lg 42 inch lcd panel factory
Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.
Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:
Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:
MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:
LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.
"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.
"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.
"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"TCL"s Panel Manufacturer CSOT Commences Production of High Generation Panel Modules". www.businesswire.com. June 14, 2018. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.
Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.
Shilov, Anton. "LG"s New 55+ inch OLED Plant in China Opens: Over 1m+ per Year". www.anandtech.com. Archived from the original on 2019-09-14. Retrieved 2019-12-18.
"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.
South Korean flat-panel display manufacturer LG Display is set to launch mid-sized organic light emitting diode panels designed for gaming monitors, according to the company Tuesday.
“LG Display will release a new flat-panel display using OLED technology by the end of this year, at a size of over 20 inches and no larger than 30 inches,” an LG Display spokesperson told The Korea Herald, adding the company has yet to determine which plant -- among one in Paju, Gyeonggi Province, or one in Guangzhou, China -- would be tasked with the production.
According to LG Display, the new panel will be made on mother glass substrates that are 2.2 meters wide and 2.5 meters high through the 8.5-generation production process. Also, the brand-new panels will be supplied to makers of monitors and portable electronic devices.
The news heralds LG Display‘s foray into the mid-sized display market, as the company has so far only manufactured flat-panel OLED displays for televisions -- larger than 40 inch in size -- and electronic devices like smartphones -- smaller than 20 inch. The world’s largest OLED panel producer for TVs has yet to release OLED panels specifically for monitors.
This is also in line with LG Display‘s focus on the growing demand for high-end gaming monitors. In the first half of 2022, LG Electronics, a major TV set client of LG Display, saw its shipment of the smallest OLED TV lineups -- 42-inch TVs and 48-inch TVs -- rise over 80 percent from the previous year, according to market intelligence Omdia. These two lineups, including 42-inch ones launched this year, have been touted as TVs made to cater to the tastes of gamers.
Separately, LG Display in August 2021 announced plans to spend 3.3 trillion won ($2.45 billion) over the course of three years by the first quarter of 2024 to expand the production capacity of flat panel displays smaller than 20 inches for electronic devices.
More companies are tapping into the higher-end technologies for gaming monitors that enables an immersive user experience with more vivid colors and smoother display than light-emitting diode panels.
Crosstown rival Samsung Display, a flat-panel display arm of Samsung Electronics, started supplying its 34-inch quantum-dot OLED panels to electronics goods maker Dell this year.
The history of flat-panel TVs has been written by two fundamentally different technological approaches to creating a TV image: transmissive displays versus emissive displays.
Transmissive displays operate by shining a backlight array through a liquid crystal element. You might know them by their more common names: LCD TVs or LED TVs. Crucially, the light- and color-producing parts of LCD/LED TVs are functionally and physically separate layers. I like to think of the liquid crystal and backlight as the meat and cheese on a sandwich, respectively.
This independent pixel operation (independent from a backlight array and independent from every other pixel) allows emissive displays to greatly maximize contrast and produce richer colors. For example, when an OLED TV needs to display true black in a scene, it just turns those pixels off, whereas an LCD TV needs to find a way to block or turn off the backlight in that area of the screen. This is, in a nutshell, why OLED TVs are special. The ability to produce a true black on such a fine level increases the TV’s contrast (or the difference between the darkest and brightest parts of the image). The high level of contrast in an OLED TV can help your favorite movies and shows look downright jaw-dropping, which makes it an especially good choice to pair with high dynamic range (HDR) content.
As a bonus, because there’s no backlight array, OLED TVs tend to have excellent viewing angles, especially compared to LCD/LED TVs. This means you can watch them pretty comfortably from way off to either side.
Price has been the biggest barrier keeping most folks from having an OLED TV in their living rooms. OLED TVs have consistently carried higher price tags than high-performance LCD TVs—especially at screen sizes larger than 65 inches, where you could expect to pay at least 20% more. And “budget OLED” has never even been a category.
It wasn’t too long ago that manufacturing difficulties and relative scarcity painted a picture of exclusivity for OLED TVs, which kept the price high. While Sony and Samsung were the first to introduce OLED TVs, they quickly exited the market, leaving LG as the only brand selling OLEDs in the US for a time—and in a rather limited array of sizes and configurations. The earliest models had a range of issues, including an odd behavior colloquially called “vignetting” (where the edges of the screen look much darker than the middle), a tendency for darker gray elements to look yellowish-green, and concerns about uneven lifespan expectations among different colors. Those kinks were hammered out years ago, and manufacturers like Sony and Vizio have since joined LG in the US market, though LG Display has been the only company manufacturing the actual OLED TV panels. Yet the prices are still high compared with that of most LCD TVs.
