a si active matrix tft lcd manufacturer

The most common semiconducting layer is made of amorphous silicon (a-Si). a-Si thin film transistor - liquid crystal display (TFT-LCD) has been the dominant technology for the manufacturing of active matrix TFT-LCD for over 20 years. a-Si is a low cost material in abundant supply.
a-Si is a low cost material in abundant supply. However, the electron mobility of a-Si is very low (around 1cm2/Vs) and can’t physically support high refresh rates such as the 240Hz needed for HDTV. Due to their high electron mobility, new materials such as metal oxide (MO) and low temperature polysilicon (LTPS) are now replacing a-Si to manufacture the industry’s two main types of screens: LCD and organic light-emitting diode (OLED) displays.

Outline Dimension100.00*70.00*1.60105.5*67.2*2.9105.5*67.2*4.45105.50*67.20*7.72105.80*85.09*6.73116*37*13.212*11*1.227120.7*75.8*2.8120.7*75.85*2.84120.70*75.85*2.84120.70*75.85*3.18120.70*76.30*8.07120.70*97.05*7.27122*44*12.3128*69*9.214.5*11.614*28*1.227146*62.5*14164.9*100.0*11.8164.9*100.0*3.35164.9*100.0*3.4164.90*100.00*2.80165.00*104.00*6.5165.30*101.00*9.07165.30*121.00*7.75165*10.0*7.38174.00*136.00*2.45176.40*114.00*8.618.46*18.1*1.21180*40*13.8183.00*141.00*10.26206.7*122.93*1.43229.46*149.1*2.5229.46*149.10*4.90235*143*524.74*16.90*1.4225.0*28.5*2.226.04*31.7826.3*8*1.22726.70*19.26*1.4127.40*27.00*1.4627.40*27.00*1.4627.95*13.54*1.8528.2*32.3*2.128.2*32.3*2.129.00*8.7*1.2230.0*11.50*1.22731.52*33.72*1.7333.13*37.08*3.3833.22*34.72*0.6834.00*45.83*2.6034.00*45.83*2.7534.5*23*1.42734.98*50.57*2.1035.60*50.20*2.1036.0*20.0*2.8536.60 × 51.20 × 3.7537.68*51.30*2.2338.6*40.5*0.6738.83*38.21*0.6841.90*55.26*2.3542.04*27.22*1.4142.52*60.50*2.242.72*60.26*2.2042.72*60.26*2.3042.72*60.26*2.4543.44*74.79*2.646.20*46.20*7.7046.80*42.00*7.9047.72*60.26*2.4048.70*57.20*4.0050.00*69.20*2.550.00*69.20*2.5050.00*69.20*3.8051.15*35.36*3.952.00*28.00*2.1055.04*77.70*2.4055.20*47.55*2.8056.4*36.8*5.556.94*97.10*1.1657.50*41.70*3.9058.0*32.0*13.6558.00*32.00*9.759.14*97.95*3.8059.71*56.18*2.2264.30*118.30*1.5565.0*27.7*2.869.06*104.5*0.1.770.00*35.00*13.9071.0*51.8*5.371.0*52.6*6.871.05*29.30*2.3073.00*41.86*2.0076.20*63.20*3.2176.90*63.90*3.0576.90*63.90*3.2076.90*63.90*3.2776.90*63.90*6.0578.2*65*4.680*36*11.884*44*12.885*30*11.886.31*86.31*3787* 60*13

* Product descriptions and part numbers are subject to change, and may not reflect manufacturer product changes. Please check the manufacturer"s website and use the item"s manufacturer part number to find the most up to date product description.

* Product descriptions and part numbers are subject to change, and may not reflect manufacturer product changes. Please check the manufacturer"s website and use the item"s manufacturer part number to find the most up to date product description.

