arduino 2.4 tft lcd touch shield mcufriend free sample
This note introduces a low-cost Thin Film Transistor (TFT) display to enhance the operation and usefulness of Liquid Crystal Display(LCD) devices. TFT technology controls the pixel element on the glass surface thereby greatly reducing image blurring and improving viewing angles.
The test board chosen for this exercise is the Elegoo Arduino UNO board from the corresponding Super Starter Kit. The kit already has several simple numeric and text displays. The TFT display may perhaps provide better ways to interact in applications.
The controller for the illustrated model of the TFT display is SSD1297.This information is important because the display (owing to its low cost and high popularity) has many different manufacturers who may not leverage the same controller instruction set. The specification of the controller in the coding exercises is examined in the Appendix section of this note.
Of course, the display can be mounted elsewhere and the pins connected to the Arduino directly or indirectly using, for example, a breadboard. Other components can then use the breadboard in lieu of a shield with custom connectors. Of course, without access to such anon-standard or readily available breadboard, it is impossible to illustrate this arrangement in this note.
The output from the diagnostic program, LCD_ID_reading.ino, is shown below:Read Registers on MCUFRIEND UNO shieldcontrollers either read as single 16-bite.g. the ID is at readReg(0)or as a sequence of 8-bit valuesin special locations (first is dummy)reg(0x0000) 97 97ID: ILI9320, ILI9325, ILI9335, ...reg(0x0004) 97 97 97 97Manufacturer IDreg(0x0009) 97 97 97 97 97Status Registerreg(0x000A) 97 97Get Power Modereg(0x000C) 97 97Get Pixel Formatreg(0x0061) 97 97RDID1 HX8347-Greg(0x0062) 97 97RDID2 HX8347-Greg(0x0063) 97 97RDID3 HX8347-Greg(0x0064) 97 97RDID1 HX8347-Areg(0x0065) 97 97RDID2 HX8347-Areg(0x0066) 97 97RDID3 HX8347-Areg(0x0067) 97 97RDID Himax HX8347-Areg(0x0070) 97 97Panel Himax HX8347-Areg(0x00A1) 97 97 97 97 97RD_DDB SSD1963reg(0x00B0) 97 97RGB Interface Signal Controlreg(0x00B4) 97 97Inversion Controlreg(0x00B6) 97 97 97 97 97Display Controlreg(0x00B7) 97 97Entry Mode Setreg(0x00BF) 97 97 97 97 97 97ILI9481, HX8357-Breg(0x00C0) 97 97 97 97 97 97 97 97 97Panel Controlreg(0x00C8) 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMAreg(0x00CC) 97 97Panel Controlreg(0x00D0) 97 97 97Power Controlreg(0x00D2) 97 97 97 97 97NVM Readreg(0x00D3) 97 97 97 97ILI9341, ILI9488reg(0x00D4) 97 97 97 97Novatek IDreg(0x00DA) 97 97RDID1reg(0x00DB) 97 97RDID2reg(0x00DC) 97 97RDID3reg(0x00E0) 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMA-Preg(0x00E1) 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMA-Nreg(0x00EF) 97 97 97 97 97 97ILI9327reg(0x00F2) 97 97 97 97 97 97 97 97 97 97 97 97Adjust Control 2reg(0x00F6) 97 97 97 97Interface Control
Hi community, I"m trying to read the touch screen values of 2.4" TFT display with no success. The display visual tests are running successfully. I have written a small script based on "diagnose_touchpins" example, because I use Wemos Lolin32 board and the pins are different. Here is the code:
Im new to Arduino myself but i do have the same screen which works perfect,your problem is probably that the TFT shield is shorting off the top off the arduino usb put something non conductive there and reset. if your still having trouble, try removing the shield and watch each pin as you insert it to make sure they are all inserted in the correct pins, LCD_02 should be in Dig pin 2.
In this article, you will learn how to use TFT LCDs by Arduino boards. From basic commands to professional designs and technics are all explained here.
There are several components to achieve this. LEDs, 7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.
TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.
In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.
There are several components to achieve this. LEDs, 7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.
TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.
In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.
After choosing the right display, It’s time to choose the right controller. If you want to display characters, tests, numbers and static images and the speed of display is not important, the Atmega328 Arduino boards (such as Arduino UNO) are a proper choice. If the size of your code is big, The UNO board may not be enough. You can use Arduino Mega2560 instead. And if you want to show high resolution images and motions with high speed, you should use the ARM core Arduino boards such as Arduino DUE.
