lcd display vs oled display in stock
For all the new technologies that have come our way in recent times, it’s worth taking a minute to consider an old battle going on between two display types. Two display types that can be found across monitors, TVs, mobile phones, cameras and pretty much any other device that has a screen.
In one corner is LED (light-emitting diode). It’s the most common type of display on the market, however, it might be unfamiliar because there’s slight labelling confusion with LCD (liquid crystal display).
For display purposes the two are the same, and if you see a TV or smartphone that states it has an ‘LED’ screen, it’s an LCD. The LED part just refers to the lighting source, not the display itself.
In a nutshell, LED LCD screens use a backlight to illuminate their pixels, while OLED’s pixels produce their own light. You might hear OLED’s pixels called ‘self-emissive’, while LCD tech is ‘transmissive’.
The light of an OLED display can be controlled on a pixel-by-pixel basis. This sort of dexterity isn’t possible with an LED LCD – but there are drawbacks to this approach, which we’ll come to later.
In cheaper TVs and LCD-screen phones, LED LCD displays tend to use ‘edge lighting’, where LEDs sit to the side of the display, not behind it. The light from these LEDs is fired through a matrix that feeds it through the red, green and blue pixels and into our eyes.
LED LCD screens can go brighter than OLED. That’s a big deal in the TV world, but even more so for smartphones, which are often used outdoors and in bright sunlight.
Brightness is generally measured as ‘nits’ – roughly the light of a candle per square metre. Brightness is important when viewing content in ambient light or sunlight, but also for high dynamic range video. This applies more to TVs, but phones boast credible video performance, and so it matters in that market too. The higher the level of brightness, the greater the visual impact.
Take an LCD screen into a darkened room and you may notice that parts of a purely black image aren’t black, because you can still see the backlighting (or edge lighting) showing through.
Being able to see unwanted backlighting affects a display’s contrast, which is the difference between its brightest highlights and its darkest shadows.
You’ll often see a contrast ratio quoted in a product’s specification, particularly when it comes to TVs and monitors. This tells you how much brighter a display’s whites are compared to its blacks. A decent LCD screen might have a contrast ratio of 1,000:1, which means the whites are a thousand times brighter than the blacks.
Contrast on an OLED display is far higher. When an OLED screen goes black, its pixels produce no light whatsoever. That means an infinite contrast ratio, although how great it looks will depend on how bright the screen can go. In general, OLED screens are best suited for use in darker rooms, and this is certainly the case where TVs are concerned.
OLED panels enjoy excellent viewing angles, primarily because the technology is so thin, and the pixels are so close to the surface. You can walk around an OLED TV or spread out in different spots in your living room, and you won’t lose out on contrast. For phones, viewing angles are extra important because you don’t tend to hold your hand perfectly parallel to your face.
Viewing angles are generally worse in LCDs, but this varies hugely depending on the display technology used. And there are lots of different kinds of LCD panel.
Thankfully, a lot of LCD devices use IPS panels these days. This stands for ‘in-plane switching’ and it generally provides better colour performance and dramatically improved viewing angles.
IPS is used in most smartphones and tablets, plenty of computer monitors and lots of TVs. It’s important to note that IPS and LED LCD aren’t mutually exclusive; it’s just another bit of jargon to tack on. Beware of the marketing blurb and head straight to the spec sheet.
The latest LCD screens can produce fantastic natural-looking colours. However, as is the case with viewing angles, it depends on the specific technology used.
OLED’s colours have fewer issues with pop and vibrancy, but early OLED TVs and phones had problems reining in colours and keeping them realistic. These days, the situation is better, Panasonic’s flagship OLEDs are used in the grading of Hollywood films.
Where OLED struggles is in colour volume. That is, bright scenes may challenge an OLED panel’s ability to maintain levels of colour saturation. It’s a weakness that LCD-favouring manufacturers enjoy pointing out.
Both have been the subject of further advancements in recent years. For LCD there’s Quantum Dot and Mini LED. The former uses a quantum-dot screen with blue LEDs rather than white LEDs and ‘nanocrystals’ of various sizes to convert light into different colours by altering its wavelength. Several TV manufacturers have jumped onboard Quantum Dot technology, but the most popular has been Samsung’s QLED branded TVs.
Mini LED is another derivation of LED LCD panels, employing smaller-sized LEDs that can emit more light than standard versions, increasing brightness output of the TV. And as they are smaller, more can be fitted into a screen, leading to greater control over brightness and contrast. This type of TV is becoming more popular, though in the UK and Europe it’s still relatively expensive. You can read more about Mini LED and its advantages in our explainer.
OLED, meanwhile, hasn’t stood still either. LG is the biggest manufacturer of large-sized OLED panels and has produced panels branded as evo OLED that are brighter than older versions. It uses a different material for its blue OLED material layer within the panel (deuterium), which can last for longer and can have more electrical current passed through it, increasing the brightness of the screen, and elevating the colour volume (range of colours it can display).
Another development is the eagerly anticipated QD-OLED. This display technology merges Quantum Dot backlights with an OLED panel, increasing the brightness, colour accuracy and volume, while retaining OLED’s perfect blacks, infinite contrast and potentially even wider viewing angles, so viewers can spread out anywhere in a room and see pretty much the same image. Samsung and Sonyare the two companies launching QD-OLED TVs in 2022.
And for smartphones there’s been a move towards AMOLED (Active-Matrix Organic Light Emitting Diode) screens for Android screens, while Apple has moved towards OLED for its smartphones and tried Mini LED with its iPad Pro. Technologies are consistently evolving with Superand Dynamic AMOLED versions available, more performance is being eked out.
While LED LCD has been around for much longer and is cheaper to make, manufacturers are beginning to move away from it, at least in the sense of the ‘standard’ LCD LED displays, opting to explore the likes of Mini LED and Quantum Dot variations.
OLED has gained momentum and become cheaper, with prices dipping well below the £1000 price point. OLED is much better than LED LCD at handling darkness and lighting precision, and offers much wider viewing angles, which is great for when large groups of people are watching TV. Refresh rates and motion processing are also better with OLED though there is the spectre of image retention.
