computer with three display screens factory
Whether you want to use your laptop’s screen as a monitor or attach three more, separate monitors, the instructions are essentially the same. You’re really only limited by the number and type of ports that you have.
Some factory graphics cards that come standard with laptops, such as many Intel integrated graphics products, will only support a specific configuration of monitors in some circumstances.
Turn on your laptop, and check to see if the displays are all active. In most cases, the monitors will be automatically detected and default to mirroring the main screen. If not, check all connections and plugs before moving on.
Open Settings > System > Display. You will see a box with the three representations of your monitors. If one or more monitors are not detected, scroll down to Multiple Displays and click Detect. If there"s still no activity, you should troubleshoot your monitor.
Remember, the computer has no way of knowing where your monitors are, so if, for example, you had Monitor 2 above Monitor 1, but configured it with Monitor 2 on your left, you"d have to move your mouse to the left off your primary screen in order to get it onto Monitor 2.
Designate the monitor you’ll be using as your primary monitor by double-clicking on your primary screen, scrolling down to Multiple Displays, and clicking Make This My Main Display. This will ensure it always starts with that monitor as your primary desktop.
With the other monitors, select them and configure their resolution and orientation. If possible, match the resolutions between the three monitors so you can easily transition between them.
If you want to extend your display across all monitors, scroll down to “Multiple Displays” in Settings > System > Display and select “Extend Display.” You can also use this option to mirror your display, if you"re showing something on the monitor in a presentation, for example, or use it to temporarily disable monitors without unplugging them.
To connect three monitors to a desktop PC, use video cables to connect each monitor to your PC one by one, then go to the Display settings to set up your extended display.
HDMI and DisplayPort are two different video connection technologies. DisplayPort is the standard for connecting computers to displays, but an HDMI cable can suffice in a pinch. There are also HDMI-to-DisplayPort converters if you need them.
Looking for wholesale triple monitor? Look no further than Alibaba.com, one of the largest collections of wholesale shipment suppliers in the world. We have a huge range of lcd computer monitor options and lcd display screen options to choose from. Whether you need a small lcd screen or a large one, we have you covered.
These triple monitor products have become the go to display types for computers today. With tft color monitors slowly being phased out, lcd computer monitor displays are the standard in the industry. All customers need a flat screen computer monitor to interact with their personal computers. For ardent gamers that require high refresh rates to minimize lagging and make use of high performance computers there are a range of lcd gaming monitors available.
Online Monitors AnyWhere is a cloud-based Content Management System (SaaS) that allows you to design, update, and display beautiful layouts via any Internet-connected device that can run an HTML5-based browser.
Why we like it: The Dell P3421W has a sturdy adjustable stand, lots of ports (including a USB-C port that can handle power, display, and data over a single cable), and a three-year warranty. And it has a built-in KVM switch that allows you to easily swap your keyboard, mouse, and video between two computers. The 1440p display has a 60 Hz refresh rate, which is great for typical office work, web browsing, and casual gaming.
Flaws but not dealbreakers: If you use your display in direct sunlight, this monitor might not be bright enough for you. It can also provide 65 W of power over USB-C, but some laptops require more. If you have a laptop with an Nvidia GeForce RTX GPU or an Intel Core i7 processor, you might need to keep the laptop plugged in to a separate charger or use a Thunderbolt dock that can provide the extra power.
Most ultrawide monitors are also curved. This design helps minimize viewing-angle problems—when you’re sitting centered, things on the far edges of the screen won’t look as washed out as they would on a flat display of a similar width. But this also makes ultrawide monitors inaccurate for precision tasks requiring straight lines, such as drawing, photo editing, or similar design work.
“Great for traveling. I bought this as we are snowbirds and travel each winter. Too hard to travel with the big monitors and computer. We are traveling to Greece this winter and this is perfect for work.”
The best touchscreen monitors allow you to interact with your desktop computer via tap, swipe, and pinch-to-zoom. Alternatively, you can install it as a secondary monitor to use with an office-based laptop.
In this article, we"ve gathered together the best touchscreen monitors available today – in a range of sizes from 21 inches to a special ultrawide monitor(opens in new tab) that"s 49 inches. If you"re after a smaller secondary monitor that can be carried with your laptop for use on the go, see our list of the best portable monitors(opens in new tab). (Portable monitors can also be had with touch sensitivity, but they"re smaller and are powered by your laptop"s battery, so they don"t need their own power supply.)
