libraries. These can be installed through the Arduino Library Manager. Go to Sketch> Include Library> Manage Libraries and search for the library name.

The ESP8266 server is an Access Point (AP), that listens for requests on the /temperature, /humidity and /pressure URLs. When it gets requests on those URLs, it sends the latest BME280 sensor readings.

We’re setting the SSID to ESP8266-Access-Point, but you can give it any other name. You can also change the password. By default, its set to 123456789.

For example, when the ESP8266 server receives a request on the /temperature URL, it sends the temperature returned by the readTemp() function as a char (that’s why we use the c_str() method.

If you’re getting valid readings, it means that everything is working properly. Now, you need to prepare the other ESP8266 board (client) to make those requests for you and display them on the OLED display.

The ESP8266 Client is a Wi-Fi station that connects to the ESP8266 Server. The client requests the temperature, humidity and pressure from the server by making HTTP GET requests on the /temperature, /humidity, and /pressure URL routes. Then, it displays the readings on the OLED display.

Insert the ESP8266 server network credentials. If you’ve changed the default network credentials in the ESP8266 server, you should change them here to match.

Then, save the URLs where the client will be making HTTP requests. The ESP8266 server has the 192.168.4.1 IP address, and we’ll be making requests on the /temperature, /humidity and /pressure URLs.

We use timers instead of delays to make a request every x number of seconds. That’s why we have the previousMillis, currentMillis variables and use the millis() function. We have an article that shows the difference between timers and delays that you might find useful (or read ESP8266 Timers).

Having both boards fairly close and powered, you’ll see that ESP #2 is receiving new temperature, humidity and pressure readings every 5 seconds from ESP #1.

In this tutorial we’ve shown you how to send data from one ESP8266 board to the other using HTTP requests. This project can be very useful if you need to setup a wireless communication between two boards or more and you don’t have a router nearby.

For demonstration purposes, we’ve shown how to send BME280 sensor readings, but you can use any other sensor or send any other data. Other recommended sensors:

tft lcd 2 nodemcu arduino code in stock

In this tutorial we are going to learn how to make Arduino Calculator with TFT Display. Our calculator’s precision is up to two decimal points and you can add, subtract, multiply or divide up to 4 digit per number. Obviously you can add more number of digits if you want.

You have to just add number by touching on screen, maximum digits per number allowable is 4 and then select operator and add again second number, press on equal. Finally, you got the result on screen, Congratulation you have made your own Arduino Calculator with TFT Display.

By this piece of code you will be able to do calculation maximum four digit per number. What I mean, for example you can click 1378 it is a four digit number, but you can’t 56677. As it contain 5 digit, if you want 5 digits you can add here.

tft lcd 2 nodemcu arduino code in stock

I am using the 1.8″ color ST7735 TFT display a lot. The reason for that is that this display is very easy to use, it costs less than $5 and it offers color! At the back, the display has an SD card slot.A brief summary of the pins (adapted from Adafruits thorough summary):

RST – this is the TFT reset pin. Connect to ground to reset the TFT! Its best to have this pin controlled by the library so the display is reset cleanly, but you can also connect it to the Arduino Reset pin, which works for most cases.CS – this is the TFT SPI chip select pinD / C – this is the TFT SPI data or command selector pinDIN – this is the SPI Master Out Slave In pin (MOSI), it is used to send data from the microcontroller to the SD card and / or TFTSCLK – this is the SPI clock input pinVcc – this is the power pin, connect to 5VDC – it has reverse polarity protection but try to wire it right!LED – this is the input for the backlight control. Connect to 5VDC to turn on the backlight.GND – this is the power and signal ground pinNow that we know what we’re dealing with it’s time to start wiring!

tft lcd 2 nodemcu arduino code in stock

The ESP8266 is a well performing microcontroller chip that is fully Arduino compatible. Its WiFi capability makes boards with this chip easy implementable as IOT devices. Here we wire two representative ESP8266 boards: NodeMCU and Wemos D1 mini to a single-row 14-pin header, 320*240 TFT display that uses the four-wire SPI interface.