If you’re dealing with a limited budget, whether you’re buying a phone, a monitor, a laptop or a TV, you’ll almost certainly end up with an LCD-based screen. OLED, meanwhile, incurs more of a premium but is getting cheaper, appearing in handheld gaming devices, laptops, some of the best smartphones as well as TVs
Which is better? Even if you eliminate money from the equation, it really comes down to personal taste. Neither OLED nor LCD LED is perfect. Some extol OLED’s skill in handling darkness, and its lighting precision. Others prefer LCD’s ability to go brighter and maintain colours at bright levels.
How do you decide? Stop reading this and go to a shop to check it out for yourself. While a shop floor isn’t the best environment in which to evaluate ultimate picture quality, it will at least provide an opportunity for you to realise your priorities. Whether you choose to side with LCD or OLED, you can take comfort in the fact that both technologies have matured considerably, making this is a safe time to invest.
OLED displays have higher contrast ratios (1 million : 1 static compared with 1,000 : 1 for LCD screens), deeper blacks and lower power consumption compared with LCD displays. They also have greater color accuracy. However, they are more expensive, and blue OLEDs have a shorter lifetime.
OLED displays offer a much better viewing angle. In contrast, viewing angle is limited with LCD displays. And even inside the supported viewing angle, the quality of the picture on an LCD screen is not consistent; it varies in brightness, contrast, saturation and hue by variations in posture of the viewer.
There are no geographical constraints with OLED screens. LCD screens, on the other hand, lose contrast in high temperature environments, and lose brightness and speed in low temperature environments.
Blue OLEDs degrade more rapidly than the materials that produce other colors. Because of this, the manufacturers of these displays often compensate by calibrating the colors in a way that oversaturates the them and adds a bluish tint to the screen.
With current technology, OLED displays use more energy than backlit LCDs when displaying light colors. While OLED displays have deeper blacks compared with backlit LCD displays, they have dimmer whites.
LCDs use liquid crystals that twist and untwist in response to an electric charge and are lit by a backlight. When a current runs through them, they untwist to let through a specific amount of light. They are then paired with color filters to create the display.
AMOLED (Active-Matrix Organic Light-Emitting Diode) is a different form of OLED used in some mobile phones, media players and digital cameras. It offers higher refresh rates with OLEDs and consume a lot less power, making them good for portable electronics. However, they are difficult to view in direct sunlight. Products with AMOLED screens include Galaxy Nexus, Galaxy S II, HTC Legend and PlayStation Vita.
There are plenty of new and confusing terms facing TV shoppers today, but when it comes down to the screen technology itself, there are only two: Nearly every TV sold today is either LCD or OLED.
The biggest between the two is in how they work. With OLED, each pixel provides its own illumination so there"s no separate backlight. With an LCD TV, all of the pixels are illuminated by an LED backlight. That difference leads to all kinds of picture quality effects, some of which favor LCD, but most of which benefit OLED.
LCDs are made by a number of companies across Asia. All current OLED TVs are built by LG Display, though companies like Sony and Vizio buy OLED panels from LG and then use their own electronics and aesthetic design.
So which one is better? Read on for their strengths and weaknesses. In general we"ll be comparing OLED to the best (read: most expensive) LCD has to offer, mainly because there"s no such thing as a cheap OLED TV (yet).
At the other side of light output is black level, or how dark the TV can get. OLED wins here because of its ability to turn off individual pixels completely. It can produce truly perfect black.
The better LCDs have local dimming, where parts of the screen can dim independently of others. This isn"t quite as good as per-pixel control because the black areas still aren"t absolutely black, but it"s better than nothing. The best LCDs have full-array local dimming, which provides even finer control over the contrast of what"s onscreen -- but even they can suffer from "blooming," where a bright area spoils the black of an adjacent dark area.
Here"s where it comes together. Contrast ratio is the difference between the brightest and the darkest a TV can be. OLED is the winner here because it can get extremely bright, plus it can produce absolute black with no blooming. It has the best contrast ratio of any modern display.
Contrast ratio is the most important aspect of picture quality. A high contrast-ratio display will look more realistic than one with a lower contrast ratio.
One of the main downsides of LCD TVs is a change in picture quality if you sit away from dead center (as in, off to the sides). How much this matters to you certainly depends on your seating arrangement, but also on how much you love your loved ones.
A few LCDs use in-plane switching (IPS) panels, which have better off-axis picture quality than other kinds of LCDs, but don"t look as good as other LCDs straight on (primarily due to a lower contrast ratio).
OLED doesn"t have the off-axis issue LCDs have; its image looks basically the same, even from extreme angles. So if you have a wide seating area, OLED is the better option.
Nearly all current TVs are HDR compatible, but that"s not the entire story. Just because a TV claims HDR compatibility doesn"t mean it can accurately display HDR content. All OLED TVs have the dynamic range to take advantage of HDR, but lower-priced LCDs, especially those without local-dimming backlights, do not. So if you want to see HDR content it all its dynamic, vibrant beauty, go for OLED or an LCD with local dimming.
In our tests comparing the best new OLED and LCD TVs with HDR games and movies, OLED usually looks better. Its superior contrast and lack of blooming win the day despite LCD"s brightness advantage. In other words LCD TVs can get brighter, especially in full-screen bright scenes and HDR highlights, but none of them can control that illumination as precisely as an OLED TV.
OLED"s energy consumption is directly related to screen brightness. The brighter the screen, the more power it draws. It even varies with content. A dark movie will require less power than a hockey game or ski competition.
The energy consumption of LCD varies depending on the backlight setting. The lower the backlight, the lower the power consumption. A basic LED LCD with its backlight set low will draw less power than OLED.
LG has said their OLED TVs have a lifespan of 100,000 hours to half brightness, a figure that"s similar to LED LCDs. Generally speaking, all modern TVs are quite reliable.
Does that mean your new LCD or OLED will last for several decades like your parent"s last CRT (like the one pictured). Probably not, but then, why would you want it to? A 42-inch flat panel cost $14,000 in the late 90"s, and now a 65-inch TV with more than 16x the resolution and a million times better contrast ratio costs $1,400. Which is to say, by the time you"ll want/need to replace it, there will be something even better than what"s available now, for less money.
OLED TVs are available in sizes from 48 to 88 inches, but LCD TVs come in smaller and larger sizes than that -- with many more choices in between -- so LCD wins. At the high end of the size scale, however, the biggest "TVs" don"t use either technology.
