24 pin lcd display pinout free sample

In this tutorial I am going to explain about the pin out, working and control systems of character lcd’s. Character lcd’s comes in many sizes for example 8×1, 8×2, 8×4, 16×1, 16×2, 20×1, 20×2, 20×4, 24×1, 24×2, 24×4, 32×1, 32×2, 40×1, 40×2 and 40×4. In these MxN dimensions, M represents number of coulombs & N represents number of rows.

All these Lcd’s available in market have 14 or 16 pins depending on the vendor/supplier. Also they all contains a same lcd controller in them which controls all their activities. Talks to external peripherals(like microcontrollers) receives data from external devices and displays them on lcd display screen. Generally every character lcd has HD44780 controller in it which controls every operation of character lcd. Some variants and competitors of HD44780 also placed step in embedded market but they are not popular for exampleAIP31066 , KS0066 , SPLC780 and ST7066 lcd controller.

In these 14 pins, 8 are data pins(FromDB-0toDB-7). Three are lcd control pinsRS(Register Select),R/W(Read-Write) &En(Enable). Two are lcd power pinsVcc(+5v)Vss(Gnd). The last pin islcd contrast pin(V0).

If lcd contains 16 pins than the extra 2 pins are LED+ and LED- pins. LED+ and LED- are for lcd’s back light, if you want to switch on the back light of lcd then use these pins other wise leave them void.

Character lcd’s which have pins arranged in two lines like headers, their pin-out is given below. Female header pin-out is shown below. Vendors for ease pre-solder the lcd pins and provide a female header for connections.

Mostly character lcds contains HD44780U lcd controller in them. HD44780 was developed by Hitachi. A single HD44780 can handle up to 80 characters. In 40×4 lcd display total characters which we can display on lcd are 40×4=160. So to control 160 characters we need two HD44780 controllers. To work with two HD44780 controllers we need an extra pin to energize the second controller.

Lcd contrast pin is same like fine tuning your television. In televisions we fine tune stations using remote but in character lcd’s we have to manually do it by varying the resistance. Varying the resistance means we control the input current to lcd. Varying resistance will fade or brighten the characters or data appearing on lcd screen.

Character Lcd’s can be interfaced in 8-bit and 4-bit mode with external controllers. In 8-bit mode all the data lines(DB0-DB7) of lcd are utilized. In 4-bit mode only four data pins of lcd are utilized (DB7-DB4). In 4-bit mode first the 8-bit ASCII value is divided in to two nibbles, first the upper nibble is send on data line and then the lower nibble. 4-bit mode is used when we want to save GPIO pins of our external device like microcontoller. An example of lcd connection with remote controller is shown in the picture below.

I prepared a good tutorial on interfacing character lcd in 8-bit and 4-bit mode with microcontrollers. Demo codes are also presented and explained in the post. Click the below button to take the tutorial.

24 pin lcd display pinout free sample

You can get 24 pin lcd display with an operation range that suits your specific application, choosing from a wide selection of suppliers. Source wholesale 24 pin lcd display on Alibaba.com for your business and enjoy a wide variety and great deals.

24 pin lcd display (Liquid crystal display) are made of liquid crystals that form digital images made visible through ambient light or through LED backlight. LCDs are used in the place of other displays that are less efficient such as cathode ray tubes (CRTs) and have become the most popular display type on the market.

Explore the extensive selection of wholesale 24 pin lcd display LCD displays, TFT, and HMI that can be used across a range of industries, including domestic, medical, industrial, automotive, and many others. You can choose from a number of standard industry sizes and find the 24 pin Lcd display that are applicable to your required use. If you would like options that allow a smaller environmental footprint due to low power consumption, you can browse the Chip-on-Glass (COG) LCDs. COGs are designed without PCBs so have a slimmer profile.

24 pin lcd display pinout free sample

In this Arduino tutorial we will learn how to connect and use an LCD (Liquid Crystal Display)with Arduino. LCD displays like these are very popular and broadly used in many electronics projects because they are great for displaying simple information, like sensors data, while being very affordable.

You can watch the following video or read the written tutorial below. It includes everything you need to know about using an LCD character display with Arduino, such as, LCD pinout, wiring diagram and several example codes.

An LCD character display is a unique type of display that can only output individual ASCII characters with fixed size. Using these individual characters then we can form a text.

If we take a closer look at the display we can notice that there are small rectangular areas composed of 5×8 pixels grid. Each pixel can light up individually, and so we can generate characters within each grid.

The number of the rectangular areas define the size of the LCD. The most popular LCD is the 16×2 LCD, which has two rows with 16 rectangular areas or characters. Of course, there are other sizes like 16×1, 16×4, 20×4 and so on, but they all work on the same principle. Also, these LCDs can have different background and text color.

It has 16 pins and the first one from left to right is the Groundpin. The second pin is the VCCwhich we connect the 5 volts pin on the Arduino Board. Next is the Vo pin on which we can attach a potentiometer for controlling the contrast of the display.

Next, The RSpin or register select pin is used for selecting whether we will send commands or data to the LCD. For example if the RS pin is set on low state or zero volts, then we are sending commands to the LCD like: set the cursor to a specific location, clear the display, turn off the display and so on. And when RS pin is set on High state or 5 volts we are sending data or characters to the LCD.

Next comes the R/W pin which selects the mode whether we will read or write to the LCD. Here the write mode is obvious and it is used for writing or sending commands and data to the LCD. The read mode is used by the LCD itself when executing the program which we don’t have a need to discuss about it in this tutorial.

Next is the E pin which enables the writing to the registers, or the next 8 data pins from D0 to D7. So through this pins we are sending the 8 bits data when we are writing to the registers or for example if we want to see the latter uppercase A on the display we will send 0100 0001 to the registers according to the ASCII table. The last two pins A and K, or anode and cathode are for the LED back light.

After all we don’t have to worry much about how the LCD works, as the Liquid Crystal Library takes care for almost everything. From the Arduino’s official website you can find and see the functions of the library which enable easy use of the LCD. We can use the Library in 4 or 8 bit mode. In this tutorial we will use it in 4 bit mode, or we will just use 4 of the 8 data pins.

We will use just 6 digital input pins from the Arduino Board. The LCD’s registers from D4 to D7 will be connected to Arduino’s digital pins from 4 to 7. The Enable pin will be connected to pin number 2 and the RS pin will be connected to pin number 1. The R/W pin will be connected to Ground and theVo pin will be connected to the potentiometer middle pin.

We can adjust the contrast of the LCD by adjusting the voltage input at the Vo pin. We are using a potentiometer because in that way we can easily fine tune the contrast, by adjusting input voltage from 0 to 5V.