Here we connect a 320240 ILI9341 TFT display that has a SPI pin-out. This breakout board has 3.3V controller logic while power supply and background illumination operate on either 3.3V and 5V. ESP8266 microcontroller boards support displays with up to 320480 pixels

The display shown in figure 1 has a touch screen. It has a single row of 14 pins (figure 1; see also figure 3). The pins supporting ‘touch’ as well as those associated with the SD card reader are not connected: we concentrate on displaying text, variables, graphics and fast sequences of memory-loaded bitmaps (‘image frames”). The ILI9341 controller is fast and, in combination with an ESP8266, performs excellently.

Figure 3 shows a Wemos D1 mini board mounted on a prototyping breadboard together with a 2.8 inch ILI9341 SPI TFT display according to the wiring diagram shown in Figure 2. The ESP8266 is running a demo adapted for the “Adafruit_GFX.h” and “Adafruit_ILI9341.h” libraries from Bodmer’s ‘Clock’ example for his TFT_eSPI library.

— ESP8266_ILI9341_Adafruit_Bodmers_clock.ino, a real time analog clock example adapted from Bodmer’s TFT_eSPi library examples (display visible in figure 3).

tft lcd 2 nodemcu arduino code in stock

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

The next example is controlling an RGB LED using these three RGB sliders. For example if we start to slide the blue slider, the LED will light up in blue and increase the light as we would go to the maximum value. So the sliders can move from 0 to 255 and with their combination we can set any color to the RGB LED,  but just keep in mind that the LED cannot represent the colors that much accurate.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

As the code is a bit longer and for better understanding I will post the source code of the program in sections with description for each section. And at the end of this article I will post the complete source code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.

In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work  you can check my particular tutorial. Here you can download that file:

tft lcd 2 nodemcu arduino code in stock

I read in forums and could see that there were some adafruit libraries in the ESP8266 Arduino but now that it is not available and only some TFT_Touch_Shield_V2 are present.

tft lcd 2 nodemcu arduino code in stock

In this article, you will learn how to use TFT LCDs by Arduino boards. From basic commands to professional designs and technics are all explained here.

There are several components to achieve this. LEDs,  7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.

TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.

There are several components to achieve this. LEDs,  7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.

TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.

After choosing the right display, It’s time to choose the right controller. If you want to display characters, tests, numbers and static images and the speed of display is not important, the Atmega328 Arduino boards (such as Arduino UNO) are a proper choice. If the size of your code is big, The UNO board may not be enough. You can use Arduino Mega2560 instead. And if you want to show high resolution images and motions with high speed, you should use the ARM core Arduino boards such as Arduino DUE.

In electronics/computer hardware a display driver is usually a semiconductor integrated circuit (but may alternatively comprise a state machine made of discrete logic and other components) which provides an interface function between a microprocessor, microcontroller, ASIC or general-purpose peripheral interface and a particular type of display device, e.g. LCD, LED, OLED, ePaper, CRT, Vacuum fluorescent or Nixie.

The display driver will typically accept commands and data using an industry-standard general-purpose serial or parallel interface, such as TTL, CMOS, RS232, SPI, I2C, etc. and generate signals with suitable voltage, current, timing and demultiplexing to make the display show the desired text or image.

The LCDs manufacturers use different drivers in their products. Some of them are more popular and some of them are very unknown. To run your display easily, you should use Arduino LCDs libraries and add them to your code. Otherwise running the display may be very difficult. There are many free libraries you can find on the internet but the important point about the libraries is their compatibility with the LCD’s driver. The driver of your LCD must be known by your library. In this article, we use the Adafruit GFX library and MCUFRIEND KBV library and example codes. You can download them from the following links.

You must add the library and then upload the code. If it is the first time you run an Arduino board, don’t worry. Just follow these steps:Go to www.arduino.cc/en/Main/Software and download the software of your OS. Install the IDE software as instructed.

By these two functions, You can find out the resolution of the display. Just add them to the code and put the outputs in a uint16_t variable. Then read it from the Serial port by Serial.println(); . First add Serial.begin(9600); in setup().

First you should convert your image to hex code. Download the software from the following link. if you don’t want to change the settings of the software, you must invert the color of the image and make the image horizontally mirrored and rotate it 90 degrees counterclockwise. Now add it to the software and convert it. Open the exported file and copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are sizes of image. you can change the color of the image in the last input.