If you want something even brighter, and don"t mind spending a literal fortune to get it, Samsung, Sony, and LG all sell direct-view LED displays. In most cases these are
You can get 4K resolution, 50-inch LCDs for around $400 -- or half that on sale. It"s going to be a long time before OLEDs are that price, but they have come down considerably.
LCD dominates the market because it"s cheap to manufacture and delivers good enough picture quality for just about everybody. But according to reviews at CNET and elsewhere, OLED wins for overall picture quality, largely due to the incredible contrast ratio. The price difference isn"t as severe as it used to be, and in the mid- to high-end of the market, there are lots of options.
Chances are, the screen that you"re reading this article on is either an LED, OLED, or an LCD display. These are just three of the many display types out there in the wild. On the surface, they all seem the same. But deep down, they couldn"t be more different.
So, when it comes to OLED vs. LCD—or OLED vs. LED—what are the differences? Here"s a look at these three display technologies, what makes them different, and which one is the best.
LCD stands for "liquid crystal display". The early roots of LCD displays stretch back to 1888 when German scientist, Friedrich Reinitzer, discovered an odd substance. It was a liquid that had the molecular structure of a solid. It was later named "liquid crystal." After decades of study, someone eventually saw the potential for this strange substance to be used for displays.
The first LCD displays to be used on consumer devices were on digital clocks back in 1968. The technology developed over the following years, being put into numerous other devices.
LCD display panels are divided into layers. The backmost layer is a light source. This is a translucent sheet that disperses light from bulbs at the bottom of the display.
After the filter, the light gets its color by passing through the red, blue, and green filters of the sub-pixels. From there, the light exits the display and creates the image that the viewer sees.
OLED stands for "organic light emitting diode." During the 1970s, scientists were experimented with organic materials that can emit light. In 1987, scientists at Eastman Kodak developed an OLED display that consumed a low amount of energy. And in 2007, Sony unveiled the world"s first OLED television: the Sony XEL-1.
On the other side of the OLED, the electrons flow from the cathode. The electrons then flow to the emissive layer, where they meet the holes. Since the electrons are sent through a voltage, they are "excited", meaning that they have an excess of energy.
When they meet the electron holes, they have to lose that excess energy in order to relax to the ground state for that atom. They release that energy in the form of photos (light particles). From there, the light travels through the red, blue, and green sub-pixels, just like with an LCD display.
LED displays are virtually indistinguishable from LCD displays. The only difference is in how the two types of displays get their light. Instead of using a translucent sheet, LED displays use individually LEDs. There are three primary arrangements of LEDs in the displays.
Full array LED displays have the LEDs arranged evenly throughout the display. This is the preferred arrangement on higher-end TVs. There are a lot of LEDs behind the panel, which means that local dimming is possible.
The direct-lit arrangement can appear to be similar to full array, but there are some differences. With the direct-lit arrangement, the LEDs are also dispersed evenly throughout the panel, but there are far less of them. Because of this, direct-lit displays can not do local dimming. This arrangement is present on lower-end devices.
A display is usually judged by its ability to create vibrant colors. This is an area where OLEDs come out on top. Compared to OLED displays, LCD displays often appear washed out and not as saturated. This is why OLED displays are becoming more popular in the smartphone market.
OLED displays can also produce images with higher contrast than the other two technologies. Since all of the OLEDs on the panel can be turned on and off individually, darker areas of the display can go as dark as they need to.
Full array LED displays come in right behind OLED displays because, like in the case of OLED displays, the LEDs in an LED display can be controlled individually. Full array LED displays use a method called "local dimming", a technique of shutting off LEDs completely in areas that are darker.
LCD displays come in last place because in order for any pixels to be visible, the entire back panel has to be lit. This means that completely black areas are impossible to achieve.
In terms of price, LCD displays are typically cheaper. High definition LCD displays can run you no more than a few hundred dollars. Since LED displays offer better contrast over LCD, you can expect there to be an added price premium.
When it comes to power consumption, OLED scores a win. Since the OLEDs are powered individually, the display only gives power to the ones that need it. Pixels can be turn off completely when there are blacks in the picture.
Full array LED displays come in second place because of the local dimming functionality. Certain LEDs can be completely turned off when the scene calls for blacks. Even though they have this feature, more energy is consumed per LED because the light has to pass through all of the layers of the LCD before reaching the viewers" eyes.
LCDs are the least power efficient. Regardless of the presence of blacks in the scene, the entire panel needs to be lit. This means that the light source is shining at 100% the entire time.
Each display technology has its benefits and its drawbacks. LCD displays are for people who want to save more money, while LED displays are for people who would like to spend more for a bit more contrast in their picture. You"ll spend more on the TV, but it will have a less significant impact on your electricity bill.
OLED displays are for those who want the best of all worlds. They produce the best contrast with the most vivid colors. You will be paying the most for the actual device, but the more power efficient display technology will help even out some of that cost.
When you see a phone, tablet, or TV these days, it"s probably either using an LCD or an OLED display. These two display technologies have been developing over the years, and they now exist in every corner of our everyday lives.
There are a lot of differences between LCD and OLED technology, but what are these? Here is a dive into the science behind these two technologies and what makes them different from one another.
LCD stands for "Liquid Crystal Display". The basic science behind LCD technology can be complicated because different types exist. In order to keep things simple, this article will only discuss the science behind the most basic and straightforward type of LCD: the calculator LCD.
The polarization of light plays a huge role in LCD technology. Intrinsically, light vibrates in many different areas. When light hits a polarization filter, most of it gets blocked except for light vibrating on a specific plane. So, if light hits a vertical filter, all but the light vibrating on the vertical plane gets blocked.
To begin with, external light enters the display and hits the vertical polarization filter. Though the polarized light passes through the first electrode unphased, it gets twisted 90 degrees after hitting the liquid crystal. Now, it can pass through the horizontal filter. The light hits the reflective panel, and then bounces back through the layers and to the viewers" eyes.
Smartphone and TV displays are a bit different, but ultimately, they share the same concepts. There is a flat panel that"s set up behind the layers that provide the light. It gets polarized as it travels through the layers and eventually hits the red, green, and blue sub-pixels. This is how the light gets its color before it hits the viewers" eyes.
