industrial lcd monitor quotes free sample
Established in 2010, Topfoison has devoted itself to the manufacturing and development of high-quality products for the Wearable device, Smart Watch, VR, Medical device, Industrial LCD display including Color LCD modules/OLED/LCD display/Round lcd screen/Round AMOLED/ Square transflective lcd screen/ IPS full wide display/ 1080p fhd AMOLED and 2K 1440p lcd. Topfoison focus on1.22-7.0 inch small size displays, all the products produced in our company enjoys the most advanced production craft and technology as well as the strictly ISO quality management system.
Established in 2010, Topfoison has devoted itself to the manufacturing and development of high-quality products for the Wearable device, Smart Watch, VR, Medical device, Industrial LCD display including Color LCD modules/OLED/LCD display/Round lcd screen/Round AMOLED/ Square transflective lcd screen/ IPS full wide display/ 1080p fhd AMOLED and 2K 1440p lcd. Topfoison focus on1.22-7.0 inch small size displays, all the products produced in our company enjoys the most advanced production craft and technology as well as the strictly ISO quality management system.
A freelance quote is used to determine and present the estimated cost of specific services from a freelance worker. Whether you’re a freelance writer, graphic designer, or photographer, our Freelance Quote Template will help automate your workflow by generating quotes automatically. When clients fill out your request form, their submissions will instantly be converted into polished PDFs that you can easily download, print, and send directly to clients via autoresponder.There are thousands of freelance workers out there, so make sure you stand out from the crowd by customizing your Freelance Quote Template to represent your unique business. Even if you’ve already got your hands full of work, it’ll only take a few minutes to add form fields, change visual elements, and upload your logo using our drag-and-drop PDF Editor. You can even send form submissions to your other online accounts by integrating with our 130+ available integrations! When you’re done, your custom Freelance Quote Template will turn responses into professional PDFs, saving you time better spent doing work for your clients.
4:3 aspect ratio televisions were the standard for many years. However, 16:9 aspect ratio is now the dominant widescreen monitor format. Consequently, TRU-Vu offers an extensive selection of 1080p monitors and touch screens with a variety of aspect ratios. Similarly, we also offer our industrial-grade monitors and touch screens with 16:10 aspect ratio. Browse our 16:9 wide-screen displays to find the perfect solution for your needs. You can even search exclusively for only 16:9 monitors with our search tool.
Our 16×9 monitors are an ideal match for 1920×1080 aspect ratio cameras and 16:9 resolutions from other devices. Widescreen monitors range from 800 x 480 to 1920×1080 aspect ratios, as well as 4K resolution. We are pleased to offer our 16:9 and 16:10 resolution widescreen monitors in a wide range of sizes and configurations. This includes convenient panel-mount LCD monitors and Sunlight Readable monitors and waterproof outdoor monitor options. These are built for tough conditions.
We are often asked “What is my aspect ratio?” Or sometimes “Do you have a 1080p monitor?” “Can you tell me the aspect ratio of 1920×1080?” A widescreen aspect ratio refers to a 16:9 aspect ratio screen. This is the rectangular shape similar to any modern television. Older TV’s and monitors had a 4:3 aspect ratio, which looked more like a square monitor. Check out our 4:3 vs 16:9 Aspect Ratio article in order to help you understand the differences between the two monitor formats. You can also use this handy aspect ratio calculator. Likewise, you can speak with one of our application specialists about all of the technical specifications on our displays. Feel free to request a recommendation. They will help determine the ideal 16:9 aspect ratio or 16:10 aspect ratio monitors for your environment. If you are interested to learn more about aspect ratios, please also check our terminology guide.
We would be happy to modify any of our monitors for you. For instance, TRU-Vu can customize nearly aspect of your display, from the inputs and electronics, to screen treatments and enclosures.Modified options are often available at low or no additional cost. Additionally, we also offer custom monitors to meet your exact requirements. Lastly, Private label options are also available for your brand promotion.