If you"ve already researched the best monitors for photo editing(opens in new tab) or the best video editing monitors(opens in new tab), you may have realized that none of them are touch screen monitors. But why not? Why would you consider choosing a new monitor without touch sensitivity?
Dell"s P2418HT has fairly typical touchscreen display credentials: a 23.8-inch screen size and Full HD (1920 x 1080) resolution. But it stands out from the crowd in other areas.
Its special articulating stand transitions the display from a standard desktop monitor to a downward 60-degree angle touch orientation. It also supports extended tilt and swivel capabilities, so you can adjust the screen to your task or a more comfortable position. Plus, a protective cushion at the base of the screen offers a buffer against bumps when the stand is fully compressed.
The ViewSonic TD2230 boasts upmarket image quality thanks to its IPS LCD display that provides better color and contrast consistency, regardless of your viewing position, while the 1920 x 1080 screen res is high enough for crisp image clarity when spread across the 21.5-inch panel size. 250 cd/m2 max brightness and a 1000:1 contrast ratio are pretty typical, while HDMI, DisplayPort, and analog VGA connectors ensure you"ll be able to hook this monitor to pretty much any computer running Windows 10, Android, or Linux.
Want a larger-than-average touchscreen monitor? This 27-inch offering is our pick, as it"s based around an IPS LED-backlit display. That translates to more dependable color accuracy and contrast that won"t shift depending on whether you"re viewing the centre of the screen or the corners.
The Full HD resolution is spread a little thin across a 27-inch display, so images will look slightly pixelated, but this is an unavoidable compromise you have to make if you want a touchscreen monitor larger than 24 inches. The PCT2785 does score well in terms of versatility though, as you get a built-in HD webcam and microphone, making it great for homeworking(opens in new tab) and video conferencing.
If you can get past the uninspiring black plastic design of the Philips 242B9T, this touchscreen monitor has a lot to offer. It should be easy to connect to pretty much any computer, thanks to its full array of HDMI, DVI, VGA, and DisplayPort connectivity and included cables for all but DVI. It"s even got its own built-in 2W stereo speakers, while the clever Z-hinge stand allows a huge -5 to 90 degrees of tilt adjustment, making it extra-ergonomic when using the 10-point capacitive multi-touch display.
The T272HL boasts a slightly above-average 300cd/m2 brightness, along with 10-point capacitive multi-touch. There are also a pair of 2w internal speakers, and the stand allows a large 10-60 degrees of tilt to enhance touch ergonomics.
If you"re after a larger-than-average touchscreen monitor, the T272HL is a reasonable choice, but there are compromises to be made. For starters, this is still a 1920 x 1080 Full HD monitor, so while it may be physically larger than a 23/24-inch Full HD display, images will simply look larger, not more detailed.
At 21.5 inches, the Asus VT229H is one of the smaller touchscreen monitors on this list, but it still sports the same Full HD (1920 x 1080) resolution as larger 24 and even 27-inch touchscreen displays, meaning you get more pixels per inch and slightly crisper image quality. This is also an IPS LCD, with wide 178 x 178-degree viewing angles and reliably consistent color and contrast, regardless of your viewing angle.
Most touch screen monitors are just that: a monitor, with a touch interface. But this 21.5-inch display also adds a pair of 2W stereo speakers for sound output, along with dual-array microphones and a built-in webcam for video conferencing. The IPS LCD display panel ensures decent color and contrast uniformity, while the Full HD 1920 x 1080 resolution is easily enough for crisp image quality on a screen this size.
The square black exterior is typical of Lenovo"s business-orientated products and may not be to everyone"s taste. Plus you"ll need to connect via DisplayPort only, as there"s no HDMI input. But otherwise, this touch screen monitor offers a lot for a very reasonable price.
The obvious drawback with a touchscreen monitor is the aforementioned size restrictions because if you want one larger than 27 inches, you"re out of luck. The next step up in size for touch screen monitors are 50+ inch displays designed for corporate presentations rather than home computing.
It"s not just outright screen resolution where touch screen monitors can fall short of their non-touch alternatives. Top-end screens designed for image and video editing are often factory color calibrated: they use LCD displays that can display a huge range of colors, or feature fast refresh rates for smoother video playback and gaming. However, touchscreen monitors aren"t intended for a color-critical image or video work: they tend to be all-purpose displays designed for more general applications like web browsing and basic image viewing.