Yes, in case we don’t have a potentiometer, we can still adjust the LCD contrast by using a voltage divider made out of two resistors. Using the voltage divider we need to set the voltage value between 0 and 5V in order to get a good contrast on the display. I found that voltage of around 1V worked worked great for my LCD. I used 1K and 220 ohm resistor to get a good contrast.

There’s also another way of adjusting the LCD contrast, and that’s by supplying a PWM signal from the Arduino to the Vo pin of the LCD. We can connect the Vo pin to any Arduino PWM capable pin, and in the setup section, we can use the following line of code:

It will generate PWM signal at pin D11, with value of 100 out of 255, which translated into voltage from 0 to 5V, it will be around 2V input at the Vo LCD pin.

First thing we need to do is it insert the Liquid Crystal Library. We can do that like this: Sketch > Include Library > Liquid Crystal. Then we have to create an LC object. The parameters of this object should be the numbers of the Digital Input pins of the Arduino Board respectively to the LCD’s pins as follow: (RS, Enable, D4, D5, D6, D7). In the setup we have to initialize the interface to the LCD and specify the dimensions of the display using the begin()function.

The cursor() function is used for displaying underscore cursor and the noCursor() function for turning off. Using the clear() function we can clear the LCD screen.

In case we have a text with length greater than 16 characters, we can scroll the text using the scrollDisplayLeft() orscrollDisplayRight() function from the LiquidCrystal library.

We can choose whether the text will scroll left or right, using the scrollDisplayLeft() orscrollDisplayRight() functions. With the delay() function we can set the scrolling speed.

So, we have covered pretty much everything we need to know about using an LCD with Arduino. These LCD Character displays are really handy for displaying information for many electronics project. In the examples above I used 16×2 LCD, but the same working principle applies for any other size of these character displays.

24 pin lcd display pinout free sample

Newhaven 24x2 character Liquid Crystal Display shows characters with light pixels on a black background when powered on. This transmissive LCD Display requires a backlight for visibility while offering a wide operating temperature range from -20 to 70 degrees Celsius. This NHD-0224WH-ATDI-JT# display has an optimal view of 6:00 and comes with english and japanese standard font. This display operates at 5V supply voltage and is RoHS compliant.

Adjust the length, position, and pinout of your cables or add additional connectors. Get a cable solution that’s precisely designed to make your connections streamlined and secure.

Easily modify any connectors on your display to meet your application’s requirements. Our engineers are able to perform soldering for pin headers, boxed headers, right angle headers, and any other connectors your display may require.

Choose from a wide selection of interface options or talk to our experts to select the best one for your project. We can incorporate HDMI, USB, SPI, VGA and more into your display to achieve your design goals.

Choose from a wide selection of changes including shape, size, pinout, and component layout of your PCB to make it a perfect fit for your application.

24 pin lcd display pinout free sample

Pins20 pins for external connectors on desktops, notebooks, graphics cards, monitors, etc. and 30/20 pins for internal connections between graphics engines and built-in flat panels.

This is the pinout for source-side connector, the sink-side connector pinout will have lanes 0–3 reversed in order; i.e., lane 3 will be on pin 1(n) and 3(p) while lane 0 will be on pin 10(n) and 12(p).

DisplayPort (DP) is a digital display interface developed by a consortium of PC and chip manufacturers and standardized by the Video Electronics Standards Association (VESA). It is primarily used to connect a video source to a display device such as a computer monitor. It can also carry audio, USB, and other forms of data.

DisplayPort was designed to replace VGA, FPD-Link, and Digital Visual Interface (DVI). It is backward compatible with other interfaces, such as HDMI and DVI, through the use of either active or passive adapters.

It is the first display interface to rely on packetized data transmission, a form of digital communication found in technologies such as Ethernet, USB, and PCI Express. It permits the use of internal and external display connections. Unlike legacy standards that transmit a clock signal with each output, its protocol is based on small data packets known as micro packets, which can embed the clock signal in the data stream, allowing higher resolution using fewer pins.

DisplayPort can be used to transmit audio and video simultaneously, although each can be transmitted without the other. The video signal path can range from six to sixteen bits per color channel, and the audio path can have up to eight channels of 24-bit, 192kHz uncompressed PCM audio.EDID, MCCS, and DPMS standards. The interface is also capable of carrying bidirectional USB signals.

The interface uses an LVDS signal protocol that is not compatible with DVI or HDMI. However, dual-mode DisplayPort ports are designed to transmit a single-link DVI or HDMI protocol (TMDS) across the interface through the use of an external passive adapter, enabling compatibility mode and converting the signal from 3.3 to 5 volts. For analog VGA/YPbPr and dual-link DVI, a powered active adapter is required for compatibility and does not rely on dual mode. Active VGA adapters are powered directly by the DisplayPort connector, while active dual-link DVI adapters typically rely on an external power source such as USB.

DisplayPort 1.0–1.1a allow a maximum bandwidth of 10.8Gbit/s (8.64Gbit/s data rate) over a standard 4-lane main link. DisplayPort cables up to 2 meters in length are required to support the full 10.8Gbit/s bandwidth.fiber optic, allowing a much longer reach between source and display without signal degradation,HDCP in addition to DisplayPort Content Protection (DPCP). The DisplayPort1.1a standard can be downloaded for free from the VESA website.

DisplayPort version 1.2 was introduced on 7 January 2010.Gbit/s in High Bit Rate 2 (HBR2) mode, which allows increased resolutions, higher refresh rates, and greater color depth, such as 3840 × 2160 at 60Hz 10bpc RGB. Other improvements include multiple independent video streams (daisy-chain connection with multiple monitors) called Multi-Stream Transport, facilities for stereoscopic 3D, increased AUX channel bandwidth (from 1Mbit/s to 720Mbit/s), more color spaces including xvYCC, scRGB, and Adobe RGB 1998, and Global Time Code (GTC) for sub 1μs audio/video synchronisation. Also Apple Inc."s Mini DisplayPort connector, which is much smaller and designed for laptop computers and other small devices, is compatible with the new standard.