Upload your image and download the converted file that the UTFT libraries can process. Now copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are size of the image.

In this template, We just used a string and 8 filled circles that change their colors in order. To draw circles around a static point ,You can use sin();  and cos(); functions. you should define the PI number . To change colors, you can use color565(); function and replace your RGB code.

In this template, We converted a .jpg image to .c file and added to the code, wrote a string and used the fade code to display. Then we used scroll code to move the screen left. Download the .h file and add it to the folder of the Arduino sketch.

In this template, We used sin(); and cos(); functions to draw Arcs with our desired thickness and displayed number by text printing function. Then we converted an image to hex code and added them to the code and displayed the image by bitmap function. Then we used draw lines function to change the style of the image. Download the .h file and add it to the folder of the Arduino sketch.

In this template, We added a converted image to code and then used two black and white arcs to create the pointer of volumes.  Download the .h file and add it to the folder of the Arduino sketch.

In this template, We added a converted image and use the arc and print function to create this gauge.  Download the .h file and add it to folder of the Arduino sketch.

while (a < b) { Serial.println(a); j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 255, 255)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)

while (b < a) { j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 0, 0)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)

In this template, We display simple images one after each other very fast by bitmap function. So you can make your animation by this trick.  Download the .h file and add it to folder of the Arduino sketch.

In this template, We just display some images by RGBbitmap and bitmap functions. Just make a code for touchscreen and use this template.  Download the .h file and add it to folder of the Arduino sketch.

The speed of playing all the GIF files are edited and we made them faster or slower for better understanding. The speed of motions depends on the speed of your processor or type of code or size and thickness of elements in the code.

tft lcd 2 nodemcu arduino code in stock

Want to add little graphic pizzazz to your ESP8266 IoT projects? Or maybe you want to display IP address of your ESP8266 without resorting to serial output. These super-cool OLED (Organic Light-Emitting Diode) displays might be the perfect fit! They’re super-light, almost paper-thin, theoretically flexible, and produce a brighter and crisper picture.

The OLED display module breaks out a small monochrome OLED display. It’s 128 pixels wide and 64 pixels tall, measuring 0.96″ across. It’s micro, but it still packs a punch – the OLED display is very readable due to the high contrast, and you can fit a deceivingly large amount of graphics on there.

At the heart of the module is a powerful single-chip CMOS OLED driver controller – SSD1306, which handles all the RAM buffering, so that very little work needs to be done by your ESP8266. Also the operating voltage of the SSD1306 controller is from 1.65V to 3.3V – Perfect for interfacing with 3.3V microcontrollers like ESP8266.

Regardless of the size of the OLED module, the SSD1306 driver has a built-in 1KBGraphic Display Data RAM (GDDRAM) for the screen which holds the bit pattern to be displayed. This 1K memory area is organized in 8 pages (from 0 to 7). Each page contains 128 columns/segments (block 0 to 127). And each column can store 8 bits of data (from 0 to 7). That surely tells us we have

Next, Connect the SCL pin to the I2C clock D1 pin on your NodeMCU and connect the SDA pin to the I2C data D2pin on your NodeMCU. Refer to ESP8266 NodeMCU Pinout.

The library allocates 1KB (128×64)/8 bits) of memory from ESP8266 as buffer. So, it can manipulate the screen buffer and then perform a bulk transfer from the ESP8266’s memory to the internal memory of the SSD1306 controller.

Adafruit’s SSD1306 Library isn’t set up for the 128×64 OLED displays (the one we are using right now). The display size must be changed in the Adafruit_SSD1306.h header file to make it work for us. If it is not changed, an error message saying #error (“Height incorrect, please fix Adafruit_SSD1306.h!”);may appear when attempting to verify the example sketch in the Arduino IDE:

In order to change the Adafruit_SSD1306.h header file, open your sketchbook location. It’s generally My Documents > Arduino. Now go to libraries > Adafruit_SSD1306

Open Adafruit_SSD1306.h file in a text editor. Scroll down the file to find the section with the SSD1306 Displays or directly go to line no. 73. Comment out #define SSD1306_128_32 and uncomment #define SSD1306_128_64 so that the code in this section looks like this:

The sketch starts by including four libraries viz. SPI.h, Wire.h, Adafruit_GFX.h and Adafruit_SSD1306.h. Although SPI.h library is not required for I2C OLED displays, we need to add it for the sake of compiling our program.