Connectivity also tends to be compromised on touchscreen monitors. You can forget about USB-C hubs(opens in new tab) with Power Delivery, and even DisplayPort connections can be a rarity.
However, resistive technology doesn"t support multi-touch and won"t give the same fluid sensitivity as the touch screens we"re now accustomed to on phones and tablets. Consequently, most modern touchscreen monitors use capacitive touch screens supporting 10-point multi-touch. These operate exactly like a phone or tablet"s touch screen, requiring only a light tap, swipe, or pinch to register inputs. All the monitors on this list use 10-point capacitive touch screens.
Put simply, even the best iMacs(opens in new tab) and MacBooks(opens in new tab) don"t support touchscreen monitors. Consequently, all the touchscreen monitors on this list will only work with Windows 8.1, Windows 10, and some Linux and Android operating systems.
Not all LCD monitors are created equal. LCD displays use three types of construction - IPS (In-Plane Switching), VA (Vertical Alignment), and TN (Twisted Nematic). Each one of these three LCD types exhibits noticeably different image quality characteristics, clearly visible to the average user.
When monitors are set side by side, the color temperatures may vary with each monitor. Some monitors will not arrive from the factory with perfectly matched colors. You can see this when using a multiple monitors or a video daisy chain setup.
First you must do a factory reset on all affected displays. This will bring all settings back to factory defaults. If this does not help, then adjust individual RGB settings.
Lower the Red and Green options slightly on all 3 displays until the colors match. Do not lower the options past 95 for all 3 colors as this will affect the overall brightness.
Before adjusting the RGB temperature settings (Figure 3). All three monitors in default mode with color set to standard color mode (after conducting factory reset).
Industrial displays are made with the same industrial components as our industrial all-in-one PCs. So, they can withstand vibrations, shocks, and extreme temperatures, in which consumer grade computers cannot operate. These rugged touchscreen displays can be panel mounted into an enclosure, or the VESA mounting holes can be used to attach them to an arm, stand, or hung on a wall. They include an IP66 rated front bezel, so they are protected from liquids, when they are panel mounted into a cutout in an enclosure, Hoffman box, or electrical cabinet door. The fanless design protects them from dust and other airborne contamination that would otherwise damage electrical components, and the rugged die-cast aluminum enclosure offers reliable protection from mechanical shock and vibration. These models have a wide operating temperature, and extended operating temperature options are available for outdoor applications or other extreme environments. They include a wide range 9~36VDC terminal block power input that enables them to be easily connected directly to a DC voltage source, and an external AC-to-DC power supply is available for settings where only AC power is available.
In today’s modern world, there is little debate over whether people in the workplace need computers. Computers offer a large range of services ranging from communication to inventory control to financial functions. However, they come with a price tag and, generally speaking, the best computers are the most expensive. As a result, businesses are often concerned about when to upgrade computers and what specific components they should use to upgrade.
If the purpose of a computer is to compute large amounts of data and each computation takes weeks to run, then faster is better. On the other hand, if the primary purpose of a computer is to enhance office productivity (for example, through word processing, email, spreadsheets, and presentations), how fast does that computer really need to be?
Further complicating the issue is Moore’s Law, which states that computers double in processing speed without any increase in cost every 18 months.[1] So, approximately every year and a half, businesses can spend around the same amount of money for the same number of computers—but for ones that are twice as fast.
Unfortunately, the human performance component does not increase at the same rate. Expert in human-computer interaction (HCI)[2] Dr. Dan Olsen states, “The exponential growth in computing stands in stark contrast to the growth in human capacity to perceive, remember, and express information. The curve describing the change in human capacity over time is flat. Our personal capabilities are not changing.”[3]
Recent HCI work has revealed that acquiring faster and faster machines is not necessarily the best way to boost people’s productivity.[4] It turns out that having more display real estate—more space on monitors to see and comprehend a larger amount of data—is better for most businesses than owning the fastest computers.[5]
The term “human component” refers to a device that increases human productivity without necessarily increasing computer productivity. A larger, higher-resolution monitor displays more pixels. This does not speed up computer processing time, but it does have vast potential to increase human productivity.[6] A mouse and keyboard can also be considered human components as they do not increase the computation speed of the computer, but can improve human productivity.
