a si active matrix tft lcd pricelist

Microtech Technology Company Limitedestablished in 2001,offers professional design and manufacturing services for hundreds types of Liquid Crytal Display modules and Touch Panels-TN,FSTN,TFT,RTP,CTP.With the advantages of high contrast,fast response time,wide viewable angle and low power consumption,Microtech"s products are widely used in Industrial Equipment,Medical devices,Home Intelligent Devices,Digital cameras,Video Game Devices,Instruments etc.Since its establishment,the management has been following human-oriented strategy and developing reliance among customers.To comply with these beliefs and ISO 9001:2015 standards,Microtech keeps on recruiting capable professionals,adopting advanced technology,developing new products,improving process and enhancing quality.Based on its strong R&D capacity, outstanding product quality and professional service,Microtech has won the high reputation from both mainland and oversea customers,and established long-term strategic partner relationship with them.

Our products are not only satisfy the display individuation requirement of all the mobile phone manufacturing factories in the mainland,but also meet the highly uniformity and reliability requirement to the display effect of module for many famous brands in Europe,American and Asia pacific.In addition,our products which have reached the extent of excellent quality and reliability could be applied in Automotive,Medical,Power station,Transportation,Industrial & Equipment and Office equipment for many famous enterprises in American,France,Italy,Australia,Korea and so on.

Our company have passed theISO 9001 quality system certification and SGS, RoHS, CE certification, to ensure all of our products and services are in international standard.

In order to obtain an excellent quality management team and offer our customers professional & efficient service and satisfied products,We comprehensively carry out Zero Defect quality management,implement ISO9001:2008 standards training and organize the examination /enrollment of quality management personnel national professional qualification.Our Mission "Efficient and timely service is the key to our success.Our success is tied with our client"s success. We are dedicated to provide excellent service to our customer at the most competitive prices." To provide customer a value added LCD product by stringent quality control,comprehensive technical support,and utilization of latest technology.

With our motto "Quality and Services are vital to enterpriess",Microtech aims to produce high quality LCD module to meet the customers" specific needs in all-round way.Meanwhile we seek for continuous service improvement,increase our market share,strengthen our competitiveness,and ultimately,expand our market worldwide!

a si active matrix tft lcd pricelist

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

a si active matrix tft lcd pricelist

TFT stands for "thin-film transistor" and it is a type of technology used by LCD (liquid crystal display) screens. Older LCD screens used a type of display called "passive" and they were plagued with ghosting and slow refresh rates. "Active" technology using thin-film transistors makes for brighter and faster screens, so all current color LCD displays use TFT technology.

Plasma is another display technology that competes with LCD. Plasma technology works by exciting pixels with a plasma discharge between two glass plates. It is fairly exotic technology and it can produce exceptionally pleasing pictures. That"s why plasma screens are generally more expensive than LCD.

When choosing between plasma and LCD TVs, you"re actually selecting between two competing technologies, both of which achieve similar features (i.e., ,bright crystal-clear images, super color-filled pictures) and come in similar packages (i.e., 3.5 inch depth flat screen casing). To complicate the decision-making process further, price and size are two previous considerations that are rapidly becoming non-issues as LCD TVs are now being made in larger sizes and at competing prices with plasma.

Plasma technology consists hundreds of thousands of individual pixel cells, which allow electric pulses (stemming from electrodes) to excite rare natural gases-usually xenon and neon-causing them to glow and produce light. This light illuminates the proper balance of red, green, or blue phosphors contained in each cell to display the proper color sequence from the light. Each pixel cell is essentially an individual microscopic florescent light bulb, receiving instruction from software contained on the rear electrostatic silicon board. Look very closely at a plasma TV and you can actually see the individual pixel cell coloration of red, green, and blue bars. You can also see the black ribs which separate each.

Whether spread across a flat-panel screen or placed in the heart of a projector, all LCD displays come from the same technological background. A matrix of thin-film transistors (TFTs) supplies voltage to liquid-crystal-filled cells sandwiched between two sheets of glass. When hit with an electrical charge, the crystals untwist to an exact degree to filter white light generated by a lamp behind the screen (for flat-panel TVs) or one projecting through a small LCD chip (for projection TVs). LCD TVs reproduce colors through a process of subtraction: They block out particular color wavelengths from the spectrum of white light until they"re left with just the right color. And, it"s the intensity of light permitted to pass through this liquid-crystal matrix that enables LCD televisions to display images chock-full of colors-or gradations of them.

Liquid crystal was discovered by the Austrian botanist Fredreich Rheinizer in 1888. "Liquid crystal" is neither solid nor liquid (an example is soapy water).