Price isn’t the only consideration, either. OLED TVs are comparably much dimmer than similarly priced LCD/LED TVs. This boils down to operational mechanics: Individually operating pixels, the root of an OLED TV’s strength, can also be a weakness. In emissive displays, turning all the pixels to maximum brightness at the same time can damage the TV. So like plasma TVs before them, OLED TVs use a process called auto-brightness limiting, or ABL. Essentially, as more of the screen becomes bright, the total brightness is automatically limited to ensure safe operation.
In other words, a 2021 OLED TV could only get roughly half as bright as a similarly priced 2021 LCD/LED TV, especially those that use mini-LED backlights. However, it’s important to understand that those brightness numbers are discussed in terms of what’s called “reference brightness,” which describes the general/average light output that you’d notice when watching an OLED TV and an LCD TV side by side. For instance, very bright content that lights up the whole screen, such as a daytime sporting event, will look brighter on a high-performance LCD TV than an OLED TV.
But when considering overall screen contrast—the measure of a TV’s average or peak brightness against its black level, or minimum luminance level—OLED TVs tend to have the best contrast around. Because ABL usually kicks in only when large portions of the screen are bright, an OLED TV’s perceptual contrast (how bright the TV will seem given its black level) is usually much better than that of LCD TVs, especially with HDR content where small, specular areas of the screen are very bright.
However, all that functionality is why it’s important to have control over your room’s ambient lighting if you plan to buy an OLED TV. For example, as much as I love OLED TVs, I don’t have one in my living room—I have a Samsung Neo QLED LCD, which is bright enough to combat the San Diego sunshine that often bathes my home. There’s no point having a beautiful TV if you can’t see it! If you can sufficiently darken your viewing room when you need to, however, there aren’t many TVs that will look better than an OLED.
One other concern that some people have with OLED TVs is the potential for “burn-in” damage, ghostly after-image of content that has been on the screen for an extended period of time. Usually this image retention is temporary, but sometimes it’s permanent. The party line for OLED burn-in is that it shouldn’t occur during “normal” use, and we agree, especially because most modern OLED TVs have pixel-shifting and cell-repair processes built in to ensure that damage doesn’t occur. You can also mitigate burn-in further by lowering your OLED TV’s brightness when it’s convenient. However, if you do watch content with a stationary image (like a news ticker or the heads-up display in a video game) for many hours every single day, you may want to consider getting an LCD TV instead. Ultimately, we think burn-in is only a notable concern for a minor subset of OLED owners.
This year, we’re seeing a few key developments in the OLED market that could help it become a better option for more people. For one, LG and Sony have continued to refine their panels to improve overall brightness, and both are adding more screen sizes to their lineups, including smaller 42- and 48-inch models—which is great for not only gamers but also anyone who just wants a more affordable OLED TV that fits in a modest-sized room. Also, companies like Vizio and Skyworth are selling more affordably priced OLED TVs in the US. (You can read more specifics about the 2022 OLED lines in our guide to the best OLED TV.)
But the OLED news generating the most buzz is that Samsung is returning to the OLED game after almost a decade on hiatus. (Samsung introduced one of the very first OLED TVs back in 2012 but abandoned them shortly thereafter.) The company has a single OLED TV line this year, the S95B Series, but there’s an important caveat: Samsung manufactures its own OLED panels, and S95B TVs have QD-OLED displays, a new variant of OLED. QD-OLED displays combine OLED panels with quantum dots—microscopic nanocrystals more commonly used to pump up the color saturation in the best LCD/LED TVs. Sony also announced a QD-OLED model this year.
Because QD-OLED is brand new, we don’t yet know what benefits or improvements it may offer over LG’s WRGB OLED panels (video) beyond what can be assumed based on the underlying technologies: It should look really good. (We plan to test these new TVs to find out, of course.) The other good news? Samsung has announced pricing for its QD-OLED TVs, and while they’re not the most affordable ones you can buy this year, they also won’t break the bank compared with some of the premium OLED TVs being sold.
On the other hand, it’s too soon to predict how Samsung’s return to the market will affect prices going forward. The relatively approachable price of Samsung’s new QD-OLED model could mean that buying an OLED TV in 2022 is a bit risky. If QD-OLED has better production yields than LG’s WRGB OLED, we could see an entire range of even more competitively priced models in 2023.