As an example, let us examine two business analysts, Betty and Bob. Betty and Bob have the same job description and do the same work every day. As business analysts, they spend the majority of their time with large amounts of data culled from databases and large spreadsheets. Both use email extensively and must provide regular presentations to upper management. In addition, they both have an equivalent computer upgrade budget.
Bob purchases the fastest computer he can for his money and chooses the default 17-inch monitor. His rationale is that the faster his computer operates, the faster he can complete his work.
Betty, on the other hand, buys a decent computer, one that would have represented the top of the line two years ago, but it is not as fast as Bob’s. Instead of spending the extra money on speed, she buys a 30-inch monitor.
Nevertheless, according to recent HCI research,[7] Betty will most likely be more productive because she invested in the human component of her computer system. She has more information displayed at one time on her monitor, which, in turn, enables her to take advantage of the human side of the equation.
Bob purchased the default 17-inch monitor. The highest resolution, or the largest pixel count that it can display at once—which equates to the maximum amount of information that can be displayed at once—is is 1,280 by 1,024 or a total of 1,310,720 pixels. On the other hand, Betty’s 30-inch monitor has a resolution of 2,560 by 1,600, a total of 4,096,000 pixels.
Betty’s 30-inch monitor can display over three times as much information as Bob’s 17-inch monitor. Bearing that fact in mind, here is a short list of how Betty might be more productive because of her larger monitor:
According to recent game research on large displays, expert game players were able to beat other expert game players when the only variable that differed was display size. The expert game players almost always won when they were using large displays, but almost always lost when it was their turn to play on smaller displays.[8]
Although conducting business can differ quite a bit from playing games, the reasons why people win or lose in business are the same as the ones highlighted in the game player experiment. The larger displays allowed the expert game players to take advantage of being able to see more information at once and use fewer mouse clicks to control the game (see the second point below). Because they were able to see more information at once, the players gained greater insight into the current state of the game and, therefore, created better strategies.
Often, seeing the “big picture” is more important than having the world’s fastest computer. One very important observation from the experiment was that the game players were able to create strategies that they indicated they would not have been able to formulate without the ability to see the literal “big picture.” Seeing more text at a time can help with reading comprehension, even for text-only tasks.[9]
Less time is devoted to window management by computer users working with larger monitors—the smaller the monitor, the more time is consumed moving applications around, scrolling through large data sets, and clicking buttons. HCI researchers consider window management a “secondary task” that only helps to facilitate the “primary task.”[10] Window management with a small monitor is like constantly managing business papers on a small desk. Is it better to spend a large amount of time managing business papers and organizing them or is it better to spend most of that time exploring spread-out business papers on a large desk and gaining insight from them?
Larger monitors can offer 90-percent less window management than smaller monitors.[11] Other researchers have shown that people are generally more productive with larger monitors than smaller monitors.[12] They have also demonstrated that a wider monitor can offset the gender bias that is apparent in three-dimensional (3D) navigation.[13]
The ability to see more of one’s data reduces user stress as this utilizes more external memory (the monitor) and less cognitive memory.[16] Just as writing a list down on paper can relieve the burden of remembering the information—which frees the mind up to perform the task at hand—having a larger monitor enables people to access more information at once and thus to focus more energy on solving the problem as opposed to remembering facts. In addition, increased display space can enable users to retain greater amounts of data in their long-term memories.[17]
Clearly, faster computers are preferable to slower computers as they enable people to perform more computations in the same amount of time. However, faster computers do not necessarily help people gain insight faster, if at all. On the other hand, larger monitors allow people to gain greater insight and, subsequently, create better strategies because they are able to absorb larger amounts of data at once. Being able to view more data can also decrease stress levels as the user does not have to utilize brainpower to commit as much information to memory.
In conclusion, when businesses consider computer system upgrades or purchases, they should consider exactly where that money goes. It may be more beneficial to upgrade not just the computer processor components, but the human components, as well.
[4] T. Simmons, “What’s the Optimum Computer Display Size?,” Ergonomics in Design, 9, no. 4 (2001): 19–25; 14; M. Ziefle, “Effects of Display Resolution on Visual Performance,” Human Factors, 40 (4), 554-568.
