i2c 1602 lcd module in stock
This is an I2C 1602 LCD module, with this I2C interface LCD module, you will be able to realize data display via only 2 wires. If you already have I2C devices in your project, this LCD module actually costs no more resources at all. It is fantastic for Arduino based project.
The principle of the LCD1602 liquid crystal display is to use the physical characteristics of the liquid crystal to control the display area by voltage, that is, the graphic can be displayed.
I2C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL),pulled up with resistors. Typical voltages used are +5 V or +3.3 V although systems with other voltages are permitted. It can be operated as long as it supports the I2C development board.
Features: Easy to use; Less I/O ports are occupied; Support IIC Protocol; The I2C LCD1602 library is easy to get; With a potentiometer used to adjust backlight and contrast; Blue backlight; Power supply: 5v; I2C address is: 0x27.
You can display the digital information or English sentense on the LCD screen by using Arduino, Raspberry Pi or other MCU which supports i2c protocol.
An LCD display that can display a max of 16x2 charactors. with the help of the I2C bus convertor and related libraried, you can easily use this module with just 2 wires.
The display is composed of a 16 character x 2 line LCD display with a blue backlight and white characters. Each of the characters are composed of a 5 x 8 dot matrix for good character representation.
This display incorporates an I2C interface that requires only 2 pins on a MCU to interface with and it has good library support to get up and running fast. The I2C interface is a daughter board attached to the back of the LCD module.
If you need to adjust I2C address to avoid a conflict, this can be done on the I2C adapter board on the back of the module. There are 3 address jumper locations marked A0, A1, A2. Normally these lines are pulled high. If you bridge these pads, it grounds that address line. If you were to bridge all 3 to ground, the address would be 0x38 (or 0x20) depending on which version you have. The range of all possible addresses spans from 0x38 – 0x3F or 0x20 – 0x27
These are good quality modules and should be in the parts bin of any hobbyist. Because of the interactivity they provide, they are both fun to play with and useful for more serious projects.
We also offer the raw 16×2 displays without the I2C interface. Those have a parallel bus interface that requires many pins on the MCU to control. For most applications it is generally easiest to stick with the I2C interface version like this one.
Note that the I2C address of the module we sell is either 0x3F (63 decimal) or 0x27 (39 decimal) but can be adjusted if needed as explained above. The address will be printed on the label on the bag.
This 2×16 character LCD Module with BLUE Backlight uses an I2C interface to communicate with the host microcontroller. This budget-conscious LCD is used on projects requiring the display of text, data, or ASCII characters of all types. Connect to Vcc, Gnd, SDA (serial data line), and SCL (serial clock line). This is a 5VDC device and will be found on the I2C bus at address 0x27 / 0x3F.
This 16 character by 2 line display has a very clear and high contrast white text upon a blue background/backlight. It also includes a serial I2C/IIC adaptor board pre-soldered to the back of the LCD. This means it can be controlled with just 2 I2C serial data pins (SDA & SCL) and so requires far less digital IO pins when controlled from a microcontroller. In total the module only requires 4 wires including 5V power and GND. Contrast adjustment is also provided by the daughter board via a potentiometer. If you plan to use this with an Arduino board you can download a compatible library and example sketch from our support forum
These modules are currently supplied with a default I2C address of either 0x27 or 0x3F. To determine which version you have check the black I2C adaptor board on the underside of the module. If there a 3 sets of pads labelled A0, A1, & A2 then the default address will be 0x3F. If there are no pads the default address will be 0x27.
If pressure is applied to the I2C daughter board it is possible for it to bend and come contact with the LCD module. Please ensure when the LCD is installed in your application that no external object is applying pressure to the back of the module.
If you’ve ever tried to connect an LCD display to an Arduino, you might have noticed that it consumes a lot of pins on the Arduino. Even in 4-bit mode, the Arduino still requires a total of seven connections – which is half of the Arduino’s available digital I/O pins.
The solution is to use an I2C LCD display. It consumes only two I/O pins that are not even part of the set of digital I/O pins and can be shared with other I2C devices as well.
True to their name, these LCDs are ideal for displaying only text/characters. A 16×2 character LCD, for example, has an LED backlight and can display 32 ASCII characters in two rows of 16 characters each.
At the heart of the adapter is an 8-bit I/O expander chip – PCF8574. This chip converts the I2C data from an Arduino into the parallel data required for an LCD display.
If you are using multiple devices on the same I2C bus, you may need to set a different I2C address for the LCD adapter so that it does not conflict with another I2C device.
An important point here is that several companies manufacture the same PCF8574 chip, Texas Instruments and NXP Semiconductors, to name a few. And the I2C address of your LCD depends on the chip manufacturer.
According to the Texas Instruments’ datasheet, the three address selection bits (A0, A1 and A2) are placed at the end of the 7-bit I2C address register.
According to the NXP Semiconductors’ datasheet, the three address selection bits (A0, A1 and A2) are also placed at the end of the 7-bit I2C address register. But the other bits in the address register are different.
So your LCD probably has a default I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it.
Connecting an I2C LCD is much easier than connecting a standard LCD. You only need to connect 4 pins instead of 12. Start by connecting the VCC pin to the 5V output on the Arduino and GND to ground.
Now we are left with the pins which are used for I2C communication. Note that each Arduino board has different I2C pins that must be connected accordingly. On Arduino boards with the R3 layout, the SDA (data line) and SCL (clock line) are on the pin headers close to the AREF pin. They are also known as A5 (SCL) and A4 (SDA).