OLED stands for "Organic Light Emitting Diode". One differentiator compared to an LCD is that OLEDs emit their own light. LCD displays, on the other hand, require a light source—like a backlit panel, LEDs, or ambient light.
Each technology has its advantages over the other. To help you decide whether you"d rather buy a device with an LCD or OLED screen, we"ve discussed the main benefits for each below.
When it comes to cost, LCD wins. A lot of device manufacturers put LCD panels in their less-expensive devices, since the average price of installing an LCD is less than doing so with an OLED panel. The price will, however, differ depending on the type of LCD panel inserted.
Another win for LCD comes in the form of heat resistance. When exposed to high temperatures, pixels in LCD panels go black for a period of time. However, they fully recover to working order in little time. If exposed to the same heat, pixels on some OLED panels turn a white color and never recover.
OLED takes the prize in terms of contrast. One main draw of OLED is that each pixel can be turned on and off individually. This means that if there"s a scene where we see a lot of black elements, those pixels can shut off completely, giving a true blackness.
For LCD panels to display an image, there is a flat panel behind the layers that provides the light for the screen. In black scenes, that light still leaks through, which means that the contrast isn"t as high. What also drives people away is the notorious LCD screen burn-in issue. There are, however, some methods to fix LCD and plasma screen burn-in.
OLEDs can also produce more vibrant colors. LCDs just can"t match the punchy saturated colors on an OLED panel. A lot of people prefer OLED screens for that reason.
There are two sides to this equation. It seems that LCD has more practical advantages. They are cheaper to install and they can survive better under intense heat. When it comes to lifestyle features like more vibrant colors and better contrast, OLED comes out on top. Whether you go for OLED or LCD, both technologies will go on to power displays for many years to come.
OLED vs. IPS LCD is a topic that comes up whenever consumers upgrade to a newer TV or a smartphone. Should you buy a TV that uses an IPS LCD display or should you pick up a TV with an OLED screen? Well, the answer isn’t so straightforward because they both have their advantages and disadvantages. In this article, we will explain how these screen technologies work and which one you should opt for while buying a TV.
IPS LCD (In-Plane Switching Liquid Crystal Display) and OLED (Organic Light-Emitting Diode) are the two most commonly used screen technologies. Older technologies, such as TN (Twisted Nematic) and PLS (Plane-to-Line Switching) displays, have almost disappeared (except in the world of PC monitors and budget laptops) because IPS LCD and OLED are clearly better in almost all aspects. Other technologies such as Mini-LED, MicroLED, and QNED technologies are extremely new and they won’t become mainstream for a few years.
So, when you are finally deciding which TV to buy, the real battle is between OLED and IPS LCD. So where do these stand? Which is better for you? Which one should you pick for your new home theatre? Read on for more information on the OLED vs IPS LCD battle.
IPS LCD displays are perhaps the most common display type days, especially in TVs and laptops. Laptops, entry-level and mid-range smartphones, and most TVs use LCD displays. So, how do IPS displays work? IPS displays use an array of LCD pixels that shift colour as required. However, they don’t emit light on their own. That’s the reason they need a backlight made up of LEDs (Light-Emitting Diodes). The backlight can be arranged in various layouts: towards the edges, spread across the whole display, or separated into different sections.
IPS screens display the black colour by changing the alignment of LCDs so that pixels block the transmission of light, but some light still gets through. That’s the reason IPS LCD displays can’t display true deep black colour. Instead, they display dark grey and there is some ‘backlight bleed’.
To reduce the backlight bleed, a feature called Local Dimming is used. The feature requires the backlight to be compartmentalized into different matrices, and only those sections are turned on which need to display non-black colours. Other sections of the backlight are turned off, offering true blacks. However, active zones still display some backlight bleed.
OLED displays have traditionally been restricted to high-end devices. Even today, only high-end TVs and laptops feature OLED displays. In the world of smartphones, though, OLED technology has been democratised and even mid-range smartphones these days use OLED displays with high brightness and high refresh rates.
In a nutshell, OLED displays don’t use separate backlight sources. Instead, every pixel can reproduce its own light (also known as self-emissive displays). So, there’s no need for an additional backlight and each pixel can be turned on or off as needed. Since there is no need for a separate backlight plane, OLED displays are much thinner than LCD displays. They also offer a much better contrast ratio and viewing angles. However, the organic material used in OLED pixels tends to “burn” over the years that results in ghosting. Moreover, they can’t be as bright as LCD, Mini-LED, or Micro-LED displays.
We have given you a brief overview of IPS and OLED technologies. But which one is better? And which of these will be right for you? Here’s a list of pros and cons to help you in your purchase decision, where it is for smartphones or TVs.
OLEDs have a quicker response time: OLEDs individually-lit pixels can switch on/off or change colour faster. This makes for lower ghosting during fast-and-frenetic action scenes or while playing games. Ghosting refers to when the image on the screen seems to be following itself around or is blurry at the edges.
OLED TVs are slimmer and flexible: As we mentioned earlier, OLED displays don’t need a bulky backlight plane, so OLED TVs are really slim. The next wave of display technologies – foldable and rollable displays – will also be powered by OLED.
IPS LCD TVs offer higher brightness: IPS LCD TVs use a powerful backlight which also lets them get much brighter than their OLED counterparts. This can make for better HDR and even offer a better viewing experience if your TV room gets a lot of sunlight.
IPS TVs suffer from backlight bleed and blooming: This is less of an issue with high-end IPS TVs, but some cheaper models may suffer from glow (bright, greyish areas near the corners of the screen) or backlight bleed (patches or leaks of light, usually around the edges).
OLED TVs can suffer burn-in: OLED displays are at risk of burn-in, a condition in which a static image left on for too long can get permanently ‘burned’ onto the display and may appear like a ghostly dark patch.
OLEDs may get dimmer with age: OLEDs use organic substances which tend to decay over time. So, OLED displays lose brightness with age. It is quite slow and modern OLED TVs are not as affected by this as older OLED TVs, and this really shouldn’t be an issue, but you need to be aware of this.