DisplayPort version 1.2a was released in January 2013Adaptive Sync.AMD"s CES 2014 on a Toshiba Satellite laptop by making use of the Panel-Self-Refresh (PSR) feature from the Embedded DisplayPort standard,

DisplayPort version 1.3 was approved on 15 September 2014.Gbit/s with the new HBR3 mode featuring 8.1Gbit/s per lane (up from 5.4Gbit/s with HBR2 in version 1.2), for a total data throughput of 25.92Gbit/s after factoring in 8b/10b encoding overhead. This bandwidth is enough for a 4K UHD display (3840 × 2160) at 120Hz with 24bit/px RGB color, a 5K display (5120 × 2880) at 60Hz with 30bit/px RGB color, or an 8K UHD display (7680 × 4320) at 30Hz with 24bit/px RGB color. Using Multi-Stream Transport (MST), a DisplayPort port can drive two 4K UHD (3840 × 2160) displays at 60Hz, or up to four WQXGA (2560 × 1600) displays at 60Hz with 24bit/px RGB color. The new standard includes mandatory Dual-mode for DVI and HDMI adapters, implementing the HDMI2.0 standard and HDCP2.2 content protection.Thunderbolt 3 connection standard was originally to include DisplayPort1.3 capability, but the final release ended up with only version 1.2. The VESA"s Adaptive Sync feature in DisplayPort version 1.3 remains an optional part of the specification.

DisplayPort version 1.4 was published 1 March 2016.Gbit/s) as introduced in version 1.3 still remains as the highest available mode. DisplayPort1.4 adds support for Display Stream Compression 1.2 (DSC), Forward Error Correction, HDR10 metadata defined in CTA-861.3, including static and dynamic metadata and the Rec. 2020 color space, for HDMI interoperability,

DSC is a compression algorithm that reduces the size of the data stream by up to a 3:1 ratio.ISO 29170 standard for "visually lossless" compression in most images, which cannot be distinguished from uncompressed video.1.4 can support 8K UHD (7680 × 4320) at 60Hz or 4K UHD (3840 × 2160) at 120Hz with 30bit/px RGB color and HDR. 4K at 60Hz 30bit/px RGB/HDR can be achieved without the need for DSC. On displays which do not support DSC, the maximum limits are unchanged from DisplayPort1.3 (4K 120Hz, 5K 60Hz, 8K 30Hz).

On 26 June 2019, VESA formally released the DisplayPort 2.0 standard. VESA stated that version 2.0 is the first major update to the DisplayPort standard since March 2016, and provides up to a ≈3× improvement in data rate (from 25.92 to 77.37Gbit/s) compared to the previous version of DisplayPort (1.4a), as well as new capabilities to address the future performance requirements of traditional displays. These include beyond 8K resolutions, higher refresh rates and high dynamic range (HDR) support at higher resolutions, improved support for multiple display configurations, as well as improved user experience with augmented/virtual reality (AR/VR) displays, including support for 4K-and-beyond VR resolutions.

According to a roadmap published by VESA in September 2016, a new version of DisplayPort was intended to be launched in "early 2017". It would have improved the link rate from 8.1 to 10.0Gbit/s, a 23% increase.Gbit/s to 40.0Gbit/s. However, no new version was released in 2017, likely delayed to make further improvements after the HDMI Forum announced in January 2017 that their next standard (HDMI2.1) would offer up to 48Gbit/s of bandwidth. According to a press release on 3 January 2018, "VESA is also currently engaged with its members in the development of the next DisplayPort standard generation, with plans to increase the data rate enabled by DisplayPort by two-fold and beyond. VESA plans to publish this update within the next 18 months."Hz without compression and was expected to be released in the first half of 2019.

With the increased bandwidth enabled by DisplayPort 2.0, VESA offers a high degree of versatility and configurations for higher display resolutions and refresh rates. In addition to the above-mentioned 8K resolution at 60Hz with HDR support, UHBR20 through USB-C as DisplayPort Alt Mode enables a variety of high-performance configurations:

VESA announced version 2.1 of the DisplayPort standard on 17 October 2022.Gbit/s) and UHBR20 (80Gbit/s) speeds introduced in version 2.0. Additionally, it revises some of the electrical requirements for DisplayPort devices in order to improve integration with USB4. In VESA"s words:

DisplayPort 2.1 has tightened its alignment with the USB Type-C specification as well as the USB4 PHY specification to facilitate a common PHY servicing both DisplayPort and USB4. In addition, DisplayPort 2.1 has added a new DisplayPort bandwidth management feature to enable DisplayPort tunneling to coexist with other I/O data traffic more efficiently over the USB4 link.

While the total bandwidth represents the number of physical bits transmitted across the interface, not all of the bits represent video data. Some of the transmitted bits are used for encoding purposes, so the rate at which video data can be transmitted across the DisplayPort interface is only a portion of the total bandwidth.

The DisplayPort main link is used for transmission of video and audio. The main link consists of a number of unidirectional serial data channels which operate concurrently, called lanes. A standard DisplayPort connection has 4 lanes, though some applications of DisplayPort implement more, such as the Thunderbolt 3 interface which implements up to 8 lanes of DisplayPort.: 4

In a standard DisplayPort connection, each lane has a dedicated set of twisted-pair wires, and transmits data across it using differential signaling. This is a self-clocking system, so no dedicated clock signal channel is necessary.: §1.7.1 Unlike DVI and HDMI, which vary their transmission speed to the exact rate required for the specific video format, DisplayPort only operates at a few specific speeds; any excess bits in the transmission are filled with "stuffing symbols".: §2.2.1.4

In DisplayPort versions 1.0–1.4a, the data is encoded using ANSI 8b/10b encoding prior to transmission. With this scheme, only 8 out of every 10 transmitted bits represent data; the extra bits are used for DC balancing (ensuring a roughly equal number of 1s and 0s). As a result, the rate at which data can be transmitted is only 80% of the physical bitrate. The transmission speeds are also sometimes expressed in terms of the "Link Symbol Rate", which is the rate at which these 8b/10b-encoded symbols are transmitted (i.e. the rate at which groups of 10 bits are transmitted, 8 of which represent data). The following transmission modes are defined in version 1.0–1.4a:

DisplayPort 2.0 uses 128b/132b encoding; each group of 132 transmitted bits represents 128 bits of data. This scheme has an efficiency of 96.96%.: §3.5.2.18 The following transmission modes are added in DP 2.0:

The transmission mode used by the DisplayPort main link is negotiated by the source and sink device when a connection is made, through a process called Link Training. This process determines the maximum possible speed of the connection. If the quality of the DisplayPort cable is insufficient to reliably handle HBR2 speeds for example, the DisplayPort devices will detect this and switch down to a lower mode to maintain a stable connection.: §2.1.1 The link can be re-negotiated at any time if a loss of synchronization is detected.: §1.7.3

The DisplayPort AUX channel is a half-duplex (bidirectional) data channel used for miscellaneous additional data beyond video and audio, such as EDID (I2C) or CEC commands.: §2.4 This bidirectional data channel is required, since the video lane signals are unidirectional from source to display. AUX signals are transmitted across a dedicated set of twisted-pair wires. DisplayPort1.0 specified Manchester encoding with a 2Mbaud signal rate (1Mbit/s data rate).: §3.4 Version 1.2 of the DisplayPort standard introduced a second transmission mode called FAUX (Fast AUX), which operated at 720Mbaud with 8b/10b encoding (576Mbit/s data rate),: §3.4 but it was deprecated in version 1.3.