In electronics/computer hardware a display driver is usually a semiconductor integrated circuit (but may alternatively comprise a state machine made of discrete logic and other components) which provides an interface function between a microprocessor, microcontroller, ASIC or general-purpose peripheral interface and a particular type of display device, e.g. LCD, LED, OLED, ePaper, CRT, Vacuum fluorescent or Nixie.
The LCDs manufacturers use different drivers in their products. Some of them are more popular and some of them are very unknown. To run your display easily, you should use Arduino LCDs libraries and add them to your code. Otherwise running the display may be very difficult. There are many free libraries you can find on the internet but the important point about the libraries is their compatibility with the LCD’s driver. The driver of your LCD must be known by your library. In this article, we use the Adafruit GFX library and MCUFRIEND KBV library and example codes. You can download them from the following links.
You must add the library and then upload the code. If it is the first time you run an Arduino board, don’t worry. Just follow these steps:Go to www.arduino.cc/en/Main/Software and download the software of your OS. Install the IDE software as instructed.
First you should convert your image to hex code. Download the software from the following link. if you don’t want to change the settings of the software, you must invert the color of the image and make the image horizontally mirrored and rotate it 90 degrees counterclockwise. Now add it to the software and convert it. Open the exported file and copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are sizes of image. you can change the color of the image in the last input.
Upload your image and download the converted file that the UTFT libraries can process. Now copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are size of the image.
In this template, We converted a .jpg image to .c file and added to the code, wrote a string and used the fade code to display. Then we used scroll code to move the screen left. Download the .h file and add it to the folder of the Arduino sketch.
In this template, We used sin(); and cos(); functions to draw Arcs with our desired thickness and displayed number by text printing function. Then we converted an image to hex code and added them to the code and displayed the image by bitmap function. Then we used draw lines function to change the style of the image. Download the .h file and add it to the folder of the Arduino sketch.
In this template, We added a converted image to code and then used two black and white arcs to create the pointer of volumes. Download the .h file and add it to the folder of the Arduino sketch.
In this template, We added a converted image and use the arc and print function to create this gauge. Download the .h file and add it to folder of the Arduino sketch.
while (a < b) { Serial.println(a); j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 255, 255)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)
while (b < a) { j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 0, 0)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)
In this template, We display simple images one after each other very fast by bitmap function. So you can make your animation by this trick. Download the .h file and add it to folder of the Arduino sketch.
In this template, We just display some images by RGBbitmap and bitmap functions. Just make a code for touchscreen and use this template. Download the .h file and add it to folder of the Arduino sketch.
Even on ebay"s website it is mentioned that I can"t use 2.4" TFT LCD Shield display on attach to Arduino Mega. The problem is that I bought this shield by mistake. I want to put this shield onto Arduino Mega 2560. Is there a way to combine Mega and 2.4" Display Shield?
A while ago I bought this 2.4"" Inch TFT LCD Touch Display Shield for Arduino UNO, but only recently I came up with a project where I could make use of this piece of hardware.
This most probably meant that the method color565 which creates a 16 bit (unit16_t) packed color from the RGB components, had an issue. With that information, Googling for a fix was rather easy and in the offciial Arduino forums I found someone having the exact same problem and also the fix for it.
Then, instead of calling the method tft.clor565, a call to the newly created function fixed_color565 made sure that images got displayed correctly from now on..
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.
The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
Next we need to define the fonts that are coming with the libraries and also define some variables needed for the program. In the setup section we need to initiate the screen and the touch, define the pin modes for the connected sensor, the led and the button, and initially call the drawHomeSreen() custom function, which will draw the home screen of the program.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:
Arduino has always helped to build projects easily and make them look more attractive. Programming an LCD screen with touch screen option might sound as a complicated task, but the Arduino libraries and shields had made it really easy. In this project we will use a 2.4” Arduino TFT LCD screen to build our own Arduino Touch Screen calculator that could perform all basic calculations like Addition, Subtraction, Division and Multiplication.
Before we actually dive into the project it is important to know, how this 2.4” TFT LCD Module works and what are the types present in it. Let us take a look at the pinouts of this 2.4” TFT LCD screen module.
As you can see there are 28 pins which will perfectly fit into any Arduino Uno / Arduino Mega Board. A small classification of these pins is given in the table below.
As you can see the pins can be classified in to four main classifications such as LCD Command Pins, LCD Data Pins, SD Card Pins and Power Pins, We need not know much about the detailed working of these pins since they will be take care by our Arduino Library.
You can also find an SD card slot at the bottom of the module shown above, which can be used to load an SD card with bmp image files, and these images can be displayed in our TFT LCD screen using the Arduino Program.