IPS TVs are much cheaper: OLED is a relatively newer technology and is more expensive to manufacture. Currently, very few companies make OLED display panels. LG Display makes most of the OLED panels found on OLED TVs, while Samsung Display, CSOT, LG Display, and BOE make OLED screens for smartphones and smaller products. Most manufacturers also tend to restrict OLED tech to their largest, most feature-packed range, fueling the perception of OLED being expensive.
There are two main competing display technologies in the market today: LCD and OLED. The mature and dominant technology is the Liquid Crystal Display (LCD), while the up-and-coming challenger is the Organic Light Emitting Diode Display (OLED display). The main difference between LCD and OLED displays is how they create the light and the colors of the image being displayed. This leads to application dependent strengths and weaknesses of either technology.
OLEDs operate via a solid-state technology, where the individual pixels can emit light in various colors and intensity without the need for an additional light source or color filter. The light-emitting portion of an OLED display is comprised of multiple layers of very specific organic semiconductor materials which can be adjusted to emit light in specific wavelengths. These organic layers have a typical thickness in the order of 100nm. In addition, no backlight is required, allowing for a very thin display module.
The organic layers beginning on the cathode side of the device consist of several electron transport layers, a recombination layer and end with a hole transport layer on the anode side. The electron transport layers in the OLED stack-up allow movement of electrons from the cathode toward holes supplied from the anode. The electrons and holes recombine in the emissive recombination layer of the film stack-up. This recombination relaxes the energy levels of the electrons, which produces an emission of light. The wavelength of the emitted light is dependent on the chemical composition of the organic materials used in the recombination layer. The intensity of the light is controlled by the amount of current flowing through the OLED’s organic layers. In OLEDs, the individual pixels can emit red, green, or blue light, or – alternatively – they emit white light, which must then pass through color filters.
There are two main varieties of OLED screens: active-matrix and passive-matrix. The difference lies in how the pixels are generated. In the passive-matrix version, each pixel is created by the intersection of two wires, through which electrical current is passed to create a different color. In an active-matrix setup, each pixel has its individual transistor, which allows for faster refresh times and creates smoother motion and transitions in the picture.
In LCD display technology, the individual pixels modulate light. An applied voltage changes the orientation of liquid crystal molecules that – in conjunction with a pair of polarizers – function as a light shutter by either blocking or allowing light to pass through. LCD displays, therefore, require an additional light source, either from reflected ambient light or more commonly from a “backlight” (an array of LEDs arranged behind or next to the LCD panel). LCD color can be created by adding color filters to the individual pixels. Because OLED displays don’t require the additional backlight, polarizers, or color filter components of an LCD module, they can be made much thinner than LCD displays of equivalent size and resolution.
OLED display technology can offer power-saving advantages over LCDs, which is important, especially for battery-powered applications such as mobile phones. An OLED’s power consumption will vary with image content and brightness, as light is generated only at the individual pixels needed to display the image. A dark image or a graphic on a black background will consume much less power than bright images or graphics. In contrast, LCD backlights must be ON while the display operates. It’s possible to control individual zones of the backlight separately to save power, but this added complexity is usually only applied in larger displays.
OLEDs can achieve a much higher contrast ratio if reflections from the front surface are carefully controlled. If no current flows through an OLED pixel, it does not emit any light. In contrast the shutter effect of an LCD pixel does not block 100% of the light. Depending on the specific LCD technology used and the angle of observation, a small percentage of the light generated in the backlight can escape. This can wash out dark areas of an image. It is possible but expensive to limit this light leakage to a point where the contrast of an LCD and OLED display become perceptually equivalent.
RGB OLEDs naturally generate a narrow bandwidth of light. This leads to very saturated primary colors and a wide color gamut. This enables OLED technology to display colors which are not easily accessible to LCDs unless RGB backlights or quantum dots are used. Often OLED colors are used “as is”, however, for very high image color fidelity, such high color saturation needs to be electronically ‘tuned down’, to match the color bandwidth of the rendering chain.
LCDs offer an advantage over OLEDs in applications where a continuous static image is required. The light emitting materials in OLEDs are affected by luminance decay as a function of the total amount of current that has passed through the pixel. This decay differs for red, green and blue. The dimming effect is subtle, but when adjacent pixels are illuminated at the same time it can become noticeable as an undesired brightness variation or color shift. LCDs don’t suffer from this dimming effect, which makes them a more suitable solution for applications with static images or images with static elements.
Another advantage of LCD technology is the wide variety of different variations to choose from. Depending on the application certain trade-offs can be very attractive. An example is much lower cost for a laptop display compared to a tablet. This is achieved by allowing poor image performance when viewed from the direction the is usually blocked by the keyboard. In a tablet where good viewing performance is required from any direction, much higher cost LCDs or OLEDs must be used.
OLEDs offer an excellent solution for a variety of applications: Glucometers, thermometers, fitness trackers, professional audio equipment, Wi-Fi hotspots, radar detectors, dive computers, biometric transaction devices, and military communications equipment.
They can be used to replace old TN LCDs or add dynamic push buttons on industrial equipment. They can be customized to various resolutions, FPC configurations, colors, custom shaped OLED displays (e.g. octagonal, round, etc.) and can even be made into flexible and transparent displays. Thanks to their versatility, OLED display panel suppliers can offer some exciting capabilities for their customers – things that were previously impossible with LCDs.
As an experienced LCD and OLED panel supplier, New Vision Display can help you find the right technology for your application. Contact us via the below form to discuss your project.
Competition and innovation are hallmarks of the consumer electronics market which has experienced practically uninterrupted growth for decades. Many consumers own a range of electronic devices (laptop, smartphone, tablet, TV, etc.), each of which is available in a plethora of options: brands; grades, formats; technologies. This technological array is further complicated by marketing terms that try to differentiate between competing products. Acronyms like OLED and LCD are rife in the electronics sector, but what is the actual difference between the two?
The inordinate popularity of smart consumer devices continues to drive growth in the global display market, currently valued in the region of $135 billion. Screens based on LEDs (light-emitting diodes) used to be the industry-standard, but trends towards device miniaturization, portability, improved efficiency, and greater picture quality gradually fuelled OLED (organic light-emitting diode) panels. Over the next few years, the OLED market is expected to expand by a CAGR (compound annual growth rate) of 14.27%.