All features of DisplayPort will function across any DisplayPort cable. DisplayPort does not have multiple cable designs; all DP cables have the same basic layout and wiring, and will support any feature including audio, daisy-chaining, G-Sync/FreeSync, HDR, and DSC.

DisplayPort cables differ in their transmission speed support. DisplayPort specifies seven different transmission modes (RBR, HBR, HBR2, HBR3, UHBR10, UHBR13.5, and UHBR20) which support progressively higher bandwidths. Not all DisplayPort cables are capable of all seven transmission modes. VESA offers certifications for various levels of bandwidth. These certifications are optional, and not all DisplayPort cables are certified by VESA.

Cables with limited transmission speed are still compatible with all DisplayPort devices, but may place limits on the maximum resolution or refresh rate available.

DisplayPort cables are not classified by "version". Although cables are commonly labeled with version numbers, with HBR2 cables advertised as "DisplayPort1.2 cables" for example, this notation is not permitted by VESA.1.4 display requires a "DisplayPort1.4 cable", or that features introduced in version 1.4 such as HDR or DSC will not function with older "DP1.2 cables". DisplayPort cables are classified only by their bandwidth certification level (RBR, HBR, HBR2, HBR3, etc.), if they have been certified at all.

Not all DisplayPort cables are capable of functioning at the highest levels of bandwidth. Cables may be submitted to VESA for an optional certification at various bandwidth levels. VESA offers four levels of cable certification: Standard, DP8K, DP40, and DP80.: §4.1 These certify DisplayPort cables for proper operation at the following speeds:

In April 2013, VESA published an article stating that the DisplayPort cable certification did not have distinct tiers for HBR and HBR2 bandwidth, and that any certified standard DisplayPort cable—including those certified under DisplayPort1.1—would be able to handle the 21.6Gbit/s bandwidth of HBR2 that was introduced with the DisplayPort 1.2 standard.1.2 standard defines only a single specification for High Bit Rate cable assemblies, which is used for both HBR and HBR2 speeds, although the DP cable certification process is governed by the DisplayPort PHY Compliance Test Standard (CTS) and not the DisplayPort standard itself.: §5.7.1, §4.1

In June 2019, with the release of version 2.0 of the DisplayPort Standard, VESA announced that the DP8K certification was also sufficient for the new UHBR10 transmission mode. No new certifications were announced for the UHBR13.5 and UHBR20 modes. VESA is encouraging displays to use tethered cables for these speeds, rather than releasing standalone cables onto the market.

It should also be noted that the use of Display Stream Compression (DSC), introduced in DisplayPort1.4, greatly reduces the bandwidth requirements for the cable. Formats which would normally be beyond the limits of DisplayPort1.4, such as 4K (3840×2160) at 144Hz 8bpc RGB/Y′CBCR 4:4:4 (31.4Gbit/s data rate when uncompressed), can only be implemented by using DSC. This would reduce the physical bandwidth requirements by 2–3×, placing it well within the capabilities of an HBR2-rated cable.

This exemplifies why DisplayPort cables are not classified by "version"; although DSC was introduced in version 1.4, this does not mean it needs a so-called "DP1.4 cable" (an HBR3-rated cable) to function. HBR3 cables are only required for applications which exceed HBR2-level bandwidth, not simply any application involving DisplayPort1.4. If DSC is used to reduce the bandwidth requirements to HBR2 levels, then an HBR2-rated cable will be sufficient.

The DisplayPort standard does not specify any maximum length for cables, though the DisplayPort 1.2 standard does set a minimum requirement that all cables up to 2 meters in length must support HBR2 speeds (21.6Gbit/s), and all cables of any length must support RBR speeds (6.48Gbit/s).: §5.7.1, §4.1 Cables longer than 2 meters may or may not support HBR/HBR2 speeds, and cables of any length may or may not support HBR3 speeds or above.

DisplayPort cables and ports may have either a "full-size" connector or a "mini" connector. These connectors differ only in physical shape—the capabilities of DisplayPort are the same regardless of which connector is used. Using a Mini DisplayPort connector does not affect performance or feature support of the connection.

The standard DisplayPort connector (now referred to as a "full-size" connector to distinguish it from the mini connector): §4.1.1 was the sole connector type introduced in DisplayPort1.0. It is a 20-pin single-orientation connector with a friction lock and an optional mechanical latch. The standard DisplayPort receptacle has dimensions of 16.10mm (width) × 4.76mm (height) × 8.88mm (depth).: §4.2.1.7, p201

12 pins for the main link – the main link consists of four shielded twisted pairs. Each pair requires 3 pins; one for each of the two wires, and a third for the shield.: §4.1.2, p183 (pins 1–12)

The Mini DisplayPort connector was developed by Apple for use in their computer products. It was first announced in October 2008 for use in the new MacBooks and Cinema Display. In 2009, VESA adopted it as an official standard, and in 2010 the specification was merged into the main DisplayPort standard with the release of DisplayPort1.2. Apple freely licenses the specification to VESA.

The Mini DisplayPort (mDP) connector is a 20-pin single-orientation connector with a friction lock. Unlike the full-size connector, it does not have an option for a mechanical latch. The mDP receptacle has dimensions of 7.50mm (width) × 4.60mm (height) × 4.99mm (depth).: §2.1.3.6, pp27–31 The mDP pin assignments are the same as the full-size DisplayPort connector.: §2.1.3

Pin 20 on the DisplayPort connector, called DP_PWR, provides 3.3V (±10%) DC power at up to 500mA (minimum power delivery of 1.5W).: §3.2 This power is available from all DisplayPort receptacles, on both source and display devices. DP_PWR is intended to provide power for adapters, amplified cables, and similar devices, so that a separate power cable is not necessary.