At General Digital, we produce the finest rugged military displays available on the market for the U.S. Armed Forces and her allies. Every rugged monitor that we produce is uniquely equipped with highly specialized capabilities for use within tanks, armored personnel carriers, Humvees, submarines, aircraft carriers, helicopters, fighter jets and all types of land, marine, air, space and autonomous vehicle systems.
These rugged LCD innovations continue to prove indispensable as the military continues its development of on-the-move intelligence systems, threat detection, surveillance and suppression operations. Therefore, every General Digital military-grade LCD monitor and ruggedized peripheral can be customized to meet the rigorous demands presented in the modern warfare theater.
General Digital"s reputation for going above and beyond military standards means we utilize in-house equipment for engineering, design, testing and validation of all of our rugged LCD displays.
General Digital designs and builds in the United States of America, so you know you’re getting robust and dependable flat panel military LCD monitors and accessories. Our monitors will last for years, long after the others have succumbed to the elements. Below is a list of our heavy-duty product line, which will suit just about any requirement you have. And if it doesn’t, we’ll build it for you.
The Saber series consists of standard rack mount, panel mount and standalone/VESA mount military-grade and COTS (Commercial Off-The-Shelf) LCD monitors. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs and more. The
The TwoView Micro (dual display), SlimLine Micro and Rack Mount Hinge series consist of 1U and 2U high rack mount, flip-up and flip-down military-grade LCD monitors in a rack mount drawer. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs and more. They have been used in military applications such as:
The TwoView (dual display), SlimLine 1U and SlimLine Lite II series consist of 1U and 2U high rack mount, flip-up military-grade LCD monitors with integral keyboards and trackballs in a rack mount drawer. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs, keyboards and more. They have been used in military applications such as:
The Barracuda series consists of NEMA 4/6 and IP67 environmentally sealed rack mount, panel mount and standalone/VESA mount military-grade and COTS (Commercial Off-The-Shelf) LCD monitors. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs and more. The marine-grade
The Impact series consists of an open frame military-grade LCD monitor kit, ready for mounting where you need it. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs and more. They have been used in military applications such as:
With so many available rugged military display options available for the armed forces, we are happy to help you, the military professional, develop an individualized rugged monitor display system that matches your unique battlefield needs.
Our outdoor digital signage displays use a completely different design process from indoor displays. Free-standing Outdoor LCD Display – UO200P builts as IP65/IP55 fully enclosed display module, and complete proof to all the elements such as dust, rain, moisture, and so on. can cope with various changes in outdoor weather conditions. And Uniview launched two different types of outdoor kiosk for sale, fan cooling or air conditioning cooling, to meet the choices of many customers.
In bigger hospitals, proper coordination is needed for a well-organized operation of various departments. These include moving the patients efficiently. LCD monitors are being used in order to display related information about patients and improve their flow as well as increase their family’s awareness about their locations. It also shows which rooms are available, along with other important information.
Moreover, LCD screens could also function as a stand-alone TV and as a computer monitor. With these, it is capable of internet and local area network connectivity. In a hospital or any other bigger setting, such connectivity is useful to monitor several LCD screens remotely.
The modern day medical system are already utilizing the latest LCDs for a more detailed and accurate diagnosis. An example of this is a procedure called Mammography.
Advanced LCD monitors are now being used in hospitals and other medical facilities to deliver reliable medical-grade visualization and surgical displays. Some are even equipped with OR integration technologies.
LCD screens are being used in wards in order to monitor patients and their corresponding beds for information. Most hospitals have central monitor in the whole ward that can be used in case of any emergency along with other information in the area.
In the waiting rooms of most hospitals, LCD monitors are being used to share important medical information such as how to avoid catching dengue with corresponding images or videos. This acts as a way to inform or educate the visitors. LCD screens also acts as a TV and thus, provides entertainment in the waiting rooms of hospitals.
Many hospitals nowadays are using LCDs as digital navigation tools to lead their visitors around the area. Many of these have even touchscreen features.