Currently, OLED televisions outperform traditional LED products on several fronts. They come in a versatile range of formats: panels as large as 88-inches satisfy the demands of premium TV displays; while smaller AMOLED (active-matrix OLED) screens set the benchmark of picture quality in the smartphone industry. Foldable OLED devices have finally begun to enter the consumer electronics market too, fulfilling a long-standing promise from proponents of the technology.
Traditional LED TVs are based on liquid crystal display (LCD) screen technology; a tried-and-tested panel structure. On an LCD screen, images are produced by a thin layer of liquid crystal solution overlaid on a transistor grid which uses small electrical charges to set the individual crystals to an open/closed state. This produces a pattern of light and dark pixels, but the light itself is produced by a bank of LEDs arranged at the edges of the screen or in a backlit array.
The best possible picture on LCD screens is produced using a full-array LED backlight with local-dimming which yields the widest possible contrast. However, LCDs comprise multiple sequential layers within the panel (color filters, polarizers, etc.) which are necessary for producing fully-saturated images but may inhibit picture uniformity and viewing angles. This also makes LED TVs thicker and heavier, rendering them undesirable for applications where reduction of thickness or weight is important.
OLEDs circumvent each of these issues by eschewing a backlight in favor of a self-emissive panel of organic carbon-based material. This allows each subpixel onscreen to be controlled independently. Alongside greater dynamic ranges and energy efficiency, the unique characteristics of OLED panels allow for significantly fewer layers in the screen matrix. Consequently, OLED TVs are typically thinner and lighter in weight than conventional LCDs, but cost significantly more to produce than LCD displays.
Avantama is one of the industry-leading formulators for consumer electronics applications, generating solutions for today’s cutting-edge displays and devices. If you would like more information about our full portfolio of nanoparticle inks and dispersions for OLED manufacturing, simply contact a member of the Avantama team today.
OLED is the display technology that has everyone talking. Considering the inky shadows, vivid highlights, and lifelike colors that these panels can produce, it’s no wonder. For 2022, we’re offering this coveted display tech across a wide range of our ProArt Studiobook, Zenbook, and Vivobook families of laptops. From our affordable everyday laptops to our premium, luxury machines, you’ll find an OLED-equipped laptop that fits your needs and budget. So what sets these displays apart from the competition? Here, we’ll break down the LCD vs. OLED debate so that you can pick the best laptop for your needs.
If you bought a high-end smartphone in recent years, you likely already have an example of this premium panel tech ready to hand. Ever wonder why photos and videos seem to look better on your phone than your old laptop? That could be because OLED displays excel at producing lifelike images with vibrant colors and striking contrast.
Both LCD and OLED displays create the image on your screen using millions of individual pixels. However, on standard LCDs, those pixels are illuminated by an always-on backlight, usually an array of large LEDs, that light up the entire screen at once. It’s an efficient arrangement, but it hinders a display’s ability to produce inky shadows, since the black pixels still have some light behind them. On an OLED display, however, there is no backlight—instead, each pixel acts as its own light source, and can be turned on or off independently of the others. This means that black portions of an image can be truly black, because there’s no light source shining through behind them.
OLED panels also excel at displaying vibrant, lifelike colors. Typically, they offer wide color gamut coverage comparable with the color production of expensive studio-grade monitors. Between the intense colors, inky shadows, and striking highlights, OLED panels deliver an image that leaps off the screen. For media of all kinds, you’ll see the difference right away.
For folks who often use their laptops in well-lit rooms full of natural light, a display with a high peak brightness is crucial. Our Vivobook Pro 16X OLED, for example, offers a 550-nit peak brightness so that you can comfortably use the laptop wherever, whenever.
But a display’s low-light performance matters, too. You probably turn down the brightness when you’re in a dimly lit bedroom to conserve battery life—and so it doesn’t sear your eyes when you open a website with a white background. Unfortunately for LCD displays, their contrast and color production often suffer at low brightness levels, leading to a washed-out image where it’s hard to distinguish one color from another. An LCD might only cover 11% of the DCI-P3 color gamut at its lowest brightness setting. To make matters worse, many LCDs introduce distracting, annoying flicker at low brightness levels due to their use of pulse-width modulation (PWM) techniques.
OLED panels, on the other hand, shine in this scenario. Much more than LCDs, they can deliver the vibrant colors and striking contrast that makes your content immersive and text easy to read. ASUS OLED panels maintain 100% DCI-P3 color gamut coverage at both high and low brightness levels, giving you accurate, lifelike colors across the board. Our OLED panels are certified for flicker-free performance by TÜV Rheinland, too. For comfortable use in a wide range of scenarios, OLED panels are the way to go.
When many of us think about using our laptop, we imagine ourselves sitting directly in front of the screen. While this is how folks commonly use a laptop, it’s not the entire story. You’ve probably watched a movie on your laptop with a loved one, collaborated with a classmate on a project, or followed an online recipe as you cooked dinner. Look at an LCD display from a sharp angle, as you likely had to do in any of these instances, and you’ll often see an ugly, color-shifted image.
This is another circumstance where OLED panels stand out from the other options. While some types of LEDs, notably IPS panels, offer wide viewing angles, OLED displays tend to offer wider viewing angles than even the best LEDs. With an OLED-equipped laptop, you’ll always have a clear view of the screen, even in those regular moments when you’re not looking at it straight-on.
An LCD display has a single, always-on backlight that emits broad-spectrum white light similar to what you see during the daytime. That’s fine during typical working hours, but prolonged exposure to blue wavelengths in the evening hours can disrupt your circadian rhythm and make it harder for you to fall asleep.* That’s why we offer a range of Eye Care monitors that give you tools for reducing your exposure to blue light.
Another option is an OLED display. Since each pixel in an OLED panel is its own light source, these displays automatically emit less blue light than LCD options under almost all conditions—about 70% less, compared with standard LCD displays.** You’ll be much more able to browse your TikTok feed or catch a show before bedtime without throwing off your sleep schedule. And your eyes will get fatigued more slowly when you use your PC, making you better able to finish a creative project while you’re still feeling the inspiration.
