ultra low power lcd display in stock

This is a thin, extremely low-power 128x64 graphic LCD display module. It has no backlight, so consumes no power illuminating the display. However, if you wanted to backlight the module, the rear polarizer is transflective, so you could add your own lighting solution there. This display is perfectly suited for hand-held or any application requiring low power consumption or a very thin display. A row of icons is shown automatically top of the display without having to be rendered. This display has an integrated controller and the tail is designed to mate with standard 18-conductor 0.5mm pitch ZIF connectors (typical would be Omron XF2L18351A/ DigiKey P/N OR754CT-ND).

Do you need a display that draws the lowest current possible? Want long lasting battery-powered LCD project? Well, you have come to the right place. We compiled this list of digital displays that consume the least amount of power. These displays are perfect for when you are trying to extend the battery life of your product by pulling the least amount of current possible.
Other than a pen and paper, ePaper provides the lowest power consumption available for electronic displays. It does this via an electrochemical process that requires zero power once the pixels are in their desired location. These displays are ideal for when the content is not updated very often. Low-power ePapers only use power during updates, so the longer time between updates, the lower the power consumed.
The beauty of OLED displays and power consumption is that OLEDs only draw current for pixels that are on. For instance, when displaying a black and white checkerboard pattern, an OLED display consumes 50% less current than when displaying a completely white screen. Keeping that in mind, user interfaces can be designed to conserve as much power as possible by limiting how many pixels are lit.

DISPLAY VISIONS" EA-DOGS102 series graphic LCDs are available in an FSTN positive transflective, STN negative transmissive, and FSTN positive reflective version. These displays have a 2.54 mm pitch and can be soldered directly or plugged into socket strips. Therefore, cumbersome gluing procedures, the need for designing a special mounting device, and error-prone cable connections that may lose contact are no longer a concern.
This LCD family was designed for use in the German industry and will have an availability of 15+ years. The extremely efficient ratio of external dimensions to the active display area helps in designing very compact devices. Furthermore, its low-power use [single supply 2.5 V to 3.3 V (typically 250 µA)] makes it ideal for handheld applications.
The EA 9780-4USB development board and free windows simulator are all users require to evaluate pin connected chip-on-glass LCDs with and without backlight. Simply plug the 2.54 mm connector pins of the display into the socket strips of the development board. Proprietary hardware or software development is not required. Decisions can be made quickly at a minimum expense.

E-Paper, also known as electrophoretic display or e-ink, has proven to be one of the most unique display technologies to date. Each E-Paper display is filled with microscopic capsules with different charges to display a wide array of colors (also comes in monochrome). When electrical charges interact with these capsules, it is able to portray and change the display image. Typically images being displayed with E-Paper are stationary and not moving.
The electronic ink charges that portray the images on the displays, appear as if it’s physical paper. The brightness does not change nor fading in any light; even in direct sunlight words on e-paper are still fully readable. E-Paper is considered to be bistable, meaning it only has two states of power; active or inactive. Once an image is projected on E-Paper, it will cease to consume power on the device until you decide to change the image resulting in great battery life.

2. You’re right – the Sharp displays are expensive. Adafruit provides only the display for $45 (which I purchased and used for early prototyping). The NEWT includes the display plus:
That being said… $92 is a lot of money… so I’m all for people building their own – or better yet, building a better version. I’ll add a comment below with links to all the software (device and server side) and hardware designs.
A. I might use a NE555 to send a 1 HZ pulse to the display, and use a different RTC- as long as it was low cost, low power, and supported multiple alarms/timers. Or maybe I’d add a crystal to the ESP32 and use internal RTC (which is super inaccurate w/o an RTC).
C. I think I’d add a legit battery fuel monitor (I use a voltage monitoring chip right now, that goes HIGH when the batt voltage falls below 3.5V). There were few to no LiPO fuel gauge chips in stock when I launched NEWT
![]()
Sun Vision Display panels are100% reflective, meaning they have no backlight whatsoever. This makes them an excellent computer monitor solution for people looking to reduce blue light exposure or other common issues reported by people withcomputer-related vision syndromes. It also makes them an incredible solution for advertising in sunny places, where it can be difficult to view other display technologies - all without racking up hefty energy costs.
Ms.Josey
Ms.Josey