Medical-grade LCD displays are markedly superior as compared to those which are designed for commercial use for a number of reasons. First, it underwent an inherent component and manufacturing quality process which are compliant to highly rigorous medical standards. It also passed very sophisticated QA control systems and software compatibility procedures.
Medical displays are also designed to have greater luminance stability throughout their lifetime. This gives high quality image presentation and diagnostic yield to the clinician. Moreover, it extends the life of such costly device. For a better image presentation, it features higher maximum luminance in contrast to the consumer-grade monitors. It has also higher contrast ratio and better grayscale reproduction.
The availability of a more advanced digital technology such as the latest LCD screens has changed the way medical facilities and hospitals operate. It plays an integral part in which the data about patients are being used and distributed. Because it is now a necessity in these amenities, the quality of such products must be considered carefully. iTech Company offers reliable
Industrial Display Systems provide a wide range of reliable displays from 5.7" to 55" including LCD displays, touch screen panels, outdoor displays and digital signage displays, and a series of industrial monitors including open frame monitors and panel mount monitors, which work perfectly with embedded boards and systems to fulfill various application needs.
The use of liquid crystal displays (LCDs) in user interface assemblies is widespread across nearly all industries, locations, and operating environments. Over the last 20 years, the cost of LCD displays has significantly dropped, allowing for this technology to be incorporated into many of the everyday devices we rely on.
The odds are high you are reading this blog post on a laptop or tablet, and it’s likely the actual screen uses LCD technology to render the image onto a low-profile pane of glass. Reach into your pocket. Yes, that smartphone likely uses LCD technology for the screen. As you enter your car, does your dashboard come alive with a complex user interface? What about the menu at your favorite local drive-thru restaurant? These are some everyday examples of the widespread use of LCD technology.
But did you know that the U.S. military is using LCD displays to improve the ability of our warfighters to interact with their equipment? In hospitals around the world, lifesaving medical devices are monitored and controlled by an LCD touchscreen interface. Maritime GPS and navigation systems provide real-time location, heading, and speed information to captains while on the high seas. It’s clear that people’s lives depend on these devices operating in a range of environments.
As the use of LCDs continues to expand, and larger screen sizes become even less expensive, one inherent flaw of LCDs remains: LCD pixels behave poorly at low temperatures. For some applications, LCD displays will not operate whatsoever at low temperatures. This is important because for mil-aero applications, outdoor consumer products, automobiles, or anywhere the temperature is below freezing, the LCD crystal’s performance will begin to deteriorate. If the LCD display exhibits poor color viewing, sluggish resolution, or even worse, permanently damaged pixels, this will limit the ability to use LCD technologies in frigid environments. To address this, there are several design measures that can be explored to minimize the impact of low temperatures on LCDs.
Most LCD displays utilize pixels known as TFT (Thin-Film-Transistor) Color Liquid Crystals, which are the backbone to the billions of LCD screens in use today. Since the individual pixels utilize a fluid-like crystal material as the ambient temperature is reduced, this fluid will become more viscous compromising performance. For many LCD displays, temperatures below 0°C represent the point where performance degrades.
Have you tried to use your smartphone while skiing or ice fishing? What about those of you living in the northern latitudes - have you accidently left your phone in your car overnight where the temperatures drop well below freezing? You may have noticed a sluggish screen response, poor contrast with certain colors, or even worse permanent damage to your screen. While this is normal, it’s certainly a nuisance. As a design engineer, the goal is to select an LCD technology that offers the best performance at the desired temperature range. If your LCD display is required to operate at temperatures below freezing, review the manufacturer’s data sheets for both the operating and storage temperature ranges. Listed below are two different off-the-shelf LCD displays, each with different temperature ratings. It should be noted that there are limited options for off-the-shelf displays with resilience to extreme low temperatures.
For many military applications, in order to comply with the various mil standards a product must be rated for -30°C operational temperature and -51°C storage temperature. The question remains: how can you operate an LCD display at -30°C if the product is only rated for -20°C operating temperature? The answer is to use a heat source to raise the display temperature to an acceptable range. If there is an adjacent motor or another device that generates heat, this alone may be enough to warm the display. If not, a dedicated low-profile heater is an excellent option to consider.