There are LCD displays that deliver a credible HDR experience, but OLED displays are a more natural fit for the content. The infinite contrast of an OLED display lets you have a brightly shining pixel right next to a perfectly black one, perfect for displaying high-contrast scenes. Bright stars in the infinite blackness of space, fireworks bursting across a night sky, and the sun setting behind a natural landscape never looked so good as they do on an OLED display. Look for laptops with Dolby Vision support and a VESA DisplayHDR 400 True Black or DisplayHDR 500 True Black certification to ensure the best experience.
That said, you certainly can get an LCD display that’s primed and ready for HDR. Our ROG Zephyrus Duo 16 includes a display option with a full-array local-dimming (FALD) backlight comprising 512 Mini LEDs that approximate the contrast ratio that an OLED panel can achieve. On top of that, it offers an 1100-nit peak brightness and a VESA DisplayHDR 1000 certification. That increased high-end luminance means that you can see more detail in bright images than you would on an HDR display with lower peak brightness.
When you’re watching an action movie, cheering on your favorite athletes during March Madness, playing a round of Fortnite with your friends, or simply tracking the movement of your mouse cursor across the screen as you get some work done, the clarity of moving objects on your display matters. The key spec here is response time. Each pixel on any display takes a small but noticeable amount of time to transition from one color to the next. On a display with poor response time, this appears as a distracting blur that resolves and goes away when the image stops moving. Our OLED panels offer an exceptional 0.2ms response time that gives you absolute clarity in moving images. Comparable LCD displays can take up to 10ms to switch colors.
It’s not just the sharpness of any given image that’s improved by low response time. The accuracy of any given pixel is affected, as well. A typical 60Hz panel refreshes the content on the screen every 16.67 milliseconds. If a pixel takes 10ms to transition to the correct color, then it only actually spends 6.67ms displaying the correct color. A pixel that only needs 0.2ms to transition to the correct color displays that color for almost the entirety of the refresh cycle. Whether you’re watching an action-packed movie, cheering on your favorite sports team, or digging into a great nature documentary, you’ll see a clear image throughout instead of blurry motion.
However, not all LCD displays are built the same. Purchase a gaming laptop equipped with one of our ROG Nebula Displays, and you’ll enjoy a speedy 3ms response time. What’s more, LCD panels are capable of reaching refresh rates that OLED can’t currently match. Our ROG Strix SCAR laptops, for example, can be equipped with a lightning-quick 360Hz display. If you’re shopping for a laptop primarily for fast-paced competitive gaming, a high-refresh-rate LCD display is likely a better fit for you. Click here to read about our different families of gaming laptops.
As you read articles about OLED displays and watch reviews on YouTube, you might notice people talking about “burn-in.” More accurately known as image retention, this is a type of image distortion that can occur when users display static images or on-screen elements at peak brightness levels uninterrupted for many hours, if not days, at a time. Most folks simply don’t use their monitors in this way, so in real-world usage, you can purchase a laptop with an OLED display with the confidence that you’re unlikely to encounter image retention issues. For additional peace of mind, check out the results of a long-term uniformity test conducted by a trusted independent media outlet.
To provide an additional layer of protection against image retention, we include a suite of ASUS OLED Care settings in the easy-to-use MyASUS app. Pixel refresh launches a special screen saver when your display has been idle for 30 minutes that refreshes your screen pixels and optimizes picture quality. Pixel shift moves display pixels almost invisibly to help make sure that static images aren’t constantly displayed on your desktop. And we make it easy to adjust your Windows taskbar settings so that this static display element doesn’t cause any long-term image retention issues.
Some best practices can give you even more assurance that your OLED display will deliver a pristine image over the expected lifetime of the device—and they’re things that you’d likely already do with your laptop anyway. It’s prudent to have the display turn off due to inactivity after a certain amount of time. Rather than leave the brightness level at maximum constantly, it’s a good idea to dial back the display brightness to best fit the surrounding ambient light. Both of these prudent measures help extend battery life, as well, so you likely do these things with your laptops anyway. Finally, our OLED-equipped laptops ship with Dark Mode enabled in Windows by default so that static UI elements aren’t unnecessarily bright.
For most users, an OLED panel is a better fit than an LCD panel. The infinite contrast these displays provide make them more comfortable to use in a wide range of applications. Whether you’re connecting with friends on social media, skimming through your email, watching the latest show, or just browsing your favorite sites, an OLED panel will elevate your experience. Ultra-wide viewing angles let you share any of these things with family, friends, coworkers, and clients. And the list goes on—this display option sets you up for immersive HDR media, takes care of your eyes with its reduced blue light emission, and gives you exceptional clarity in moving images.
There are folks out there for whom LCD panels are a superior choice. Gamers, in particular, benefit from the sky-high refresh rates and ever-lowering response times afforded by LCDs. And those who want an HDR experience augmented by the absolute highest peak brightness levels may prefer an LCD equipped with an ultra-bright FALD backlight.
For just about everyone else, the advantages of OLED panels make them the clear winner of the LCD vs. OLED debate. For too long, display aficionados had to hunt for devices equipped with this class-leading tech. Now, we’re offering OLED panels across a wide range of laptops.
Looking for a highly portable laptop with a detachable keyboard? Check out the eminently affordable Vivobook 13 Slate OLED. Need a blend of performance, portability, and elegance? The Zenbook Flip 14 OLED gives you muscular performance with its AMD Ryzen 5000-series CPU. For creators, we have a wide range of laptops equipped with OLED panels. Click here to learn more. For every budget, need, and preference, we have an OLED laptop ready and waiting. Find your next laptop today.
If you are about to buy a new cell phone, you should carefully consider what you expect from the display. Depending on the technology used – LCD or OLED – you will have to deal with different display characteristics. This blog article offers you decision support and background information on both screen technologies.
Even though you will have come across some terms like TFT and AMOLED during your research, there are basically only two types of displays: LCDs and OLEDs. There are various subtypes and developments of both technologies, such as the Retina display or Super AMOLED.
Both technologies are based on thousands of pixels, which together form an image. The better the resolution of your display, the more pixels are in the same area and the less you can see the individual pixels with the naked eye.
The difference between LCD and OLED screens lies in how the individual pixels are made to light up. For an LCD, additional backlighting is needed fto generate an image. With an OLED panel, this is not necessary due to self-luminous diodes.