In the mid-1960s, scientists showed that liquid crystals when stimulated by an external electrical charge could change the properties of light passing through the crystals.

The early prototypes (late 1960s) were too unstable for mass production. But all of that changed when a British researcher proposed a stable, liquid crystal material (biphenyl).

TFT Glass has as many TFTs as the number of pixels displayed, while a Color Filter Glass has color filter which generates color. Liquid crystals move according to the difference in voltage between the Color Filter Glass and the TFT Glass. The amount of light supplied by Back Light is determined by the amount of movement of the liquid crystals in such a way as to generate color.

The most common liquid-crystal displays (LCDs) in use today rely on picture elements, or pixels, formed by liquid-crystal (LC) cells that change the polarization direction of light passing through them in response to an electrical voltage.

As the polarization direction changes, more or less of the light is able to pass through a polarizing layer on the face of the display. Change the voltage, and the amount of light is changed.

The segment drive method is used for simple displays, such as those in calculators, while the dot-matrix drive method is used for high-resolution displays, such as those in portable computers and TFT monitors.

Two types of drive method are used for matrix displays. In the static, or direct, drive method, each pixel is individually wired to a driver. This is a simple driving method, but, as the number of pixels is increased, the wiring becomes very complex. An alternative method is the multiplex drive method, in which the pixels are arranged and wired in a matrix format.

To drive the pixels of a dot-matrix LCD, a voltage can be applied at the intersections of specific vertical signal electrodes and specific horizontal scanning electrodes. This method involves driving several pixels at the same time by time-division in a pulse drive. Therefore, it is also called a multiplex, or dynamic, drive method.

In passive-matrix LCDs (PMLCDs) there are no switching devices, and each pixel is addressed for more than one frame time. The effective voltage applied to the LC must average the signal voltage pulses over several frame times, which results in a slow response time of greater than 150 msec and a reduction of the maximum contrast ratio. The addressing of a PMLCD also produces a kind of crosstalk that produces blurred images because non-selected pixels are driven through a secondary signal-voltage path. In active-matrix LCDs (AMLCDs), on the other hand, a switching device and a storage capacitor are integrated at the each cross point of the electrodes.

The active addressing removes the multiplexing limitations by incorporating an active switching element. In contrast to passive-matrix LCDs, AMLCDs have no inherent limitation in the number of scan lines, and they present fewer cross-talk issues. There are many kinds of AMLCD. For their integrated switching devices most use transistors made of deposited thin films, which are therefore called thin-film transistors (TFTs).

An alternative TFT technology, polycrystalline silicon - or polysilicon or p-Si-is costly to produce and especially difficult to fabricate when manufacturing large-area displays.

Nearly all TFT LCDs are made from a-Si because of the technology"s economy and maturity, but the electron mobility of a p-Si TFT is one or two orders of magnitude greater than that of an a-Si TFT.

This makes the p-Si TFT a good candidate for an TFT array containing integrated drivers, which is likely to be an attractive choice for small, high definition displays such as view finders and projection displays.

The TFT-array substrate contains the TFTs, storage capacitors, pixel electrodes, and interconnect wiring. The color filter contains the black matrix and resin film containing three primary-color - red, green, and blue - dyes or pigments. The two glass substrates are assembled with a sealant, the gap between them is maintained by spacers, and LC material is injected into the gap between the substrates. Two sheets of polarizer film are attached to the outer faces of the sandwich formed by the glass substrates. A set of bonding pads are fabricated on each end of the gate and data-signal bus-lines to attach LCD Driver IC (LDI) chips

To reduce the footprint of the LCD module, the drive circuit unit can be placed on the backside of the LCD module by using bent Tape Carrier Packages (TCPs) and a tapered light-guide panel (LGP).

The performance of the TFT LCD is related to the design parameters of the unit pixel, i.e., the channel width W and the channel length L of the TFT, the overlap between TFT electrodes, the sizes of the storage capacitor and pixel electrode, and the space between these elements.

The design parameters associated with the black matrix, the bus-lines, and the routing of the bus lines also set very important performance limits on the LCD.

In a TFT LCD"s unit pixel, the liquid crystal layer on the ITO pixel electrode forms a capacitor whose counter electrode is the common electrode on the color-filter substrate.

Applying a positive pulse of about 20V peak-to-peak to a gate electrode through a gate bus-line turns the TFT on. Clc and Cs are charged and the voltage level on the pixel electrode rises to the signal voltage level (+8 V) applied to the data bus-line.