Standard DisplayPort cable connections do not use the DP_PWR pin. Connecting the DP_PWR pins of two devices directly together through a cable can create a short circuit which can potentially damage devices, since the DP_PWR pins on two devices are unlikely to have exactly the same voltage (especially with a ±10% tolerance).1.1 and later standards specify that passive DisplayPort-to-DisplayPort cables must leave pin 20 unconnected.: §3.2.2

However, in 2013 VESA announced that after investigating reports of malfunctioning DisplayPort devices, it had discovered that a large number of non-certified vendors were manufacturing their DisplayPort cables with the DP_PWR pin connected:

Recently VESA has experienced quite a few complaints regarding troublesome DisplayPort operation that ended up being caused by improperly made DisplayPort cables. These "bad" DisplayPort cables are generally limited to non-DisplayPort certified cables, or off-brand cables. To further investigate this trend in the DisplayPort cable market, VESA purchased a number of non-certified, off-brand cables and found that an alarmingly high number of these were configured improperly and would likely not support all system configurations. None of these cables would have passed the DisplayPort certification test, moreover some of these cables could potentially damage a PC, laptop, or monitor.

The stipulation that the DP_PWR wire be omitted from standard DisplayPort cables was not present in the DisplayPort1.0 standard. However, DisplayPort products (and cables) did not begin to appear on the market until 2008, long after version 1.0 had been replaced by version 1.1. The DisplayPort1.0 standard was never implemented in commercial products.

The tables below describe the refresh frequencies that can be achieved with each transmission mode. In general, maximum refresh frequency is determined by the transmission mode (RBR, HBR, HBR2, HBR3, UHBR 10, UHBR 13.5, or UHBR 20). These transmission modes were introduced to the DisplayPort standard as follows:

However, transmission mode support is not necessarily dictated by a device"s claimed "DisplayPort version number". For example, older versions of the DisplayPort Marketing Guidelines allowed a device to be labeled as "DisplayPort 1.2" if it supported the MST feature, even if it didn"t support the HBR2 transmission mode.: 9 Newer versions of the guidelines have removed this clause, and currently (as of the June 2018 revision) there are no guidelines on the usage of DisplayPort version numbers in products.

In addition, individual devices may have their own arbitrary limitations beyond transmission speed. For example, NVIDIA Kepler GK104 GPUs (such as the GeForce GTX 680 and 770) support "DisplayPort 1.2" with the HBR2 transmission mode, but are limited to 540Mpx/s, only 3⁄4 of the maximum possible with HBR2.

To support a particular format, the source and display devices must both support the required transmission mode, and the DisplayPort cable must also be capable of handling the required bandwidth of that transmission mode. (See: Cables and connectors)

Display manufacturers may also use non-standard blanking intervals rather than CVT-RB v2 to achieve even higher frequencies when bandwidth is a constraint. The refresh frequencies in the below table do not represent the absolute maximum limit of each interface, but rather an estimate based on a modern standardized timing formula. The minimum blanking intervals (and therefore the exact maximum frequency that can be achieved) will depend on the display and how many secondary data packets it requires, and therefore will differ from model to model.

Color depth of 8bpc (24bit/px or 16.7 million colors) is assumed for all formats in these tables. This is the standard color depth used on most computer displays. Note that some operating systems refer to this as "32-bit" color depth—this is the same as 24-bit color depth. The 8 extra bits are for alpha channel information, which is only present in software. At the transmission stage, this information has already been incorporated into the primary color channels, so the actual video data transmitted across the cable only contains 24 bits per pixel.

Only a portion of DisplayPort"s bandwidth is used for carrying video data. DisplayPort versions 1.0–1.4a use 8b/10b encoding, which means that 80% of the bits transmitted across the link represent data, and the other 20% are used for encoding purposes. The maximum bandwidth of RBR, HBR, HBR2, and HBR3 (6.48, 10.8, 21.6, and 32.4Gbit/s) therefore transport video data at rates of 5.184, 8.64, 17.28, and 25.92Gbit/s. DisplayPort version 2.0 uses 128b/132b encoding, and therefore the maximum bandwidths of UHBR 10, 13.5, and 20 (40, 54, and 80Gbit/s) transport data at rates of 38.69, 52.22, and 77.37Gbit/s.

These data rates are for uncompressed 8bpc (24bit/px) color depth with RGB or YCBCR 4:4:4 color format and CVT-R2 timing. Uncompressed data rate for RGB video in bits per second is calculated as bits per pixel × pixels per frame × frames per second. Pixels per frame includes blanking intervals as defined by CVT-R2.

Only a portion of DisplayPort"s bandwidth is used for carrying video data. DisplayPort versions 1.0–1.4a use 8b/10b encoding, which means that 80% of the bits transmitted across the link represent data, and the other 20% are used for encoding purposes. The maximum bandwidth of RBR, HBR, HBR2, and HBR3 (6.48, 10.8, 21.6, and 32.4Gbit/s) therefore transport video data at rates of 5.184, 8.64, 17.28, and 25.92Gbit/s. DisplayPort version 2.0 uses 128b/132b encoding, and therefore the maximum bandwidths of UHBR 10, 13.5, and 20 (40, 54, and 80Gbit/s) transport data at rates of 38.69, 52.22, and 77.37Gbit/s.

These data rates are for uncompressed 8bpc (24bit/px) color depth with RGB or YCBCR 4:4:4 color format and CVT-R2 timing. Uncompressed data rate for RGB video in bits per second is calculated as bits per pixel × pixels per frame × frames per second. Pixels per frame includes blanking intervals as defined by CVT-R2.

HDR extensions were defined in version 1.4 of the DisplayPort standard. Some displays support these HDR extensions, but may only implement HBR2 transmission mode if the extra bandwidth of HBR3 is unnecessary (for example, on 4K 60Hz HDR displays). Since there is no definition of what constitutes a "DisplayPort 1.4" device, some manufacturers may choose to label these as "DP 1.2" devices despite their support for DP 1.4 HDR extensions.

Only a portion of DisplayPort"s bandwidth is used for carrying video data. DisplayPort versions 1.0–1.4a use 8b/10b encoding, which means that 80% of the bits transmitted across the link represent data, and the other 20% are used for encoding purposes. The maximum bandwidth of RBR, HBR, HBR2, and HBR3 (6.48, 10.8, 21.6, and 32.4Gbit/s) therefore transport video data at rates of 5.184, 8.64, 17.28, and 25.92Gbit/s. DisplayPort version 2.0 uses 128b/132b encoding, and therefore the maximum bandwidths of UHBR 10, 13.5, and 20 (40, 54, and 80Gbit/s) transport data at rates of 38.69, 52.22, and 77.37Gbit/s.