Another important thing to note is your Interface IC. There are many types of TFT modules available in the market starting from the original Adafruit TFT LCD module to cheap Chinese clones. A program which works perfectly for your Adafruit shield might not work the same for Chinese breakout boards. So, it is very important to know which types of LCD display your are holding in hand. This detail has to be obtained from the vendor. If you are having a cheap clone like mine then it is most probably using the ili9341 driver IC.You can follow this TFT LCD interfacing with Arduino tutorial to try out some basic example programs and get comfortable with the LCD screen. Also check out our other TFT LCD projects with Arduino here:
If you planning to use the touch screen function of your TFT LCD module, then you have to calibrate it to make it work properly. A LCD screen without calibration might work unlikely, for instance you might touch at one place and the TFT might respond for a touch at some other place. These calibrations results will not be similar for all boards and hence you are left on your own to do this.
The 2.4” TFT LCD screen is a perfect Arduino Shield. You can directly push the LCD screen on top of the Arduino Uno and it will perfectly match with the pins and slid in through. However, as matters of safety cover the Programming terminal of your Arduino UNO with a small insulation tape, just in case if the terminal comes in contact with your TFT LCD screen. The LCD assembled on UNO will look something like this below.
We are using the SPFD5408 Library to get this arduino calculator code working. This is a modified library of Adafruit and can work seamlessly with our LCD TFT Module. You can check the complete program at the end of this Article.
Now, open Arduino IDE and select Sketch -> Include Librarey -> Add .ZIP library. A browser window will open navigate to the ZIP file and click “OK”. You should notice “Library added to your Libraries” on the bottom-left corner of Arduino, if successful. A detailed guide to do the same is given in the Interfacing Tutorial.
Now, you can use the code below in your Arduino IDE and upload it to your Arduino UNO for the Touch Screen Calculator to work. Further down, I have explained the code into small segments.
As said earlier we need to calibrate the LCD screen to make it work as expected, but don’t worry the values given here are almost universal. The variables TS_MINX, TS_MINY, TS_MAXX, and TS_MAXY decide the calibration of the Screen. You can toy around them if you feel the calibration is not satisfactory.
As we know the TFT LCD screen can display a lot of colours, all these colours have to be entered in hex value. To make it more human readable we assign these values to a variable as shown below.
Okay now, we can get into the programming part. There are three sections involved in this program. One is creating a UI of a calculator with buttons and display. Then, detecting the buttons based on the users touch and finally calculating the results and display them. Let us get through them one by one.
Another challenging task is detecting the user touch. Every time the user touches somewhere we will able to how where the X and Y position of the pixel he touched. This value can be displayed on the serial monitor using the println as shown below.
Now, since we know the position of all the boxes. When a user touches anywhere we can predict where he has touched by comparing his (X,Y) values with the value for each box as shown below.
The final step is to calculate the result and display them on TFT LCD Screen. This arduino calculator can perform operation with 2 numbers only. These two numbers are named as variables “Num1” and “Num2”. The variable “Number” gives and takes value from Num1 and Num2 and also bears the result.
The working of this Arduino Touch Screen Calculator is simple. You have to upload the below given code on your Arduino and fire it up. You get the calculator displayed on your LCD screen.