Made of an etched layer of steel and enveloped in an electrically insulating material, a flat flexible polyimide heater is an excellent option where space and power are limited. These devices behave as resistive heaters and can operate off a wide range of voltages all the way up to 120V. These heaters can also function with both AC and DC power sources. Their heat output is typically characterized by watts per unit area and must be sized to the product specifications. These heaters can also be affixed with a pressure sensitive adhesive on the rear, allowing them to be “glued” to any surface. The flying leads off the heater can be further customized to support any type of custom interconnect. A full-service manufacturing partner like Epec can help develop a custom solution for any LCD application that requires a custom low-profile heater.
With no thermal mass to dissipate the heat, polyimide heaters can reach temperatures in excess of 100°C in less than a few minutes of operation. Incorporating a heater by itself is not enough to manage the low temperature effects on an LCD display. What if the heater is improperly sized and damages the LCD display? What happens if the heater remains on too long and damages other components in your system? Just like the thermostat in your home, it’s important to incorporate a real-temp temperature sensing feedback loop to control the on/off function of the heater.
Another important consideration when selecting a temperature sensor is how to mount the individual sensors onto the display. Most LCD displays are designed with a sheet metal backer that serves as an ideal surface to mount the temperature sensors. There are several types of thermally conductive epoxies that provide a robust and cost-effective way to affix the delicate items onto the display. Since there are several types of epoxies to choose from, it’s important to use a compound with the appropriate working life and cure time.
For example, if you are kitting 20 LCD displays and the working life of the thermal epoxy is 8 minutes, you may find yourself struggling to complete the project before the epoxy begins to harden.
Before building any type of prototype LCD heater assembly, it’s important to carefully study the heat transfer of the system. Heat will be generated by the flexible polyimide heater and then will transfer to the LCD display and other parts of the system. Although heat will radiate, convect, and be conducted away from the heater, the primary type of heat transfer will be through conduction. This is important because if your heater is touching a large heat sink (ex. aluminum chassis), this will impact the ability of the heater to warm your LCD display as heat will be drawn toward the heat sink.
Before freezing the design (no pun intended) on any project that requires an LCD display to operate at low temperatures, it’s critical to perform low temperature first. This type of testing usually involves a thermal chamber, a way to operate the system, and a means to measure the temperature vs time. Most thermal chambers provide an access port or other means to snake wires into the chamber without compromising performance. This way, power can be supplied to the heater and display, while data can be captured from the temperature sensors.
The first objective of the low-temperature testing is to determine the actual effects of cold exposure on the LCD display itself. Does the LCD display function at cold? Are certain colors more impacted by the cold than others? How sluggish is the screen? Does the LCD display performance improve once the system is returned to ambient conditions? These are all significant and appropriate questions and nearly impossible to answer without actual testing.
As LCD displays continue to be a critical part of our society, their use will become even more widespread. Costs will continue to decrease with larger and larger screens being launched into production every year. This means there will be more applications that require their operation in extreme environments, including the low-temperature regions of the world. By incorporating design measures to mitigate the effects of cold on LCD displays, they can be used virtually anywhere. But this doesn’t come easy. Engineers must understand the design limitations and ways to address the overarching design challenges.
A full-service manufacturing partner like Epec offers a high-value solution to be able to design, develop, and manufacture systems that push the limits of off-the-shelf hardware like LCD displays. This fact helps lower the effective program cost and decreases the time to market for any high-risk development project.
If you need both pumped and non-pumped functionality, buying one monitor that can do both is often more cost effective and reduces the number of monitors your workers carry.
The Ventis MX4 is available in both pumped and non-pumped versions, or can be used with the Ventis Slide-on Pump for pre-entry sampling. With the Ventis Slide-on Pump, you can eliminate the need for extra monitors and transition seamlessly from personal monitoring to confined space entry use. The Ventis Slide-on Pump is ideal for operators who wear their gas monitors primarily for personal protection, but occasionally require a pump for confined space entries.