[5] R. Ball and C. North, “An Analysis of User Behavior on High-Resolution Tiled Displays,” in Tenth IFIP International Conference on Human-Computer Interaction, (2005): 350-364; R. Ball, M. Varghese, A. Sabri, E. Cox, C. Fierer, M. Peterson, B. Carstensen, and C. North, “Evaluating the Benefits of Tiled Displays for Navigating Maps,” in IASTED International Conference on Human-Computer Interaction, (2005): 66-71.
[7] G. Robertson, M. Czerwinski, P. Baudisch, B. Meyers, D. Robbins, G. Smith, and D. Tan, “The Large-Display User Experience,” IEEE Computer Graphics and Applications, 25, no. 4 (2005): 44–51.
[8] A. Sabri, R. Ball, S. Bhatia, A. Fabian, and C. North, “High-Resolution Gaming: Interfaces, Notifications, and the User Experience,” Interacting with Computers Journal, 19, no. 2 (March 2007): 151–166.
[12] M. Czerwinski, G. Smith, T. Regan, B. Meyers, G. Robertson, and G. Starkweather, “Toward Characterizing the Productivity Benefits of Very Large Displays.” in Proceedings of Interact Conference (2003).
[13] In general, women have been shown to perform worse than men in 3D navigation, but with wider displays this trend appears to diminish. See M. Czerwinski, D. Tan, and G. Robertson, “Women Take a Wider View,” in Proceedings of CHI: ACM Conference on Human Factors in Computing Systems (2002): 195-201.
A computer monitor is an output device that displays information in pictorial or textual form. A discrete monitor comprises a visual display, support electronics, power supply, housing, electrical connectors, and external user controls.
The display in modern monitors is typically an LCD with LED backlight, having by the 2010s replaced CCFL backlit LCDs. Before the mid-2000s,CRT. Monitors are connected to the computer via DisplayPort, HDMI, USB-C, DVI, VGA, or other proprietary connectors and signals.
Originally, computer monitors were used for data processing while television sets were used for video. From the 1980s onward, computers (and their monitors) have been used for both data processing and video, while televisions have implemented some computer functionality. In the 2000s, the typical display aspect ratio of both televisions and computer monitors has changed from 4:3 to 16:9.
Modern computer monitors are mostly interchangeable with television sets and vice versa. As most computer monitors do not include integrated speakers, TV tuners, nor remote controls, external components such as a DTA box may be needed to use a computer monitor as a TV set.
Early electronic computer front panels were fitted with an array of light bulbs where the state of each particular bulb would indicate the on/off state of a particular register bit inside the computer. This allowed the engineers operating the computer to monitor the internal state of the machine, so this panel of lights came to be known as the "monitor". As early monitors were only capable of displaying a very limited amount of information and were very transient, they were rarely considered for program output. Instead, a line printer was the primary output device, while the monitor was limited to keeping track of the program"s operation.
Multiple technologies have been used for computer monitors. Until the 21st century most used cathode-ray tubes but they have largely been superseded by LCD monitors.
The first computer monitors used cathode-ray tubes (CRTs). Prior to the advent of home computers in the late 1970s, it was common for a video display terminal (VDT) using a CRT to be physically integrated with a keyboard and other components of the workstation in a single large chassis, typically limiting them to emulation of a paper teletypewriter, thus the early epithet of "glass TTY". The display was monochromatic and far less sharp and detailed than on a modern monitor, necessitating the use of relatively large text and severely limiting the amount of information that could be displayed at one time. High-resolution CRT displays were developed for specialized military, industrial and scientific applications but they were far too costly for general use; wider commercial use became possible after the release of a slow, but affordable Tektronix 4010 terminal in 1972.
Some of the earliest home computers (such as the TRS-80 and Commodore PET) were limited to monochrome CRT displays, but color display capability was already a possible feature for a few MOS 6500 series-based machines (such as introduced in 1977 Apple II computer or Atari 2600 console), and the color output was a speciality of the more graphically sophisticated Atari 800 computer, introduced in 1979. Either computer could be connected to the antenna terminals of an ordinary color TV set or used with a purpose-made CRT color monitor for optimum resolution and color quality. Lagging several years behind, in 1981 IBM introduced the Color Graphics Adapter, which could display four colors with a resolution of 320 × 200 pixels, or it could produce 640 × 200 pixels with two colors. In 1984 IBM introduced the Enhanced Graphics Adapter which was capable of producing 16 colors and had a resolution of 640 × 350.