Only a portion of DisplayPort"s bandwidth is used for carrying video data. DisplayPort versions 1.0–1.4a use 8b/10b encoding, which means that 80% of the bits transmitted across the link represent data, and the other 20% are used for encoding purposes. The maximum bandwidth of RBR, HBR, HBR2, and HBR3 (6.48, 10.8, 21.6, and 32.4Gbit/s) therefore transport video data at rates of 5.184, 8.64, 17.28, and 25.92Gbit/s. DisplayPort version 2.0 uses 128b/132b encoding, and therefore the maximum bandwidths of UHBR 10, 13.5, and 20 (40, 54, and 80Gbit/s) transport data at rates of 38.69, 52.22, and 77.37Gbit/s.

DisplayPort Dual-Mode (DP++), also called Dual-Mode DisplayPort, is a standard which allows DisplayPort sources to use simple passive adapters to connect to HDMI or DVI displays. Dual-mode is an optional feature, so not all DisplayPort sources necessarily support DVI/HDMI passive adapters, though in practice nearly all devices do. Officially, the "DP++" logo should be used to indicate a DP port that supports dual-mode, but most modern devices do not use the logo.

Devices which implement dual-mode will detect that a DVI or HDMI adapter is attached, and send DVI/HDMI TMDS signals instead of DisplayPort signals. The original DisplayPort Dual-Mode standard (version 1.0), used in DisplayPort1.1 devices, only supported TMDS clock speeds of up to 165MHz (4.95Gbit/s bandwidth). This is equivalent to HDMI1.2, and is sufficient for up to 1920 × 1200 at 60Hz.

In 2013, VESA released the Dual-Mode 1.1 standard, which added support for up to a 300MHz TMDS clock (9.00Gbit/s bandwidth), and is used in newer DisplayPort1.2 devices. This is slightly less than the 340MHz maximum of HDMI1.4, and is sufficient for up to 1920 × 1080 at 120Hz, 2560 × 1440 at 60Hz, or 3840 × 2160 at 30Hz. Older adapters, which were only capable of the 165MHz speed, were retroactively termed "Type1" adapters, with the new 300MHz adapters being called "Type2".

A DisplayPort to DVI adapter after removing its enclosure. The chip on the board converts the voltage levels generated by the dual-mode DisplayPort device to be compatible with a DVI monitor.

Limited adapter speed – Although the pinout and digital signal values transmitted by the DP port are identical to a native DVI/HDMI source, the signals are transmitted at DisplayPort"s native voltage (3.3V) instead of the 5V used by DVI and HDMI. As a result, dual-mode adapters must contain a level-shifter circuit which changes the voltage. The presence of this circuit places a limit on how quickly the adapter can operate, and therefore newer adapters are required for each higher speed added to the standard.

Unidirectional – Although the dual-mode standard specifies a method for DisplayPort sources to output DVI/HDMI signals using simple passive adapters, there is no counterpart standard to give DisplayPort displays the ability to receive DVI/HDMI input signals through passive adapters. As a result, DisplayPort displays can only receive native DisplayPort signals; any DVI or HDMI input signals must be converted to the DisplayPort format with an active conversion device. DVI and HDMI sources cannot be connected to DisplayPort displays using passive adapters.

Single-link DVI only – Since DisplayPort dual-mode operates by using the pins of the DisplayPort connector to send DVI/HDMI signals, the 20-pin DisplayPort connector can only produce a single-link DVI signal (which uses 19 pins). A dual-link DVI signal uses 25 pins, and is therefore impossible to transmit natively from a DisplayPort connector through a passive adapter. Dual-link DVI signals can only be produced by converting from native DisplayPort output signals with an active conversion device.

Unavailable on USB-C – The DisplayPort Alternate Mode specification for sending DisplayPort signals over a USB-C cable does not include support for the dual-mode protocol. As a result, DP-to-DVI and DP-to-HDMI passive adapters do not function when chained from a USB-C to DP adapter.

Multi-Stream Transport is a feature first introduced in the DisplayPort1.2 standard. It allows multiple independent displays to be driven from a single DP port on the source devices by multiplexing several video streams into a single stream and sending it to a branch device, which demultiplexes the signal into the original streams. Branch devices are commonly found in the form of an MST hub, which plugs into a single DP input port and provides multiple outputs, but it can also be implemented on a display internally to provide a DP output port for daisy-chaining, effectively embedding a 2-port MST hub inside the display.: Fig. 2-59: 20 but the combined data rate requirements of all the displays cannot exceed the limits of a single DP port (17.28Gbit/s for a DP1.2 port, or 25.92Gbit/s for a DP 1.3/1.4 port). In addition, the maximum number of links between the source and any device (i.e. the maximum length of a daisy-chain) is 7,: §2.5.2 and the maximum number of physical output ports on each branch device (such as a hub) is 7.: §2.5.1 With the release of MST, standard single-display operation has been retroactively named "SST" mode (Single-Stream Transport).

Daisy-chaining is a feature that must be specifically supported by each intermediary display; not all DisplayPort1.2 devices support it. Daisy-chaining requires a dedicated DisplayPort output port on the display. Standard DisplayPort input ports found on most displays cannot be used as a daisy-chain output. Only the last display in the daisy-chain does not need to support the feature specifically or have a DP output port. DisplayPort1.1 displays can also be connected to MST hubs, and can be part of a DisplayPort daisy-chain if it is the last display in the chain.: §2.5.1

The host system"s software also needs to support MST for hubs or daisy-chains to work. While Microsoft Windows environments have full support for it, Apple operating systems currently do not support MST hubs or DisplayPort daisy-chaining as of macOS 10.15 ("Catalina").

MST is supported by USB Type-C DisplayPort Alternate Mode, so standard DisplayPort daisy-chains and MST hubs do function from Type-C sources with a simple Type-C to DisplayPort adapter.

DisplayPort1.0 includes optional DPCP (DisplayPort Content Protection) from Philips, which uses 128-bit AES encryption. It also features full authentication and session key establishment. Each encryption session is independent, and it has an independent revocation system. This portion of the standard is licensed separately. It also adds the ability to verify the proximity of the receiver and transmitter, a technique intended to ensure users are not bypassing the content protection system to send data out to distant, unauthorized users.: §6

DisplayPort1.1 added optional implementation of industry-standard 56-bit HDCP (High-bandwidth Digital Content Protection) revision 1.3, which requires separate licensing from the Digital Content Protection LLC.: §1.2.6

VESA, the creators of the DisplayPort standard, state that the standard is royalty-free to implement. However, in March 2015, MPEG LA issued a press release stating that a royalty rate of $0.20 per unit applies to DisplayPort products manufactured or sold in countries that are covered by one or more of the patents in the MPEG LA license pool, which includes patents from Hitachi Maxell, Philips, Lattice Semiconductor, Rambus, and Sony.