The voltage on the pixel electrode is subjected to a level shift of DV resulting from a parasitic capacitance between the gate and drain electrodes when the gate voltage turns from the ON to OFF state. After the level shift, this charged state can be maintained as the gate voltage goes to -5 V, at which time the TFT turns off. The main function of the Cs is to maintain the voltage on the pixel electrode until the next signal voltage is applied.

This is usually implemented with a frame-reversal drive method, in which the voltage applied to each pixel varies from frame to frame. If the LC voltage changes unevenly between frames, the result would be a 30-Hz flicker.

In an active-matrix panel, the gate and source electrodes are used on a shared basis, but each unit pixel is individually addressable by selecting the appropriate two contact pads at the ends of the rows and columns.

By scanning the gate bus-lines sequentially, and by applying signal voltages to all source bus-lines in a specified sequence, we can address all pixels. One result of all this is that the addressing of an AMLCD is done line by line.

Virtually all AMLCDs are designed to produce gray levels - intermediate brightness levels between the brightest white and the darkest black a unit pixel can generate. There can be either a discrete numbers of levels - such as 8, 16, 64, or 256 - or a continuous gradation of levels, depending on the LDI.

The digital LDI produces discrete voltage amplitudes, which permits on a discrete numbers of shades to be displayed. The number of gray levels is determined by the number of data bits produced by the digital driver.

The color filter of a TFT LCD TV consists of three primary colors - red (R), green (G), and blue (B) - which are included on the color-filter substrate.

a si active matrix tft lcd pricelist

Microtips Technology strives to be the pioneer in new LCD technology. We aim to evolve with the needs of our customers and to provide the best possible prices with the shortest production times.

Established in 1990, Microtips Technology is now one of the leading global manufacturers and suppliers of LCD Modules. Today, we produce a full gamut of TFT Display Modules, Active Matrix and Passive Matrix OLED Modules, Graphic and Character Monochrome LCD Modules, and Fully Custom LCD Modules. We also have the ability to produce state of the art technology like IPS displays, high resolution OLED Displays, and Magnetic Resonance Wireless Power. Furthermore, we offers complete turnkey solutions for our customers by contributing to product design and development.

Microtips Technology provides local sales and engineering support in the Americas, Europe, and Asia. We are always available to discuss your project and make sure it will be a perfect fit for your needs.

We have ensured that the manufacturing plants in Taiwan and mainland China are equipped with modern machinery. Their excellent quality control measures have earned us the latest quality management certificates for both ISO9001 and ISO14001.

We believe in building a close rapport with our customers so that the end product comes out exactly as intended. Because of this, our team takes extreme pride in our customers’ end products.

Our exceptional engineering and sales staff follow the complete life cycle of your LCD products, from designing and pre-engineering to delivering large volume orders and beyond. We offer unparalleled continuous support in order to ensure the success of your design. We are continuously focusing our energies on the development and manufacturing process of your LCD for your current projects while closely following new technologies to create better displays for your future projects.

a si active matrix tft lcd pricelist

Color LCD module PS302-04043-00 is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a dual mode backlight. The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate. Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays. The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

a si active matrix tft lcd pricelist

The world of smartphones has been busy for the past few months. There have been numerous revolutionary launches with groundbreaking innovations that have the capacity to change the course of the smartphone industry. But the most important attribute of a smartphone is the display, which has been the focus for all prominent players in the mobile phone industry this year.

Samsung came up with its unique 18:5:9 AMOLED display for the Galaxy S8. LG picked up its old trusted IPS LCD unit for the G6’s display. These display units have been familiar to the usual Indian smartphone buyer. Honor, on the other hand, has just unveiled the new Honor 8 Pro for the Indian market that ships with an LTPS LCD display. This has led to wonder how exactly is this technology different from the existing ones and what benefits does it give Honor to craft its flagship smartphone with. Well, let’s find out.

The LCD technology brought in the era of thin displays to screens, making the smartphone possible in the current world. LCD displays are power efficient and work on the principle of blocking light. The liquid crystal in the display unit uses some kind of a backlight, generally a LED backlight or a reflector, to make the picture visible to the viewer. There are two kinds of LCD units – passive matrix LCD that requires more power and the superior active matrix LCD unit, known to people as Thin Film Transistor (TFT) that draws less power.

The early LCD technology couldn’t maintain the colour for wide angle viewing, which led to the development of the In-Plane Switching (IPS) LCD panel. IPS panel arranges and switches the orientation of the liquid crystal molecules of standard LCD display between the glass substrates. This helps it to enhance viewing angles and improve colour reproduction as well. IPS LCD technology is responsible for accelerating the growth of the smartphone market and is the go-to display technology for prominent manufacturers.