Arduino TFT LCD Touch Screen GSM Mobile Phone | Lightweight Arduino GSM Mobile Phone – Arduino Project Hub. 1. Nextion Display Based Mobile Phone using GSM & Arduino, 2. Overview | Arduin-o-Phone | Adafruit Learning System, 3. Turn your smartphone into a LCD shield for Arduino using TFT LCD, 4. LG KF700 cellphone TFT LCD on Arduino Mega, 5. How to fix white screen of tft touch screen with arduino | TFT, 6. 2.4” tft lcd shield mcufriend, 7. 2.4” tft lcd shield datasheet, 8. 2.4” tft lcd shield pinout, 9. 2.4” tft lcd shield interfacing with Arduino, 10. 2.4” tft lcd touch shield for arduino uno code, 11. arduino uno 2.4 tft lcd touch shield projects, 12. 2.4” tft lcd shield arduino mega 2560, 13. 2.4” tft lcd shield arduino mega example, 14. Arduino 2.4″ Touch Screen LCD Shield Tutorial – Arduino, 15. 2.4″ MCUFRIEND TFT Shield for Arduino UNO R3 , 16. TFT LCD 2.4″ Touch screen shield tutorial for beginners, 17. Interfacing and Fixing Touch Problem on TFT LCD 2.4″ Shield, 18. Arduino Calculator | 2.4″ TFT LCD Touch, 19. Arduino Touch Screen Calculator using TFT LCD – Circuit Digest, 20. How to Use 2.4″ TFT LCD Shield With Arduino Mega, 21. Arduino 2.4″ Touch Screen LCD Shield Tutorial, 22. Arduino TFT LCD Touch Screen Tutorial – HowToMechatronics, 23. 2.4” tft lcd shield mcufriend, 24. 2.4” tft lcd shield arduino mega 2560, 25. 2.4” tft lcd touch shield for arduino uno code, 26. arduino uno 2.4 tft lcd touch shield projects, 27. mcufriend 2.4 tft white screen, 28. arduino 2.4” tft lcd touch shield projects, 29. arduino tft shield, 30. 3.5” tft lcd shield arduino uno projects, 31. 2.4″ TFT LCD Shield touch screen module for Arduino Uno 32. Interfacing and fixing touch problem in Arduino TFT 2.4″ LCD, 33. 2.4″ TFT LCD Touch Shield Arduino Hello World, 34. Arduino Uno 2.4 TFT Display Shield MCU Friend Display, 35. Setting up 2.4 Inch TFT LCD Arduino Shield ILI9341 HX8347, 36. 2.4″ Arduino U TFT LCD Shield Display Module, 37. TFT LCD 2.4″ Touch screen shield tutorial – SURTR, 38. OPEN SMART 2.4 INCH TFT LCD Shield for Arduino, 39. 2.4″ TFT LCD Shield with Arduino Mega – Really Works, 40. 2.4″ TFT LCD Display Shield | ElectroPeak, 41. Arduino Tutorial: 2.4″ TFT Color Display ILI9341 240×320, 42. Arduino Touch Screen TFT LCD Tutorial, 43. Arduino Uno 2.4 TFT Display Shield MCU Friend Installing, 44. How to Display Images on 2.4inch TFT and Make It a Digital, 45. how to make a call using gsm module and Arduino, 46. Display Board – Arduino Project Hub – Arduino Create, 47. TFT Shield for Arduino Nano – Start – Arduino Project Hub,
case for arduino mega with a 2.4 tft lcd touch screen with holes for 4 buttons. ... I used a mcufriend screen with the library it works on arduino mega.
Case for Arduino mega and 3.2" TFT 320x480 This case is a remake of this project: https://www.thingiverse.com/thing:2283961 . ...I tweaked his stl files a bit using 3d builder.
Arduino mega + 3.2" tft case. there are 2 different case bottoms, 1 without a hole and 1 with. both cases have a cutout for powering the Mega from a USB.
Box for a sousvide controller for an Arduino and an 2.4 inch TFT/oled touch screen. See https://github.com/dirkx/SousVide-Arduino-TFT for firmware and other details. And see https://makerspaceleiden.nl for details on machines used....
This is a sipmple box/case for Arduino Uno and 2.4"" TFT Lcd Touch Screen. There are 2 kind of cases: closed or with open grooves for refrigeration. Originally made for a mini - meteo station, it can be customizable with FreeCad file. ...It was made...
New version: https://cults3d.com/fr/modèle-3d/outil/ili9486-3-5-tft-arduino-mega-ensemble Feel free to share, to love my creations and especially to share your makes of them, it helps a lot.
3D model of 7" tft screen, with Arduino mega plus shield. Model included a cover and locks to prevent lcd from dropping, it also supports the mega and fills the gap betwen Arduino and the lcd pcb.
New version: https://cults3d.com/fr/modèle-3d/outil/ili9486-3-5-tft-arduino-mega-ensemble Feel free to share, to love my creations and especially to share your makes of them, it helps a lot.
As an example i used the color weather station of Dani Eichhorn - https://blog.squix.org/2016/10/esp8266-weather-station-color-code-published.html (Note I used a slightly different TFT, a TJCTM24024-SPI which has the same electronics but is 2.4"...
This horizontal TFT display is based on one of them, the ESP8266 WiFi Color Display Kit 2.4″. Beside of this only 4 M3 nuts and 4 M3x20 screws are required. IMPORTANT NOTE: I realized that I assembled the ESP8266 Wifi Color Display Kit 2.4" slightly...
UPDATE 2020-05031: A non-modular variant of this design can be found here: https://www.thingiverse.com/thing:4413894 This is a modular enclosure for compact projects incorporating a 2.4" TFT display. I made it for use with Wemos D1 Mini 2.4" TFT...
... assembled and smaller. ...Azsmz sells a nice piece of hardware on Tindie at: https://www.tindie.com/products/cxandy/azsmz-tft-24-touch/?pt=ac_prod_search so I thought I"d make a nice enclosure for it. It"s a little rough but works for my needs....