Microtech Technology Company Limitedestablished in 2001,offers professional design and manufacturing services for hundreds types of Liquid Crytal Display modules and Touch Panels-TN,FSTN,TFT,RTP,CTP.With the advantages of high contrast,fast response time,wide viewable angle and low power consumption,Microtech"s products are widely used in Industrial Equipment,Medical devices,Home Intelligent Devices,Digital cameras,Video Game Devices,Instruments etc.Since its establishment,the management has been following human-oriented strategy and developing reliance among customers.To comply with these beliefs and ISO 9001:2015 standards,Microtech keeps on recruiting capable professionals,adopting advanced technology,developing new products,improving process and enhancing quality.Based on its strong R&D capacity, outstanding product quality and professional service,Microtech has won the high reputation from both mainland and oversea customers,and established long-term strategic partner relationship with them.
Our products are not only satisfy the display individuation requirement of all the mobile phone manufacturing factories in the mainland,but also meet the highly uniformity and reliability requirement to the display effect of module for many famous brands in Europe,American and Asia pacific.In addition,our products which have reached the extent of excellent quality and reliability could be applied in Automotive,Medical,Power station,Transportation,Industrial & Equipment and Office equipment for many famous enterprises in American,France,Italy,Australia,Korea and so on.
Our company have passed theISO 9001 quality system certification and SGS, RoHS, CE certification, to ensure all of our products and services are in international standard.
In order to obtain an excellent quality management team and offer our customers professional & efficient service and satisfied products,We comprehensively carry out Zero Defect quality management,implement ISO9001:2008 standards training and organize the examination /enrollment of quality management personnel national professional qualification.Our Mission "Efficient and timely service is the key to our success.Our success is tied with our client"s success. We are dedicated to provide excellent service to our customer at the most competitive prices." To provide customer a value added LCD product by stringent quality control,comprehensive technical support,and utilization of latest technology.
With our motto "Quality and Services are vital to enterpriess",Microtech aims to produce high quality LCD module to meet the customers" specific needs in all-round way.Meanwhile we seek for continuous service improvement,increase our market share,strengthen our competitiveness,and ultimately,expand our market worldwide!

Offering you a complete choice of products which include Si TFT Active Matrix LCD, 3.5" Active Matrix LCD Panel, 7" Amorphous Transmissive Tft LCD Screen, 6.7" Amorphous Si TFT Color LCD Module, PQ 3Qi-01 is a 10.1" TFT Liquid Crystal Display and TFT LCD Panel 3.45.
A si TFT active matrix LCD of 7"(diagonal dimensions) with a resolution of 800*3(RGB)*480. Features include white LED backlight and VGA and Video input.The signal interface is parallel RGB(1ch,6-bit) with wide range of display colors of 262K.
It features Transmissive type and back-light with six LEDS(Serial type) with support resolution of n 320xRGBx240 (16.7M Color) which includes 24bit parallel RGB Interface (8bit x 3).
A070VW04_V1 is an amorphous transmissive type TFT (Thin Film Transistor) LCD (Liquid crystal Display). This model is composed of TFT-LCD, driver IC, FPC (flexible printed circuit), and backlight unit.
This color LCD module is composed of amorphous silicon thin film transistor liquid crystal display panel structure with driver LSis for driving the TFT array and a backlight.Color (Red,Green,Blue) data signals from a host system e.g. signal generator are modulated into the best form for active matrix system by signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.
This 10.1” TFT Liquid Crystal Display module supports 1024 x RGB x 600 Wide-SVGA (WSVGA) mode and can display 262,144 colors.This module also supports two low power modes: a transflective mode with lower color and a reflective black and white (64 grayscales) mode. In reflective mode the screens shows higher resolution at 3072 x 600 pixels, in transflective mode the color resolution is 1024 x RGB x 600, while the black/white/grey resolution is 3072 x 600. The converter module for the LED backlight is built in.
3.45“ color TFT-LCD panel. The 3.45“ color TFT-LCD panel is designed for camcorder, digital camera application and other electronic products which require high quality flat panel displays. This module follows RoHS.Added features include High Resolution :230,400 Dots (320 RGB x 240) . Image Reversion: Up/Down and Left/Right.