After wiring up the LCD you’ll need to adjust the contrast of the display. On the I2C module you will find a potentiometer that you can rotate with a small screwdriver.
Plug in the Arduino’s USB connector to power the LCD. You will see the backlight lit up. Now as you turn the knob on the potentiometer, you will start to see the first row of rectangles. If that happens, Congratulations! Your LCD is working fine.
To drive an I2C LCD you must first install a library called LiquidCrystal_I2C. This library is an enhanced version of the LiquidCrystal library that comes with your Arduino IDE.
Filter your search by typing ‘liquidcrystal‘. There should be some entries. Look for the LiquidCrystal I2C library by Frank de Brabander. Click on that entry, and then select Install.
The I2C address of your LCD depends on the manufacturer, as mentioned earlier. If your LCD has a Texas Instruments’ PCF8574 chip, its default I2C address is 0x27Hex. If your LCD has NXP Semiconductors’ PCF8574 chip, its default I2C address is 0x3FHex.
So your LCD probably has I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it. Luckily there’s an easy way to do this, thanks to the Nick Gammon.
But, before you proceed to upload the sketch, you need to make a small change to make it work for you. You must pass the I2C address of your LCD and the dimensions of the display to the constructor of the LiquidCrystal_I2C class. If you are using a 16×2 character LCD, pass the 16 and 2; If you’re using a 20×4 LCD, pass 20 and 4. You got the point!
First of all an object of LiquidCrystal_I2C class is created. This object takes three parameters LiquidCrystal_I2C(address, columns, rows). This is where you need to enter the address you found earlier, and the dimensions of the display.
In ‘setup’ we call three functions. The first function is init(). It initializes the LCD object. The second function is clear(). This clears the LCD screen and moves the cursor to the top left corner. And third, the backlight() function turns on the LCD backlight.
After that we set the cursor position to the third column of the first row by calling the function lcd.setCursor(2, 0). The cursor position specifies the location where you want the new text to be displayed on the LCD. The upper left corner is assumed to be col=0, row=0.
There are some useful functions you can use with LiquidCrystal_I2C objects. Some of them are listed below:lcd.home() function is used to position the cursor in the upper-left of the LCD without clearing the display.
lcd.scrollDisplayRight() function scrolls the contents of the display one space to the right. If you want the text to scroll continuously, you have to use this function inside a for loop.
lcd.scrollDisplayLeft() function scrolls the contents of the display one space to the left. Similar to above function, use this inside a for loop for continuous scrolling.
If you find the characters on the display dull and boring, you can create your own custom characters (glyphs) and symbols for your LCD. They are extremely useful when you want to display a character that is not part of the standard ASCII character set.
CGROM is used to store all permanent fonts that are displayed using their ASCII codes. For example, if we send 0x41 to the LCD, the letter ‘A’ will be printed on the display.
CGRAM is another memory used to store user defined characters. This RAM is limited to 64 bytes. For a 5×8 pixel based LCD, only 8 user-defined characters can be stored in CGRAM. And for 5×10 pixel based LCD only 4 user-defined characters can be stored.
After the library is included and the LCD object is created, custom character arrays are defined. The array consists of 8 bytes, each byte representing a row of a 5×8 LED matrix. In this sketch, eight custom characters have been created.
Everyone love the 1602 character LCD, is cheap and works out of box! But the need for 6 to 10 GPIOs is the pain :) It takes most of GPIO of Arduino and other microcontroller. Now with this I2C or Two wires interface LCD, you will save a lot of GPIO for your sensor and motor control.
LCD shield after connected with a certain quantity of sensors or SD card. However, with this I2C interface LCD module, you will be able to realize data display via only 2 wires. If you already has I2C devices in your project, you can still program this LCD with the correct I2C address. It is fantastic for Arduino based project.
Referring to the LCD16020, I believe that everyone is not unfamiliar with the square shape, green color, a row of 2.54 pin header.... LCD1602 module is a product of the DFRobot Gravity I2C series, which has been greatly optimised for its original LCD1602 appearance. This module does not need to adjust the contrast, retain the backlight controllable function, and simultaneously compatible with 3.3V and 5V voltage. The optimisation of function and the appearance will bring you the different experience.
Gravity: I2C LCD1602 Arduino LCD Display Module (Gray) Click a star to leave your reviewWorst experience possibleA bad experienceA moderate experienceA satisfied experienceA very positive experience
This is I2C interface 16×2 LCD display module, a high-quality 2 line 16 character LCD module with on-board contrast control adjustment, backlight and I2C communication interface. For Arduino beginners, no more cumbersome and complex LCD driver circuit connection. The real significance advantages of this I2C Serial LCD module will simplify the circuit connection, save some I/O pins on Arduino board, simplified firmware development with widely available Arduino library.
As we all know, though LCD and some other displays greatly enrich the man-machine interaction, they share a common weakness. When they are connected to a controller, multiple IOs will be occupied of the controller which has no so many outer ports. Also it restricts other functions of the controller. Therefore, LCD1602 with an I2C bus is developed to solve the problem.
I2C bus is a type of serial bus invented by PHLIPS. It is a high performance serial bus which has bus ruling and high or low speed device synchronization function required by multiple-host system. The blue potentiometer on the I2C LCD1602 (see the figure below) is used to adjust the backlight for better display. I²C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with resistors. Typical voltages used are +5 V or +3.3 V although systems with other voltages are permitted.