Next, we need to create an object of Adafruit_SSD1306.h. The Adafruit_SSD1306 constructor accepts ESP8266 pin number to which reset pin of the display is connected. As the OLED display we are using doesn’t have a RESET pin, we will send –1 to the constructor so that none of the ESP8266 pins is used as a reset for the display.

In setup function: we need to initialize the OLED object using begin() function. The function takes two parameters. First parameter SSD1306_SWITCHCAPVCC turns the internal charge pump circuitry ON while second parameter provides I2C address of the OLED display. I2C address of such OLED display module is generally 0x3C. It’s fixed and cannot be changed.

In order for the library to perform extremely fast mathematical operations on the screen buffer (more than 100 frames per second), calls to the print functions do not immediately transfer the contents of screen buffer to the SSD1306 controller. A display() command is required to instruct the library to perform the bulk transfer from the screen buffer in the ESP8266 to the internal memory of the SSD1306 controller. As soon as the memory is being transferred, the pixels corresponding to the screen buffer will show up on the OLED display.

Characters are rendered in the ratio of 7:10. Meaning, passing font size 1 will render the text at 7×10 pixels per character, passing 2 will render the text at 14×20 pixels per character and so on.

Numbers can be displayed on the OLED display by just calling print() or println() function. An overloaded implementation of these functions accepts 32-bit unsigned int, so you can only display numbers from 0 to 4,294,967,295.

The print() & println() functions has optional second parameter that specifies the base (format) to use; permitted values are BIN (binary, or base 2), OCT (octal, or base 8), DEC (decimal, or base 10), HEX (hexadecimal, or base 16). For floating point numbers, this parameter specifies the number of decimal places to use. For example:

You can draw triangle on the display by using drawTriangle(x0, y0, x1, y1, x2, y2, color) function. The function takes seven parameters viz. 3 X & Y coordinates of vertices of triangle and color. (X0,y0) represents top vertex, (x1,y1) represents left vertex and (x2,y2) represents right vertex.

This last example shows how to draw bitmap images to the OLED Display. This is useful for creating splash screens of company logos, making sprites or just creating fun graphics for displaying information. Copy the following code, paste it into the Arduino IDE and click upload.

But, before we can call the drawBitmap() function, we first need an image to draw. Remember, the screen resolution of the OLED display is 128×64 pixels, so images larger than that will not display correctly. To get a correctly sized image, you can use your favorite drawing programs like Inkscape, Photoshop, Paint, etc., setting the canvas size to 128×64 pixels.

Once you have a bitmap, it’s time to convert it into an array that the SSD1306 OLED controller can understand. This can be done using two ways: Online method using image2cpp and Offline method using LCD Assistant.

There’s an online application called image2cpp – http://javl.github.io/image2cpp/ which can convert your image into an array. Image2cpp is newer and much more powerful than LCD Assistant (later solution). It will allow you to:

The dimensions of your image will populate in Canvas size option under Image settings. If you have selected bigger image than 128×64, change it to 128×64 and select proper Scaling option. You can view the output in Preview section.

Once you are satisfied with the outcome, you can proceed generating the data array. Simply select Code output format as Arduino Code and click on Generate code button.

That’s it. The byte array of your bitmap will be generated. You can use the output directly with our example code. Just be sure to name it appropriately. Then call your array inside the drawBitmap() function.

There’s another application called LCD assistant – http://en.radzio.dxp.pl/bitmap_converter/ which can convert your bitmap image into data array. It’s not as powerful as image2cpp but still popular among hobbyists.