A si TFT active matrix LCD of 7"(diagonal dimensions) with a resolution of 800*3(RGB)*480. Features include white LED backlight and VGA and Video input.The signal interface is parallel RGB(1ch,6-bit) with wide range of display colors of 262K.

1) Appearance can be designed in an arc, rectangle, square, L shape,S shape, etc..free bending, coiling, folding, can be arbitrarily arranged in accordance with the spatial layout requirements, adopt electrolytic copper or copper rolling process design with very good electrical conductivity;
2) FPC interfaces include soldering, plug-in, and B2B connection, the reinforcement materials we commonly use include PI, PET, FR4, steel sheet, aluminum sheet, and so on, which can be selected according to different applications environments.

TFT Glass has as many TFTs as the number of pixels displayed, while a Color Filter Glass has a color filter that generates color. Liquid crystals move according to the difference in voltage between the Color Filter Glass and the TFT glass. The amount of light supplied by Back Light is determined by the amount of movement of the liquid crystals in such a way as to generate a color.
Medical devices should have high contrast, high resolution, wide viewing angles, and high-quality LCD screen image displays. LCD screens will also be required to have higher brightness when used in operating rooms, emergency rooms, ICUs, and other environments that use high-brightness lighting. A newer design trend is the use of low-voltage differential signal transmission LCD modules to ensure minimal electromagnetic interference to the equipment. The industrial control screens used in medicine are generally those of Mitsubishi and AUO. Industrial control panel stability, high parameters, is the best choice for medical equipment.
Industrial screens are usually used in automatic control equipment, industrial sites, mines, oilfields, test equipment, etc. Most modules used in industrial integrated workstations range from 5.7 inches to 19 inches. The brightness of the LCD screen is usually required to be above 300, wide temperature, 4:3 thick LCD screen, industrial LCD screen, or desktop LCD screen is a better choice.
LCD provides a powerful information management platform for security monitoring. Through the integration of case high incidence areas, key protection units, police road information, monitoring information, police force configuration information, electronic maps, police identification symbols, etc., can achieve full-screen view, multi-screen browsing, touch head operation, and other functions can realize personnel, vehicles and other police resources simulation deployment. This display is also commonly used in industrial LCD screens, stable, high parameters, but in the military screen is usually equipped with a touch screen, do a full paste, to help explosion-proof, brighten.
In an era where many “manufacturers” simply resell touch screens from low-cost suppliers or outsource manufacturing to third parties, Reshine is a true Capacitive touch&Resistive touch display OEM manufacturer with 12 years of experience. Reshine Display (HK) Technology Co., Limited is a branch of Shenzhen Ruixiang Digital Technology Co., Ltd., which is a high-tech enterprise established in 2007, located in Longhua District, Shenzhen.
We are a leading designer and manufacturer of touch screens, and we have rich experiences in medical & industrial & home automation& products supply.Reshine"s mission is to be the most successful touch screen display supplier in the markets it serves.
The company has a total construction area of 4,000 square meters, with a monthly production capacity of 500,000 pieces, a production staff of 150-200 people, 5 R&D engineers, and 15 quality control personnel with 5-10 years of experience in the touch screen industry, The factory has introduced brand touch&display production equipment from the United States, Japan, South Korea, Taiwan, and a hundred-level purification workshop to ensure that the screens meet the requirements of production equipment and environment.

A thin-film transistor (TFT) is a special type of field-effect transistor (FET) where the transistor is thin relative to the plane of the device.substrate. A common substrate is glass, because the traditional application of TFTs is in liquid-crystal displays (LCDs). This differs from the conventional bulk metal oxide field effect transistor (MOSFET), where the semiconductor material typically is the substrate, such as a silicon wafer.
TFTs can be fabricated with a wide variety of semiconductor materials. Because it is naturally abundant and well understood, amorphous or polycrystalline silicon were (and still are) used as the semiconductor layer. However, because of the low mobility of amorphous siliconcadmium selenide,metal oxides such as indium gallium zinc oxide (IGZO) or zinc oxide,organic semiconductors,carbon nanotubes,metal halide perovskites.