By the end of the 1980s color progressive scan CRT monitors were widely available and increasingly affordable, while the sharpest prosumer monitors could clearly display high-definition video, against the backdrop of efforts at HDTV standardization from the 1970s to the 1980s failing continuously, leaving consumer SDTVs to stagnate increasingly far behind the capabilities of computer CRT monitors well into the 2000s. During the following decade, maximum display resolutions gradually increased and prices continued to fall as CRT technology remained dominant in the PC monitor market into the new millennium, partly because it remained cheaper to produce.
There are multiple technologies that have been used to implement liquid-crystal displays (LCD). Throughout the 1990s, the primary use of LCD technology as computer monitors was in laptops where the lower power consumption, lighter weight, and smaller physical size of LCDs justified the higher price versus a CRT. Commonly, the same laptop would be offered with an assortment of display options at increasing price points: (active or passive) monochrome, passive color, or active matrix color (TFT). As volume and manufacturing capability have improved, the monochrome and passive color technologies were dropped from most product lines.
The first standalone LCDs appeared in the mid-1990s selling for high prices. As prices declined they became more popular, and by 1997 were competing with CRT monitors. Among the first desktop LCD computer monitors was the Eizo FlexScan L66 in the mid-1990s, the SGI 1600SW, Apple Studio Display and the ViewSonic VP140vision science remain dependent on CRTs, the best LCD monitors having achieved moderate temporal accuracy, and so can be used only if their poor spatial accuracy is unimportant.
High dynamic range (HDR)television series, motion pictures and video games transitioning to widescreen, which makes squarer monitors unsuited to display them correctly.
Organic light-emitting diode (OLED) monitors provide most of the benefits of both LCD and CRT monitors with few of their drawbacks, though much like plasma panels or very early CRTs they suffer from burn-in, and remain very expensive.
Radius of curvature (for curved monitors) - is the radius that a circle would have if it had the same curvature as the display. This value is typically given in millimeters, but expressed with the letter "R" instead of a unit (for example, a display with "3800R curvature" has a 3800mm radius of curvature.
Display resolution is the number of distinct pixels in each dimension that can be displayed natively. For a given display size, maximum resolution is limited by dot pitch or DPI.
Dot pitch represents the distance between the primary elements of the display, typically averaged across it in nonuniform displays. A related unit is pixel pitch, In LCDs, pixel pitch is the distance between the center of two adjacent pixels. In CRTs, pixel pitch is defined as the distance between subpixels of the same color. Dot pitch is the reciprocal of pixel density.
Pixel density is a measure of how densely packed the pixels on a display are. In LCDs, pixel density is the number of pixels in one linear unit along the display, typically measured in pixels per inch (px/in or ppi).
Contrast ratio is the ratio of the luminosity of the brightest color (white) to that of the darkest color (black) that the monitor is capable of producing simultaneously. For example, a ratio of 20,000∶1 means that the brightest shade (white) is 20,000 times brighter than its darkest shade (black). Dynamic contrast ratio is measured with the LCD backlight turned off. ANSI contrast is with both black and white simultaneously adjacent onscreen.
Color depth - measured in bits per primary color or bits for all colors. Those with 10bpc (bits per channel) or more can display more shades of color (approximately 1 billion shades) than traditional 8bpc monitors (approximately 16.8 million shades or colors), and can do so more precisely without having to resort to dithering.
Viewing angle is the maximum angle at which images on the monitor can be viewed, without subjectively excessive degradation to the image. It is measured in degrees horizontally and vertically.
Refresh rate is (in CRTs) the number of times in a second that the display is illuminated (the number of times a second a raster scan is completed). In LCDs it is the number of times the image can be changed per second, expressed in hertz (Hz). Determines the maximum number of frames per second (FPS) a monitor is capable of showing. Maximum refresh rate is limited by response time.
On two-dimensional display devices such as computer monitors the display size or view able image size is the actual amount of screen space that is available to display a picture, video or working space, without obstruction from the bezel or other aspects of the unit"s design. The main measurements for display devices are: width, height, total area and the diagonal.