The standard LCD display uses amorphous Silicon as the liquid for the display unit as it can be assembled into complex high-current driver circuits. This though restricts the display resolution and adds to overall device temperatures. Therefore, development of the technology led to replacing the amorphous Silicon with Polycrystalline Silicon, which boosted the screen resolution and maintains low temperatures. The larger and more uniform grains of polysilicon allow faster electron movement, resulting in higher resolution and higher refresh rates. It also was found to be cheaper to manufacture due to lower cost of certain key substrates. Therefore, the Low-Temperature PolySilicon (LTPS) LCD screen helps provide larger pixel densities, lower power consumption that standard LCD and controlled temperature ranges.

The AMOLED display technology is in a completely different league. It doesn’t bother with any liquid mechanism or complex grid structures. The panel uses an array of tiny LEDs placed on TFT modules. These LEDs have an organic construction that directly emits light and minimises its loss by eradicating certain filters. Since LEDs are physically different units, they can be asked to switch on and off as per the requirement of the display to form a picture. This is known as the Active Matrix system. Hence, an Active Matrix Organic Light Emitting Diode (AMOLED) display can produce deeper blacks by switching off individual LED pixels, resulting in high contrast pictures.

The honest answer is that it depends on the requirement of the user. If you want accurate colours from your display while wanting it to retain its vibrancy for a longer period of time, then any of the two LCD screens are the ideal choice. LTPS LCD display can provide higher picture resolution but deteriorates faster than standard IPS LCD display over time.

An AMOLED display will provide high contrast pictures any time but it too has the tendency to deteriorate faster than LCD panels. Therefore, if you are after greater picture quality, choose LTPS LCD or else settle for AMOLED for a vivid contrast picture experience.

a si active matrix tft lcd pricelist

Brand SamsungSize 60.96 cm (24 inch) LED Backlit DisplayFull HD YesHD YesContrast Ratio Mega DCRPanel Type VAResolution 1920 x 1080 PixelHDMI YesVGA Yes

Brand BenQSize 58.42 cm (23 inch) LED Backlit DisplayFull HD YesHD YesContrast Ratio 1000:01:00, 20000000:1 (Dynamic)Panel Type AH-IPSResolution 1920 x 1080 PixelHDMI YesDVI YesVGA Yes, D-sub

Brand BenqSize 60.96 cm (24 inch) LED Backlit DisplayHD YesDisplay Type LEDContrast Ratio 1000:1Panel Type TNResolution 1920 x 1080 PixelHDMI 1.4 Port

Brand ViewSonicSize 59.94 cm (23.6 inch) LED Backlit DisplayFull HD YesHD YesContrast Ratio 1000:01:00, 120000000:1 (Dynamic)Panel Type Color a-Si Active Matrix TFT LCD, PLSResolution 3840 x 2160 pixelsHDMI Yes, 1 HDMI 2.0 Port

Brand SamsungSize 54.61 cm (21.5 inch)Full HD YesHD YesDisplay Type LCDContrast Ratio 600:01:00, 5000000:1 (Dynamic)Panel Type TNResolution 1920 x 1080 PixelDVI Yes, 1VGA Yes, D-sub

Brand SamsungSize 59.94 cm (23.6 inch) LED Backlit DisplayFull HD YesHD YesDisplay Type LCDContrast Ratio 1000:01:00Panel Type PLSResolution 1920 x 1080 PixelHDMI Yes, 1VGA Yes,D Sub

Brand SamsungSize 59.94 cm (23.6 inch) LED Backlit DisplayFull HD YesHD YesDisplay Type LCDContrast Ratio 600:01:00, 5000000:1 (Dynamic)Panel Type VAResolution 1366 x 768 pixelsHDMI Yes, 2

Brand SamsungSize 54.61 cm (21.5 inch)Full HD YesHD YesDisplay Type LCDContrast Ratio 600:01:00, 5000000:1 (Dynamic)Panel Type TNResolution 1920 x 1080 PixelDVI Yes, 1VGA Yes, D-sub

Brand DellSize 54.61 cm (21.5 inch)Display Type LEDContrast Ratio 8 million:1Panel Type VAResolution 1920 x 1080 PixelDVI DVI-D (HDCP), HDMI, VGA, USB 2.0 upstream port (for touch enablement), Audio line-out

a si active matrix tft lcd pricelist

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

a si active matrix tft lcd pricelist

The most common semiconducting layer is made of amorphous silicon (a-Si). a-Si  thin film transistor - liquid crystal display (TFT-LCD) has been the dominant technology for the manufacturing of active matrix TFT-LCD for over 20 years. a-Si is a low cost material in abundant supply.