Because TFTs are grown on inert substrates, rather than on wafers, the semiconductor must be deposited in a dedicated process. A variety of techniques are used to deposit semiconductors in TFTs. These include chemical vapor deposition (CVD), atomic layer deposition (ALD), and sputtering. The semiconductor can also be deposited from solution,printing
Some wide band gap semiconductors, most notable metal oxides, are optically transparent.electrodes, such as indium tin oxide (ITO), some TFT devices can be designed to be completely optically transparent.head-up displays (such as on a car windshield).The first solution-processed TTFTs, based on zinc oxide, were reported in 2003 by researchers at Oregon State University.Universidade Nova de Lisboa has produced the world"s first completely transparent TFT at room temperature.
The best known application of thin-film transistors is in TFT LCDs, an implementation of liquid-crystal display technology. Transistors are embedded within the panel itself, reducing crosstalk between pixels and improving image stability.
As of 2008LCD TVs and monitors use this technology. TFT panels are frequently used in digital radiography applications in general radiography. A TFT is used in both direct and indirect capturemedical radiography.
The most beneficial aspect of TFT technology is its use of a separate transistor for each pixel on the display. Because each transistor is small, the amount of charge needed to control it is also small. This allows for very fast re-drawing of the display.
In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET in which germanium monoxide was used as a gate dielectric. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. In 1966, T.P. Brody and H.E. Kunig at Westinghouse Electric fabricated indium arsenide (InAs) MOS TFTs in both depletion and enhancement modes.
The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard J. Lechner of RCA Laboratories in 1968.dynamic scattering LCD that used standard discrete MOSFETs, as TFT performance was not adequate at the time.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).electroluminescence (EL) in 1973, using CdSe.active-matrix liquid-crystal display (AM LCD) using CdSe in 1974, and then Brody coined the term "active matrix" in 1975.
A breakthrough in TFT research came with the development of the amorphous silicon (a-Si) TFT by P.G. le Comber, W.E. Spear and A. Ghaith at the University of Dundee in 1979. They reported the first functional TFT made from hydrogenated a-Si with a silicon nitride gate dielectric layer.research and development (R&D) of AM LCD panels based on a-Si TFTs in Japan.
By 1982, Pocket TVs based on AM LCD technology were developed in Japan.Fujitsu"s S. Kawai fabricated an a-Si dot-matrix display, and Canon"s Y. Okubo fabricated a-Si twisted nematic (TN) and guest-host LCD panels. In 1983, Toshiba"s K. Suzuki produced a-Si TFT arrays compatible with CMOS integrated circuits (ICs), Canon"s M. Sugata fabricated an a-Si color LCD panel, and a joint Sanyo and Sanritsu team including Mitsuhiro Yamasaki, S. Suhibuchi and Y. Sasaki fabricated a 3-inch a-SI color LCD TV.
The first commercial TFT-based AM LCD product was the 2.1-inch EpsonHitachi research team led by Akio Mimura demonstrated a low-temperature polycrystalline silicon (LTPS) process for fabricating n-channel TFTs on a silicon-on-insulator (SOI), at a relatively low temperature of 200°C.Hosiden research team led by T. Sunata in 1986 used a-Si TFTs to develop a 7-inch color AM LCD panel,Apple Computers.Sharp research team led by engineer T. Nagayasu used hydrogenated a-Si TFTs to demonstrate a 14-inch full-color LCD display,electronics industry that LCD would eventually replace cathode-ray tube (CRT) as the standard television display technology.notebook PCs.IBM Japan introduced a 12.1-inch color SVGA panel for the first commercial color laptop by IBM.
TFTs can also be made out of indium gallium zinc oxide (IGZO). TFT-LCDs with IGZO transistors first showed up in 2012, and were first manufactured by Sharp Corporation. IGZO allows for higher refresh rates and lower power consumption.polyimide substrate.