The size of a display is usually given by manufacturers diagonally, i.e. as the distance between two opposite screen corners. This method of measurement is inherited from the method used for the first generation of CRT television, when picture tubes with circular faces were in common use. Being circular, it was the external diameter of the glass envelope that described their size. Since these circular tubes were used to display rectangular images, the diagonal measurement of the rectangular image was smaller than the diameter of the tube"s face (due to the thickness of the glass). This method continued even when cathode-ray tubes were manufactured as rounded rectangles; it had the advantage of being a single number specifying the size, and was not confusing when the aspect ratio was universally 4:3.
With the introduction of flat panel technology, the diagonal measurement became the actual diagonal of the visible display. This meant that an eighteen-inch LCD had a larger viewable area than an eighteen-inch cathode-ray tube.
Estimation of monitor size by the distance between opposite corners does not take into account the display aspect ratio, so that for example a 16:9 21-inch (53 cm) widescreen display has less area, than a 21-inch (53 cm) 4:3 screen. The 4:3 screen has dimensions of 16.8 in × 12.6 in (43 cm × 32 cm) and area 211 sq in (1,360 cm2), while the widescreen is 18.3 in × 10.3 in (46 cm × 26 cm), 188 sq in (1,210 cm2).
Until about 2003, most computer monitors had a 4:3 aspect ratio and some had 5:4. Between 2003 and 2006, monitors with 16:9 and mostly 16:10 (8:5) aspect ratios became commonly available, first in laptops and later also in standalone monitors. Reasons for this transition included productive uses (i.e. besides Field of view in video games and movie viewing) such as the word processor display of two standard letter pages side by side, as well as CAD displays of large-size drawings and application menus at the same time.LCD monitors and the same year 16:10 was the mainstream standard for laptops and notebook computers.
In 2010, the computer industry started to move over from 16:10 to 16:9 because 16:9 was chosen to be the standard high-definition television display size, and because they were cheaper to manufacture.
In 2011, non-widescreen displays with 4:3 aspect ratios were only being manufactured in small quantities. According to Samsung, this was because the "Demand for the old "Square monitors" has decreased rapidly over the last couple of years," and "I predict that by the end of 2011, production on all 4:3 or similar panels will be halted due to a lack of demand."
The resolution for computer monitors has increased over time. From 280 × 192 during the late 1970s, to 1024 × 768 during the late 1990s. Since 2009, the most commonly sold resolution for computer monitors is 1920 × 1080, shared with the 1080p of HDTV.2560 × 1600 at 30 in (76 cm), excluding niche professional monitors. By 2015 most major display manufacturers had released 3840 × 2160 (4K UHD) displays, and the first 7680 × 4320 (8K) monitors had begun shipping.
Every RGB monitor has its own color gamut, bounded in chromaticity by a color triangle. Some of these triangles are smaller than the sRGB triangle, some are larger. Colors are typically encoded by 8 bits per primary color. The RGB value [255, 0, 0] represents red, but slightly different colors in different color spaces such as Adobe RGB and sRGB. Displaying sRGB-encoded data on wide-gamut devices can give an unrealistic result.Exif metadata in the picture. As long as the monitor gamut is wider than the color space gamut, correct display is possible, if the monitor is calibrated. A picture which uses colors that are outside the sRGB color space will display on an sRGB color space monitor with limitations.Color management is needed both in electronic publishing (via the Internet for display in browsers) and in desktop publishing targeted to print.
Many monitors have other accessories (or connections for them) integrated. This places standard ports within easy reach and eliminates the need for another separate hub, camera, microphone, or set of speakers. These monitors have advanced microprocessors which contain codec information, Windows interface drivers and other small software which help in proper functioning of these functions.
Monitors that feature an aspect ratio greater than 2:1 (for instance, 21:9 or 32:9, as opposed to the more common 16:9, which resolves to 1.77:1).Monitors with an aspect ratio greater than 3:1 are marketed as super ultrawide monitors. These are typically massive curved screens intended to replace a multi-monitor deployment.
These monitors use touching of the screen as an input method. Items can be selected or moved with a finger, and finger gestures may be used to convey commands. The screen will need frequent cleaning due to image degradation from fingerprints.
Some displays, especially newer flat panel monitors, replace the traditional anti-glare matte finish with a glossy one. This increases color saturation and sharpness but reflections from lights and windows are more visible. Anti-reflective coatings are sometimes applied to help reduce reflections, although this only partly mitigates the problem.