MPEG LA is making claims that DisplayPort implementation requires a license and a royalty payment. It is important to note that these are only CLAIMS. Whether these CLAIMS are relevant will likely be decided in a US court.

In December 2010, several computer vendors and display makers including Intel, AMD, Dell, Lenovo, Samsung and LG announced they would begin phasing out FPD-Link, VGA, and DVI-I over the next few years, replacing them with DisplayPort and HDMI.

High-resolution displays and multiple displays with a single connection, via a hub or daisy-chainingHBR2 mode with 17.28Gbit/s of effective video bandwidth allows four simultaneous 1080p60 displays (CEA-861 timings), two 2560 × 1600 × 30 bit @ 120Hz (CVT-R timings), or 4K UHD @ 60Hz

HBR3 mode with 25.92Gbit/s of effective video bandwidth, using CVT-R2 timings, allows eight simultaneous 1080p displays (1920 × 1080) @ 60Hz, stereoscopic 4K UHD (3840 × 2160) @ 120Hz, or 5120 × 2880 @ 60Hz each using 24 bit RGB, and up to 8K UHD (7680 × 4320) @ 60Hz using 4:2:0 subsampling

Although DisplayPort has much of the same functionality as HDMI, it is a complementary connection used in different scenarios.dual-mode DisplayPort port can emit an HDMI signal via a passive adapter.

DisplayPort 1.3 raises that to 32.4Gbit/s (25.92Gbit/s with overhead removed), and HDMI 2.1 raises that up to 48Gbit/s (42.67Gbit/s with overhead removed), adding an additional TMDS link in place of clock lane. DisplayPort also has the ability to share this bandwidth with multiple streams of audio and video to separate devices.

DisplayPort has historically had higher bandwidth than the HDMI standard available at the same time. The only exception is from HDMI 2.1 (2017) having higher transmission bandwidth @48Gbit/s than DisplayPort 1.3 (2014) @32.4Gbit/s. DisplayPort 2.0 (2019) retook transmission bandwidth superiority @80.0Gbit/s.

DisplayPort in native mode lacks some HDMI features such as Consumer Electronics Control (CEC) commands. The CEC bus allows linking multiple sources with a single display and controlling any of these devices from any remote.CEC commands over the AUX channelmultiple sources to a single display as is typical for a TV screen. The other way round, Multi-Stream Transport allows connecting multiple displays to a single computer source. This reflects the facts that HDMI originated from consumer electronics companies whereas DisplayPort is owned by VESA which started as an organization for computer standards.

Both HDMI and DisplayPort have published specification for transmitting their signal over the USB-C connector. For more details, see USB-C § Alternate Mode partner specifications and List of devices with video output over USB-C.

Mini DisplayPort (mDP) is a standard announced by Apple in the fourth quarter of 2008. Shortly after announcing Mini DisplayPort, Apple announced that it would license the connector technology with no fee. The following year, in early 2009, VESA announced that Mini DisplayPort would be included in the upcoming DisplayPort 1.2 specification.

On 24 February 2011, Apple and Intel announced Thunderbolt, a successor to Mini DisplayPort which adds support for PCI Express data connections while maintaining backwards compatibility with Mini DisplayPort based peripherals.

Micro DisplayPort would have targeted systems that need ultra-compact connectors, such as phones, tablets and ultra-portable notebook computers. This standard would have been physically smaller than the currently available Mini DisplayPort connectors. The standard was expected to be released by Q2 2014.

Direct Drive Monitor (DDM) 1.0 standard was approved in December 2008. It allows for controller-less monitors where the display panel is directly driven by the DisplayPort signal, although the available resolutions and color depth are limited to two-lane operation.

Display Stream Compression (DSC) is a VESA-developed video compression algorithm designed to enable increased display resolutions and frame rates over existing physical interfaces, and make devices smaller and lighter, with longer battery life.delta PCM coding and YCGCO-R color space.lossy, it meets the ISO/IEC 29170 standard for "visually lossless" compression, a form of compression in which "the user cannot tell the difference between a compressed and uncompressed image".: 18 However, the standard allows for images that "exhibit particularly strong artefacts" to be disregarded or excluded from testing, such as engineered test images.: 13, 18 Research of DSC using the ISO/IEC 29170 interleaved protocol, in which an uncompressed reference image is presented side by side with a rapidly alternating sequence of the compressed test image and uncompressed reference image,: 10 and performed with various types of images (such as people, natural and man-made scenery, text, and known challenging imagery) shows that in most images DSC satisfies the standard"s criterion for visually lossless performance, although in some trials participants were able to detect the presence of compression on certain images.

DSC version 1.2 was released on 27 January 2016 and is included in version 1.4 of the DisplayPort standard; DSC version 1.2a was released on 18 January 2017. The update includes native encoding of 4:2:2 and 4:2:0 formats in pixel containers, 14/16 bits per color, and minor modifications to the encoding algorithm.

Embedded DisplayPort (eDP) is a display panel interface standard for portable and embedded devices. It defines the signaling interface between graphics cards and integrated displays. The various revisions of eDP are based on existing DisplayPort standards. However, version numbers between the two standards are not interchangeable. For instance, eDP version 1.4 is based on DisplayPort 1.2, while eDP version 1.4a is based on DisplayPort 1.3. In practice, embedded DisplayPort has displaced LVDS as the predominant panel interface in modern laptops and modern smartphones.

eDP 1.0 was adopted in December 2008.Hz sequential color monitors, and a new display panel control protocol that works through the AUX channel.framebuffer memory in the display panel controller.Version 1.5 was published in October 2021; adds new features and protocols, including enhanced support for Adaptive-Sync, that provide additional power savings and improved gaming and media playback performance.

Internal DisplayPort (iDP) 1.0 was approved in April 2010. The iDP standard defines an internal link between a digital TV system on a chip controller and the display panel"s timing controller. It aims to replace currently used internal FPD-Link lanes with a DisplayPort connection.GHz clock and is nominally rated at 3.24Gbit/s per lane, with up to sixteen lanes in a bank, resulting in a six-fold decrease in wiring requirements over FPD-Link for a 1080p24 signal; other data rates are also possible. iDP was built with simplicity in mind so doesn"t have an AUX channel, content protection, or multiple streams; it does however have frame sequential and line interleaved stereo 3D.

Portable Digital Media Interface (PDMI) is an interconnection between docking stations/display devices and portable media players, which includes 2-lane DisplayPort v1.1a connection. It has been ratified in February 2010 as ANSI/CEA-2017-A.