Kimura, Mutsumi; Nozawa, Ryoichi; Inoue, Satoshi; Shimoda, Tatsuya; Lui, Basil; Tam, Simon Wing-Bun; Migliorato, Piero (2001-09-01). "Extraction of Trap States at the Oxide-Silicon Interface and Grain Boundary for Polycrystalline Silicon Thin-Film Transistors". Japanese Journal of Applied Physics. 40 (9R): 5227. doi:10.1143/jjap.40.5227. ISSN 0021-4922.
Brody, T. Peter (November 1984). "The Thin Film Transistor - A Late Flowering Bloom". IEEE Transactions on Electron Devices. 31 (11): 1614–1628. Bibcode:1984ITED...31.1614B. doi:10.1109/T-ED.1984.21762. S2CID 35904114.
Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard (2016-06-01). "Metal oxide semiconductor thin-film transistors for flexible electronics". Applied Physics Reviews. 3 (2): 021303. Bibcode:2016ApPRv...3b1303P. doi:10.1063/1.4953034.
Bonnassieux, Yvan; Brabec, Christoph J.; Cao, Yong; Carmichael, Tricia Breen; Chabinyc, Michael L.; Cheng, Kwang-Ting; Cho, Gyoujin; Chung, Anjung; Cobb, Corie L.; Distler, Andreas; Egelhaaf, Hans-Joachim (2021). "The 2021 flexible and printed electronics roadmap". Flexible and Printed Electronics. 6 (2): 023001. doi:10.1088/2058-8585/abf986. hdl:10754/669780. ISSN 2058-8585. S2CID 235288433.
Wager, John. OSU Engineers Create World"s First Transparent Transistor Archived 2007-09-15 at the Wayback Machine. College of Engineering, Oregon State University, Corvallis, OR: OSU News & Communication, 2003. 29 July 2007.
Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Gonçalves, A. M. F.; Marques, A. J. S.; Pereira, L. M. N.; Martins, R. F. P. (March 2005). "Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature". Advanced Materials. 17 (5): 590–594. Bibcode:2005AdM....17..590F. doi:10.1002/adma.200400368. S2CID 137441513.
Brody, T. P.; Kunig, H. E. (October 1966). "A HIGH‐GAIN InAs THIN‐FILM TRANSISTOR". Applied Physics Letters. 9 (7): 259–260. Bibcode:1966ApPhL...9..259B. doi:10.1063/1.1754740. ISSN 0003-6951.
Richard Ahrons (2012). "Industrial Research in Microcircuitry at RCA: The Early Years, 1953–1963". IEEE Annals of the History of Computing. 12 (1): 60–73.
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.
Comber, P. G. le; Spear, W. E.; Ghaith, A. (1979). "Amorphous-silicon field-effect device and possible application". 15 (6): 179–181. Bibcode:1979ElL....15..179L. doi:10.1049/el:19790126. ISSN 0013-5194.
Morozumi, Shinji; Oguchi, Kouichi (12 October 1982). "Current Status of LCD-TV Development in Japan". Molecular Crystals and Liquid Crystals. 94 (1–2): 43–59. doi:10.1080/00268948308084246. ISSN 0026-8941.
Kimura, Mutsumi; Inoue, Satoshi; Shimoda, Tatsuya; Lui, Basil; French, William; Kamohara, Itaru; Migliorato, Piero (2001). "Development of poly-Si TFT models for device simulation: In-plane trap model and thermionic emission model". SID Conference Record of the International Display Research Conference (in Japanese): 423–426. ISSN 1083-1312.
Mimura, Akio; Oohayashi, M.; Ohue, M.; Ohwada, J.; Hosokawa, Y. (1986). "SOI TFT"s with directly contacted ITO". IEEE Electron Device Letters. 7 (2): 134–6. Bibcode:1986IEDL....7..134M. doi:10.1109/EDL.1986.26319. ISSN 0741-3106. S2CID 36089445.