To start with, you need to convert you image into 128×64 1-bit monochrome bitmap. You can use your favorite drawing programs like Inkscape, Photoshop, Paint, etc. to do it, just like we did in MS paint.

tft lcd 2 nodemcu arduino code in stock

Arduino has always helped to build projects easily and make them look more attractive.  Programming an LCD screen with touch screen option might sound as a complicated task, but the Arduino libraries and shields had made it really easy. In this project we will use a 2.4” Arduino TFT LCD screen to build our own Arduino Touch Screen calculator that could perform all basic calculations like Addition, Subtraction, Division and Multiplication.

Before we actually dive into the project it is important to know, how this 2.4” TFT LCD Module works and what are the types present in it. Let us take a look at the pinouts of this 2.4” TFT LCD screen module.

As you can see there are 28 pins which will perfectly fit into any Arduino Uno / Arduino Mega Board. A small classification of these pins is given in the table below.

As you can see the pins can be classified in to four main classifications such as LCD Command Pins, LCD Data Pins, SD Card Pins and Power Pins, We need not know much about the detailed working of these pins since they will be take care by our Arduino Library.

You can also find an SD card slot at the bottom of the module shown above, which can be used to load an SD card with bmp image files, and these images can be displayed in our TFT LCD screen using the Arduino Program.

Another important thing to note is your Interface IC. There are many types of TFT modules available in the market starting from the original Adafruit TFT LCD module to cheap Chinese clones. A program which works perfectly for your Adafruit shield might not work the same for Chinese breakout boards. So, it is very important to know which types of LCD display your are holding in hand. This detail has to be obtained from the vendor. If you are having a cheap clone like mine then it is most probably using the ili9341 driver IC.You can follow this TFT LCD interfacing with Arduino tutorial to try out some basic example programs and get comfortable with the LCD screen. Also check out our other TFT LCD projects with Arduino here:

If you planning to use the touch screen function of your TFT LCD module, then you have to calibrate it to make it work properly.  A LCD screen without calibration might work unlikely, for instance you might touch at one place and the TFT might respond for a touch at some other place. These calibrations results will not be similar for all boards and hence you are left on your own to do this.

The 2.4” TFT LCD screen is a perfect Arduino Shield. You can directly push the LCD screen on top of the Arduino Uno and it will perfectly match with the pins and slid in through. However, as matters of safety cover the Programming terminal of your Arduino UNO with a small insulation tape, just in case if the terminal comes in contact with your TFT LCD screen. The LCD assembled on UNO will look something like this below.

We are using the SPFD5408 Library to get this arduino calculator code working. This is a modified library of Adafruit and can work seamlessly with our LCD TFT Module. You can check the complete program at the end of this Article.

Now, open Arduino IDE and select Sketch -> Include Librarey -> Add .ZIP library. A browser window will open navigate to the ZIP file and click “OK”. You should notice “Library added to your Libraries” on the bottom-left corner of Arduino, if successful. A detailed guide to do the same is given in the Interfacing Tutorial.

Now, you can use the code below in your Arduino IDE and upload it to your Arduino UNO for the Touch Screen Calculator to work. Further down, I have explained the code into small segments.

We need three libraries for this program to work; all these three libraries were given in the ZIP file you downloaded from the above provided link. I have simply included them in the code as shown below.

As said earlier we need to calibrate the LCD screen to make it work as expected, but don’t worry the values given here are almost universal. The variables TS_MINX, TS_MINY, TS_MAXX, and TS_MAXY decide the calibration of the Screen. You can toy around them if you feel the calibration is not satisfactory.

As we know the TFT LCD screen can display a lot of colours, all these colours have to be entered in hex value. To make it more human readable we assign these values to a variable as shown below.

The final step is to calculate the result and display them on TFT LCD Screen. This arduino calculator can perform operation with 2 numbers only. These two numbers are named as variables “Num1” and “Num2”. The variable “Number” gives and takes value from Num1 and Num2 and also bears the result.

When Equal is pressed the value in Number will be sent to Num2 and then the respective calculation (in this case addition) will be made and the result will be again stored in the variable “Number”.

The working of this Arduino Touch Screen Calculator is simple. You have to upload the below given code on your Arduino and fire it up. You get the calculator displayed on your LCD screen.

Now, you can enter any number and perform your calculations. It is limited to only two operand and only operator for now. But, you can tweak the code to make it have lots of option.