a-Si is a low cost material in abundant supply. However, the electron mobility of a-Si is very low (around 1cm2/Vs) and can’t physically support high refresh rates such as the 240Hz needed for HDTV. Due to their high electron mobility, new materials such as metal oxide (MO) and low temperature polysilicon (LTPS) are now replacing a-Si to manufacture the industry’s two main types of screens: LCD and organic light-emitting diode (OLED) displays.

a si active matrix tft lcd pricelist

The history of electronics has no greater story arc than that of the inventor (or group of inventors) who develops something brilliant, only for the company he worked for to disregard it out of concern it didn’t match the corporation’s needs.

David J. Collins, a key innovator in the history of the barcode, toiled away at Sylvania for years, developing the device to be used on rail cars, before the company ended up blowing off his idea—and he struck out on his own, to much success.

The Xerox Alto, an early example of the GUI in action, was largely ignored by Xerox until the early 1980s, after which point a noted visitor to Xerox PARC, Apple executive Steve Jobs, borrowed its basic concepts for the Apple Lisa and Macintosh.

Kodak invented many of the general concepts for the digital camera under its own roof, but inventor Steve Sasson was told to set his invention aside at first, with Kodak only belatedly embracing a device that its own employee invented.

This is another story just like those, except this one involves the very screen you’re probably looking at, especially if it’s based on LCD technology.

In the 1970s, a pair of engineers that worked for Westinghouse, T. Peter Brody and Fang-Chen Luo, came to develop the first active-matrix LCD screen. Brody, born in Hungary, had gained an interest in the fledgling technology of thin film transistors, an experimental technology that had come to be seen as a potential avenue for visually displaying content in a more compact form than a cathode-ray tube.

In a patent filing, the creators emphasized that the technology was feasibly possible, but that it required a different technical basis than the silicon usually relied on for moving transistors around.

“It has been apparent for some time that a solid-state flat panel display is conceptually achievable,” the patent filing stated. “Efforts to utilize silicon technology to this end are limited by the size limitation problems of the silicon wafer, which negates achievement of large area displays.”

So instead, the creators used thin-film transistors on a substrate of glass, which allowed the device to be firm, but thinner, while also allowing light through. The thin film was held into place with an insulator layer with an electrode conducted over the screen. The device, a six-inch square, could display objects at a resolution of 20 lines per inch. (Comparatively, a MacBook Air has a resolution of about 227 lines per inch, and we also describe the result in pixels per inch today.)

While today trying to see the individual transistors within a screen is fairly hard without, say, a microscope, in the 1970s, it was fairly easy—and as a result, when Time Magazine wrote about the invention in 1974, the outlet described the result as “a graph-paper-like-pattern in which there are 14,400 points of intersection.”

While admitting the device was still relatively crude, and with “a resolution only good enough to display letters, numbers and simple images in silhouette,” it nonetheless highlighted the potential for flat screens to someday replace bulky CRTs. Brody described the modest device in the Time article as “probably the world’s largest integrated circuit,” rather than simply as a screen.

As the patent filing notes, it was not the only kind of thin screen around during this era—for example, gas-plasma technology, which gained popularity in television sets in the early 2000s, had offered terminals on the early PLATO computer system their famed orange hue.

But it was the starting point of the technology that stuck. By the mid-1990s, active-matrix displays that relied on color became the norm in laptops, thanks to their combination of vivid color and thinness. But despite the concept coming from an American company’s R&D department and improved by other American R&D departments, nearly all panels were developed by Japanese manufacturers even at the beginning of their mainstream use cases.

The problem? Well, the technology that Brody and Luo developed never caught on within Westinghouse, in part because the corporate structure was moving away from televisions entirely as the company struggled in that market. As the MIT Technology Review wrote in 1991 amid a quick rise in color laptops in the computing space, Westinghouse had quit selling televisions in the early 1970s, and the company actually shut up shop on the development arm of the company that allowed Brody and his team to develop the device.

In fact, Westinghouse’s efforts with the flat-panel LCD display ended way back in the 1970s, as did similar efforts at other large U.S. companies. “Both large corporations and venture capital-backed start-ups have quit the field, usually after hitting production difficulties,” authors Richard Florida and David Browdy wrote.

Observers within Westinghouse interviewed for the piece said that the technology was great, but deadlines were frequently missed, as William Coates, who worked in the company’s consumer electronics department, said that these ended up turning the company off of relying on an innovative technology.