Sunata, T.; Yukawa, T.; Miyake, K.; Matsushita, Y.; Murakami, Y.; Ugai, Y.; Tamamura, J.; Aoki, S. (1986). "A large-area high-resolution active-matrix color LCD addressed by a-Si TFT"s". 33 (8): 1212–1217. Bibcode:1986ITED...33.1212S. doi:10.1109/T-ED.1986.22644. ISSN 0018-9383. S2CID 44190988.
Sunata, T.; Miyake, K.; Yasui, M.; Murakami, Y.; Ugai, Y.; Tamamura, J.; Aoki, S. (1986). "A 640 × 400 pixel active-matrix LCD using a-Si TFT"s". IEEE Transactions on Electron Devices. 33 (8): 1218–21. Bibcode:1986ITED...33.1218S. doi:10.1109/T-ED.1986.22645. ISSN 0018-9383. S2CID 6356531.
Nagayasu, T.; Oketani, T.; Hirobe, T.; Kato, H.; Mizushima, S.; Take, H.; Yano, K.; Hijikigawa, M.; Washizuka, I. (October 1988). "A 14-in.-diagonal full-color a-Si TFT LCD". Conference Record of the 1988 International Display Research Conference: 56–58. doi:10.1109/DISPL.1988.11274. S2CID 20817375.

TFT active-matrix is a key technology for display manufacturing such as AMLCD and AMOLED display. Past, current and future TFT technologies are reviewed and discussed with the use of amorphous silicon (a-Si), low-temperature poly-Si (LTPS), organic and oxide semiconductors. TFT technologies based on a-Si:H and LTPS are mature enough, but the TFTs with oxide and organic semiconductors are still many issues to be solved for large scale manufacturing. Currently, display manufacturing based on a-IGZO TFT backplane is hot issue because a-Si:H production line can be easily modified to that for IGZO TFTs.

Raystar is a professional TFT (Thin Film Transistor) module manufacturer. There are different models of our TFT active matrix display with various features. Whether you need TFT display with control board, high brightness, wide viewing angle, monochrome, bar type, we have some options for you to choose from. We also offer customization service of backlight and FPC. The available diagonal sizes of our standard TFT display modules are 0.96", 1.77" 2.4", 2.8", 2.84", 3.5", 3.9", 3.97", 4.3", 4.6", 5", 5.2", 5.6", 5.7", 6.2", 7", 8", 8.88", 9",10.1", 10.2", 12.1" and 12.3.

however in regards to the opening question, ""Active Matrix TFT LCD" vs. "a-si TFT/TN"?" they are for simplicities sake the same, both are active matrix, both are TFT tech, and both are TN panels" different jargon by different companies for the same technology. active matrix TFT LCD w/TN panel vs. active matrix a-si TFT LCD w/TN panel. since all that matters to me is TN/*-*VA/IPS panel the other terms might as well be the same.

Technology trends in backplane technology are driving higher gas demand in display manufacturing. Specific gas requirements of process blocks are discussed, and various supply modes are reviewed.
Since its initial communalization in the 1990s, active matrix thin-film-transistor (TFT) displays have become an essential and indispensable part of modern living. They are much more than just televisions and smartphones; they are the primary communication and information portals for our day-to- day life: watches (wearables), appliances, advertising, signage, automobiles and more.
There are many similarities in the display TFT manufacturing and semiconductor device manufacturing such as the process steps (deposition, etch, cleaning, and doping), the type of gases used in these steps, and the fact that both display and semiconductor manufacturing both heavily use gases.
However, there are technology drivers and manufacturing challenges that differentiate the two. For semiconductor device manufacturing, there are technology limitations in making the device increasingly smaller. For display manufacturing, the challenge is primarily maintaining the uniformity of glass as consumers drive the demand for larger and thinner displays.
While semiconductor wafer size has maxed because of the challenges of making smaller features uniformly across the surface of the wafer, the size of the display mother glass has grown from 0.1m x 0.1m with 1.1mm thickness to 3m x 3m with 0.5mm thickness over the past 20 years due to consumer demands for larger, lighter, and more cost-effective devices.