LCD stands for Liquid Crystal Display. In this screen technology, the image is generated by liquid crystals. An LCD panel always consists of several “layers”, such as the display glass, the electrode layer for voltage generation and the backlight. The image-producing layer consists of liquid crystals.
Each liquid crystal forms a pixel. In turn, this consists of a total of three subpixels: red, green and blue. The liquid crystals and thus each subpixel are individually controlled and regulated by electrical voltage. As a result, a wide range of colors including black and white can be generated for each pixel. The liquid crystal layer must be backlit to produce the colors. This means that the display can never darken completely – which is why there is no real deep black in an LCD.
The abbreviation OLED stands for Organic Light Emitting Diode. The name already gives an idea of how this type of screen works: Unlike LCDs, a backlight is not necessary because the diodes can light up themselves. Each diode is therefore its own small light source consisting of red, green and blue subpixels. Depending on which image is to be shown on the display, the intensity of the illumination is changed by electrical voltage. This allows a wide variety of colors to be produced. White is created by the combination of red, green and blue pixels. As a result, it usually appears somewhat darker than on an LCD. On the other hand, black image elements are created by simply leaving the diodes completely off. Thus, the black value of OLED displays is especially good.
Like the LCD, an OLED display also consists of several layers. In addition to the light-emitting diodes, semiconductor layers are needed to control and regulate the diodes.
Based on an LC display with IPS technology (= In-Plane Switching), in which the liquid crystals are arranged next to each other, which improves viewing angle stability and color reproduction
If it is important to you that your smartphone is inexpensive – both in purchase and repair – you should rather go for an LCD. Replacement screens with this technology, such as the iPhone 11, iPhone Xr or Samsung Galaxy A21s, are available at a low price.
If you do not want to miss out on brilliant colors, you should rather opt for an OLED display. The iPhone X and the Galaxy S10, for example, are equipped with them. Be careful when buying replacement parts, though: Many retailers offer you particularly low prices by selling you an LCD instead of an OLED – without telling. Therefore, do not let yourself be lured by a low price, but carefully read the product description to find out more about the replacement screen.
In our store, you can choose between OLED and LCD technology for some Apple displays. This way, you can decide for yourself which variant fits your needs and budget.
Television technology has come a long way since its invention in 1927. It became a popular household appliance only in the 1950s. Television technology remained largely unchanged for almost fifty years, using Cathode Ray Tubes (CRTs) for display. CRT is a high-vacuum tube in which cathode rays produce a luminous image on a fluorescent screen.
The first major change in television came about in the early 2000s when Liquid Crystal Display (LCD) screens became affordable, as did flat-screen televisions. LCD screens use light modulating properties of liquid crystals to display images.
Since then, television technology has seen some quick advances. The first, and currently most popular being the LED display. Light Emitting Diodes (LED) replaced Cold Cathode Fluorescent Lamps (CCFLs) as the source of light, making the display sharper and the color more vibrant.
LCD televisions with an LED display are now pretty much the standard. Many LCD TVs on the market now are LEDs, so you’ll often hear the two used interchangeably. LED technology leads us directly to the next big thing in the world of television: Organic Light Emitting Diode, or OLED display.
In an LED display, the entire screen is illuminated by LED lights placed either at the back of the screen or all around it. In OLED display, each pixel is individually illuminated. To put this in perspective, consider this: the standard LCD monitor is made up of 2,073,600 pixels. Now, imagine these pixels being illuminated individually. Then, compare it to all of them being illuminated by LED lights at the back of the screen.
The contrast in a picture is determined by the difference in the brightest and darkest areas of the picture. When considering brightness alone, the whole screen of an LED TV can light up. Hence, it can produce more brightness than an OLED television. But for good contrast in a picture, it is important to also note the quality of its black levels. In OLED display, individual pixels can be switched off, thus creating true black where required.
Other factors like Resolution, Motion Blur, High Dynamic Range (HDR) and Color are pretty evenly matched in OLED and the top of the range LED televisions.
Another important factor is the quality of the picture from different viewing angles. LCD televisions are best viewed from dead center. As the angle from the center increases, the quality of the picture goes down considerably. Some LCD TVs have tried to overcome this by using in-plane switching (IPS) panels. This improves the quality from wider angles at the cost of the picture quality dead center.
For a superior viewing experience, it is important that the screen is uniformly bright from all angles. LCD televisions that are illuminated from the sides are the worst when it comes to consistency. OLED is far more uniform in its brightness across the screen because each pixel is individually illuminated.
This is one area where LCD televisions win hands down. In televisions, energy consumption is directly related to brightness. An OLED television can reduce its energy consumption by reducing brightness which reduces the quality of the picture. LCD televisions are more energy efficient. Their energy consumption can be reduced further by reducing the brightness of the backlight.
While the TVs have similar lifespans, OLED displays are more susceptible to image retention, or “burn-in.” It is not ideal to select an OLED display if you tend to watch a lot of news programs that constantly display logos and scrolling news banners.
LED televisions are available in a wide range of sizes, from small 20″ screens to large 100″ screens. OLED televisions are currently available only in three screen sizes, 55, 65, and 77″.
LCD televisions have a wide price range, with the higher end models being almost as expensive as OLED TVs. OLED is a new technology and consequently expensive to manufacture. It will not be long, though, before they become a lot more affordable.
QLED and OLED sound very similar, so things can quickly get confusing. Like I covered above, OLED stands for “Organic Light Emitting Diode”. QLED, though, stands for “Quantum Dot Light Emitting Diode.” While similar in name, the technology is different. An OLED TV has LEDs that are individually lit, while a QLED TV uses a variation of an LED LCD screen. This means that the TV has an LCD screen that uses a LED backlight.
The thing that defines QLED are the quantum dots themselves and what they do. Quantum dots are tiny particles, ranging only a few nanometers in size, that are placed inside a layer of film inside the TV. When light is shone on these dots, they produce brighter lights and more vivid colors for the display. Some variation of QLED technology can be found in various TVs on the market, and not all devices that use QLED technology use the same Quantum Dot style. The most well known user of QLED technology would be Samsung, who uses QLED technology in their highest end TVs.
While QLED TVs are bright and have some of the benefits of a standard LCD TV like being less susceptible to burn-in, they also suffer from some of the cons of LCDs. A QLED TV may display some light halos, or