Most often using nominally flat-panel display technology such as LCD or OLED, a concave rather than convex curve is imparted, reducing geometric distortion, especially in extremely large and wide seamless desktop monitors intended for close viewing range.
Newer monitors are able to display a different image for each eye, often with the help of special glasses and polarizers, giving the perception of depth. An autostereoscopic screen can generate 3D images without headgear.
A combination of a monitor with a graphics tablet. Such devices are typically unresponsive to touch without the use of one or more special tools" pressure. Newer models however are now able to detect touch from any pressure and often have the ability to detect tool tilt and rotation as well.
The option for using the display as a reference monitor; these calibration features can give an advanced color management control for take a near-perfect image.
Raw monitors are raw framed LCD monitors, to install a monitor on a not so common place, ie, on the car door or you need it in the trunk. It is usually paired with a power adapter to have a versatile monitor for home or commercial use.
A desktop monitor is typically provided with a stand from the manufacturer which lifts the monitor up to a more ergonomic viewing height. The stand may be attached to the monitor using a proprietary method or may use, or be adaptable to, a VESA mount. A VESA standard mount allows the monitor to be used with more after-market stands if the original stand is removed. Stands may be fixed or offer a variety of features such as height adjustment, horizontal swivel, and landscape or portrait screen orientation.
The Flat Display Mounting Interface (FDMI), also known as VESA Mounting Interface Standard (MIS) or colloquially as a VESA mount, is a family of standards defined by the Video Electronics Standards Association for mounting flat panel displays to stands or wall mounts.
A fixed rack mount monitor is mounted directly to the rack with the flat-panel or CRT visible at all times. The height of the unit is measured in rack units (RU) and 8U or 9U are most common to fit 17-inch or 19-inch screens. The front sides of the unit are provided with flanges to mount to the rack, providing appropriately spaced holes or slots for the rack mounting screws. A 19-inch diagonal screen is the largest size that will fit within the rails of a 19-inch rack. Larger flat-panels may be accommodated but are "mount-on-rack" and extend forward of the rack. There are smaller display units, typically used in broadcast environments, which fit multiple smaller screens side by side into one rack mount.
A stowable rack mount monitor is 1U, 2U or 3U high and is mounted on rack slides allowing the display to be folded down and the unit slid into the rack for storage as a drawer. The flat display is visible only when pulled out of the rack and deployed. These units may include only a display or may be equipped with a keyboard creating a KVM (Keyboard Video Monitor). Most common are systems with a single LCD but there are systems providing two or three displays in a single rack mount system.
A panel mount computer monitor is intended for mounting into a flat surface with the front of the display unit protruding just slightly. They may also be mounted to the rear of the panel. A flange is provided around the screen, sides, top and bottom, to allow mounting. This contrasts with a rack mount display where the flanges are only on the sides. The flanges will be provided with holes for thru-bolts or may have studs welded to the rear surface to secure the unit in the hole in the panel. Often a gasket is provided to provide a water-tight seal to the panel and the front of the screen will be sealed to the back of the front panel to prevent water and dirt contamination.
An open frame monitor provides the display and enough supporting structure to hold associated electronics and to minimally support the display. Provision will be made for attaching the unit to some external structure for support and protection. Open frame monitors are intended to be built into some other piece of equipment providing its own case. An arcade video game would be a good example with the display mounted inside the cabinet. There is usually an open frame display inside all end-use displays with the end-use display simply providing an attractive protective enclosure. Some rack mount monitor manufacturers will purchase desktop displays, take them apart, and discard the outer plastic parts, keeping the inner open-frame display for inclusion into their product.
According to an NSA document leaked to Der Spiegel, the NSA sometimes swaps the monitor cables on targeted computers with a bugged monitor cable in order to allow the NSA to remotely see what is being displayed on the targeted computer monitor.
Van Eck phreaking is the process of remotely displaying the contents of a CRT or LCD by detecting its electromagnetic emissions. It is named after Dutch computer researcher Wim van Eck, who in 1985 published the first paper on it, including proof of concept. Phreaking more generally is the process of exploiting telephone networks.
Masoud Ghodrati, Adam P. Morris, and Nicholas Seow Chiang Price (2015) The (un)suitability of modern liquid crystal displays (LCDs) for vision research. Frontiers in Psychology, 6:303.