As the display mother glass area gets bigger and bigger,so does the equipment used in the display manufacturing process and the volume of gases required. In addition, the consumer’s desire for a better viewing experience such as more vivid color, higher resolution, and lower power consumption has also driven display manufacturers to develop and commercialize active matrix organic light emitting displays (AMOLED).
In general, there are two types of displays in the market today: active matrix liquid crystal display (AMLCD) and AMOLED. In its simplicity, the fundamental components required to make up the display are the same for AMLCD and AMOLED. There are four layers of a display device (FIGURE 1): a light source, switches that are the thin-film-transistor and where the gases are mainly used, a shutter to control the color selection, and the RGB (red, green, blue) color filter.
The thin-film-transistors used for display are 2D transitional transistors, which are similar to bulk CMOS before FinFET. For the active matrix display, there is one transistor for each pixel to drive the individual RGB within the pixel. As the resolution of the display grows, the transistor size also reduces, but not to the sub-micron scale of semiconductor devices. For the 325 PPI density, the transistor size is approximately 0.0001 mm2 and for the 4K TV with 80 PPI density, the transistor size is approximately 0.001 mm2.
Technology trends TFT-LCD (thin-film-transistor liquid-crystal display) is the baseline technology. MO / White OLED (organic light emitting diode) is used for larger screens. LTPS / AMOLED is used for small / medium screens. The challenges for OLED are the effect of < 1 micron particles on yield, much higher cost compared to a-Si due to increased mask steps, and moisture impact to yield for the OLED step.
Mobility limitation (FIGURE 2) is one of the key reasons for the shift to MO and LTPS to enable better viewing experience from higher resolution, etc.
The challenge to MO is the oxidation after IGZO metalization / moisture prevention after OLED step, which decreases yield. A large volume of N2O (nitrous oxide) is required for manufacturing, which means a shift in the traditional supply mode might need to be considered.
Although AMLCD displays are still dominant in the market today, AMOLED displays are growing quickly. Currently about 25% of smartphones are made with AMOLED displays and this is expected to grow to ~40% by 2021. OLED televisions are also growing rapidly, enjoying double digit growth rate year over year. Based on IHS data, the revenue for display panels with AMOLED technol- ogies is expected to have a CAGR of 18.9% in the next five years while the AMLCD display revenue will have a -2.8% CAGR for the same period with the total display panel revenue CAGR of 2.5%. With the rapid growth of AMOLED display panels, the panel makers have accel- erated their investment in the equipment to produce AMOLED panels.
There are three types of thin-film-transistor devices for display: amorphous silicon (a-Si), low temperature polysilicon (LTPS), and metal oxide (MO), also known as transparent amorphous oxide semiconductor (TAOS). AMLCD panels typically use a-Si for lower-resolution displays and TVs while high-resolution displays use LTPS transistors, but this use is mainly limited to small and medium displays due to its higher costs and scalability limitations. AMOLED panels use LTPS and MO transistors where MO devices are typically used for TV and large displays (FIGURE 3).
This shift in technology also requires a change in the gases used in production of AMOLED panels as compared with the AMLCD panels. As shown in FIGURE 4, display manufacturing today uses a wide variety of gases.
These gases can be categorized into two types: Electronic Specialty gases (ESGs) and Electronic Bulk gases (EBGs) (FIGURE 5). Electronic Specialty gases such as silane, nitrogen trifluoride, fluorine (on-site generation), sulfur hexafluoride, ammonia, and phosphine mixtures make up 52% of the gases used in the manufacture of the displays while the Electronic Bulk gases–nitrogen, hydrogen, helium, oxygen, carbon dioxide, and argon – make up the remaining 48% of the gases used in the display manufacturing.