Wireless DisplayPort (wDP) enables the bandwidth and feature set of DisplayPort 1.2 for cable-free applications operating in the 60GHz radio band. It was announced in November 2010 by WiGig Alliance and VESA as a cooperative effort.

SlimPort, a brand of Analogix products,Mobility DisplayPort, also known as MyDP, which is an industry standard for a mobile audio/video Interface, providing connectivity from mobile devices to external displays and HDTVs. SlimPort implements the transmission of video up to 4K-UltraHD and up to eight channels of audio over the micro-USB connector to an external converter accessory or display device. SlimPort products support seamless connectivity to DisplayPort, HDMI and VGA displays.Google"s Nexus 4 smartphone.LG G series also adopted SlimPort.

DisplayID is designed to replace the E-EDID standard. DisplayID features variable-length structures which encompass all existing EDID extensions as well as new extensions for 3D displays and embedded displays.

The latest version 1.3 (announced on 23 September 2013) adds enhanced support for tiled display topologies; it allows better identification of multiple video streams, and reports bezel size and locations.

DockPort, formerly known as Lightning Bolt, is an extension to DisplayPort to include USB 3.0 data as well as power for charging portable devices from attached external displays. Originally developed by AMD and Texas Instruments, it has been announced as a VESA specification in 2014.

On 22 September 2014, VESA published the DisplayPort Alternate Mode on USB Type-C Connector Standard, a specification on how to send DisplayPort signals over the newly released USB-C connector. One, two or all four of the differential pairs that USB uses for the SuperSpeed bus can be configured dynamically to be used for DisplayPort lanes. In the first two cases, the connector still can carry a full SuperSpeed signal; in the latter case, at least a non-SuperSpeed signal is available. The DisplayPort AUX channel is also supported over the two sideband signals over the same connection; furthermore, USB Power Delivery according to the newly expanded USB-PD 2.0 specification is possible at the same time. This makes the Type-C connector a strict superset of the use-cases envisioned for DockPort, SlimPort, Mini and Micro DisplayPort.

Since its introduction in 2006, DisplayPort has gained popularity within the computer industry and is featured on many graphic cards, displays, and notebook computers. Dell was the first company to introduce a consumer product with a DisplayPort connector, the Dell UltraSharp 3008WFP, which was released in January 2008.AMD and Nvidia released products to support the technology. AMD included support in the Radeon HD 3000 series of graphics cards, while Nvidia first introduced support in the GeForce 9 series starting with the GeForce 9600 GT.

Later the same year, Apple introduced several products featuring a Mini DisplayPort.Radeon HD 5000 Series of graphics cards, which featured the Mini DisplayPort on the Eyefinity versions in the series.

Nvidia revealed the GeForce GTX 1080, the world"s first graphics card with DisplayPort 1.4 support on 6 May 2016.Radeon RX 400 Series will support DisplayPort 1.3 HBR and HDR10, dropping the DVI connector(s) in the reference board design.

In February 2017, VESA and Qualcomm announced that DisplayPort Alt Mode video transport will be integrated into the Snapdragon 835 mobile chipset, which powers smartphones, VR/AR head-mounted displays, IP cameras, tablets and mobile PCs.

Currently, DisplayPort is the most widely implemented alternate mode, and is used to provide video output on devices that do not have standard-size DisplayPort or HDMI ports, such as smartphones, tablets, and laptops. A USB-C multiport adapter converts the device"s native video stream to DisplayPort/HDMI/VGA, allowing it to be displayed on an external display, such as a television set or computer monitor.

24 pin lcd display pinout free sample

Amulet’s smart color display GEMmodules™ are production ready, fully integrated GUI solutions that can significantly reduce time-to-market and initial project resource requirements for embedded product manufacturers. Compatible with GEMstudio Pro™, a complete GUI development environment and simulator,  Amulet GEMmodules can be easily programmed with smartphone-like graphical user interfaces with responsive touch, and can be effortlessly updated and modified.

Amulet’s capacitive 7” GEMmodule (AM070RVS01) is a fully customizable, high-performance, touch screen display module with a 7” WVGA LCD and robust capacitive touch panel. This feature rich solution, including thick protective cover glass and water resistant and glove-enabled touch panel, provides the ideal attributes required in the embedded industrial and medical equipment markets.

Amulet’s resistive 7” GEMstarter-kit (STK-070R) provides everything needed to create and drive a Graphical User Interface, including a 800 x 480 TFT LCD, an integrated touch panel and controller board, stylus, power supply, and USB PC interface cable. The GEMstarter-kit also comes with a free 30-Day Trial of GEMstudio Pro.

Amulet’s resistive 7” GEMstarter-kit (STK-070R) provides everything needed to create and drive a Graphical User Interface, including a 800 x 480 TFT LCD, an integrated touch panel and controller board, stylus, power supply, and USB PC interface cable. The GEMstarter-kit also comes with a free 30-Day Trial of GEMstudio Pro.

Amulet’s capacitive 4.3” GEMstarter-kit (STK-CY-043) provides everything needed to create and drive a Graphical User Interface, including a 480 x 272 TFT LCD, a capacitive touch sensor, removable stands, and USB PC interface cable.The GEMstarter-kit also comes with a free 30-Day Trial of GEMstudio Pro.

Amulet’s capacitive 4.3” GEMstarter-kit (STK-CY-043) provides everything needed to create and drive a Graphical User Interface, including a 480 x 272 TFT LCD, a capacitive touch sensor, removable stands, and USB PC interface cable.The GEMstarter-kit also comes with a free 30-Day Trial of GEMstudio Pro.

Amulet’s resistive 4.3” GEMmodule (MK- 043R) is a fully integrated WQVGA production color display module that supports a variety of embedded control interface applications. Featuring the Amulet GEM Graphical OS Chip™ for color displays, the module supports GIF, JPEG and PNG graphic formats in 24-bit color, plus 8-bit alpha blending found in high-end consumer electronic products.

Amulet’s resistive 4.3” GEMstarter-kit (STK-043R) provides everything needed to create and drive a Graphical User Interface,  including a 480 x 272 TFT LCD, an integrated touch panel and controller board, stylus, and USB PC interface cable.The GEMstarter-kit also comes with a free 30-Day Trial of GEMstudio Pro.

Amulet’s resistive 4.3” GEMstarter-kit (STK-043R) provides everything needed to create and drive a Graphical User Interface,  including a 480 x 272 TFT LCD, an integrated touch panel and controller board, stylus, and USB PC interface cable.The GEMstarter-kit also comes with a free 30-Day Trial of GEMstudio Pro.