The key ga susage driver in the manufacturing of displays is PECVD (plasma-enhanced chemical vapor deposition), which accounts for 75% of the ESG spending, while dry etch is driving helium usage. LTPS and MO transistor production is driving nitrous oxide usage. The ESG usage for MO transistor production differs from what is shown in FIGURE 4: nitrous oxide makes up 63% of gas spend, nitrogen trifluoride 26%, silane 7%, and sulfur hexafluoride and ammonia together around 4%. Laser gases are used not only for lithography, but also for excimer laser annealing application in LTPS.
Silane: SiH4 is one of the most critical molecules in display manufacturing. It is used in conjunction with ammonia (NH3) to create the silicon nitride layer for a-Si transistor, with nitrogen (N2) to form the pre excimer laser anneal a-Si for the LTPS transistor, or with nitrous oxide (N2O) to form the silicon oxide layer of MO transistor.
Nitrogen trifluoride: NF3 is the single largest electronic material from spend and volume standpoint for a-Si and LTPS display production while being surpassed by N2O for MO production. NF3 is used for cleaning the PECVD chambers. This gas requires scalability to get the cost advantage necessary for the highly competitive market.
Nitrous oxide: Used in both LTPS and MO display production, N2O has surpassed NF3 to become the largest electronic material from spend and volume standpoint for MO production. N2O is a regional and localized product due to its low cost, making long supply chains with high logistic costs unfeasible. Averaging approximately 2 kg per 5.5 m2 of mother glass area, it requires around 240 tons per month for a typical 120K per month capacity generation 8.5 MO display production. The largest N2O compressed gas trailer can only deliver six tons of N2O each time and thus it becomes both costly and risky
Nitrogen: For a typical large display fab, N2 demand can be as high as 50,000 Nm3/hour, so an on-site generator, such as the Linde SPECTRA-N® 50,000, is a cost-effective solution that has the added benefit of an 8% reduction in CO2 (carbon dioxide) footprint over conventional nitrogen plants.
Helium: H2 is used for cooling the glass during and after processing. Manufacturers are looking at ways to decrease the usage of helium because of cost and availability issues due it being a non-renewable gas.
N2 On-site generators: Nitrogen is the largest consumed gas at the fab, and is required to be available before the first tools are brought to the fab. Like major semiconductor fabs, large display fabs require very large amounts of nitrogen, which can only be economically supplied by on-site plants.
Cryogenic liquid truck trailers: Oxygen, argon, and carbon dioxide are produced at off-site plants and trucked short distances as cryogenic liquids in specialty vacuum-insulated tankers.
Compressed gas truck trailers: Other large volume gases like hydrogen and helium are supplied over longer distances in truck or ISO-sized tanks as compressed gases.
Individual packages: Specialty gases are supplied in individual packages. For higher volume materials like silane and nitrogen trifluoride, these can be supplied in large ISO packages holding up to 10 tons. Materials with smaller requirements are packaged in standard gas cylinders.
Blended gases: Laser gases and dopants are supplied as blends of several different gases. Both the accuracy and precision of the blended products are important to maintain the display device fabrication operating within acceptable parameters.
In-fab distribution: Gas supply does not end with the delivery or production of the material of the fab. Rather, the materials are further regulated with additional filtration, purification, and on-line analysis before delivery to individual production tools.
The consumer demand for displays that offer increas- ingly vivid color, higher resolution, and lower power consumption will challenge display makers to step up the technologies they employ and to develop newer displays such as flexible and transparent displays. The transistors to support these new displays will either be LTPS and / or MO, which means the gases currently being used in these processes will continue to grow. Considering the current a-Si display production, the gas consumption per area of the glass will increase by 25% for LTPS and ~ 50% for MO productions.
To facilitate these increasing demands, display manufacturers must partner with gas suppliers to identify which can meet their technology needs, globally source electronic materials to provide customers with stable and cost- effective gas solutions, develop local sources of electronic materials, improve productivity, reduce carbon footprint, and increase energy efficiency through on-site gas plants. This is particularly true for the burgeoning China display manufacturing market, which will benefit from investing in on-site bulk gas plants and collaboration with global materials suppliers with local production facilities for high-purity gas and chemical manufacturing.
Ms.Josey
Ms.Josey