lcd screen size comparison manufacturer

LCD display doesn’t operate the same way as CRT displays , which fires electrons at a glass screen, a LCD display has individual pixels arranged in a rectangular grid. Each pixel has RGB(Red, Green, Blue) sub-pixel that can be turned on or off. When all of a pixel’s sub-pixels are turned off, it appears black. When all the sub-pixels are turned on 100%, it appears white. By adjusting the individual levels of red, green, and blue light, millions of color combinations are possible

The pixels of the LCD screen were made by circuitry and electrodes of the backplane. Each sub-pixel contains a TFT (Thin Film Transistor) element.  These structures are formed by depositing various materials (metals and silicon) on to the glass substrate that will become one part of the complete display “stack,” and then making them through photolithography. For more information about TFT LCDs, please refer to “

The etched pixels by photolith process are the Native Resolution. Actually, all the flat panel displays, LCD, OLED, Plasma etc.) have native resolution which are different from CRT monitors

Although we can define a LCD display with resolution, a Full HD resolution on screen size of a 15” monitor or a 27” monitor will show different. The screen “fineness” is very important for some application, like medical, or even our cell phone. If the display “fineness” is not enough, the display will look “pixelized” which is unable to show details.

PPI stands for number of pixels per inch. It is kind of pixel density. PPI describes the resolution of a digital image, not a print. PPI is used to resize images in preparation for printing

But you see other lower resolution available, that is because video cards are doing the trick. A video card can display a lower LCD screen resolution than the LCD’s built-in native resolution. The video cards can combine the pixels and turn a higher resolution into lower resolution, or just use part of the full screen. But video cards can’t do the magic to exceed the native resolution.

Aspect Ratio:  You might hear 4:3 which is full screen, 16:9 is for widescreen; 21:9 is for ultrawide computer monitors and televisions, as well as cinematic widescreen projectors. Some ultrawide monitors are trying to replace dual monitor.

lcd screen size comparison manufacturer

In 2D screens, such as computer monitors and mobile phones, the size of the screen (also known as the viewport) is the physical size of the area where the images and videos are displayed. The size of the screen is usually described by the length of its diagonal, which is the distance between the opposite corners, usually in inches. It is also sometimes called the physical size of the image to distinguish it from the “logical size of the image”, which describes the resolution of the screen and is measured in pixels.

For the display of devices such as phones, tablets, monitors and televisions, the use of the term display resolution, as defined above, is incorrect, although common. The term display resolution is commonly used to refer to pixel size, the maximum number of pixels in each measurement (e.g., 1920 × 1080), which says nothing about the pixel density of the display in which the image is actually formed: the resolution correctly refers to pixel density, the number of pixels per unit of distance or area, and not the total number of pixels. In digital measurements, the resolution of the display will be given in pixels per inch (PPI). In analog measurement, if the screen height is 10 inches, the horizontal resolution is measured in 10 square inches.f For television standards, this is usually indicated as “horizontal resolution lines by the height of the image”; for example, analog NTSC televisions can normally display about 340 lines “by the height of the image” of horizontal resolution from above-air sources, which is equivalent to about 440 common lines of actual image information from left to right.

The method of measuring screen size along its diagonal was inherited from the method used in the first generation of CRT TVs, when circular edge photo tubes were widely used. Because they are round, the outer diameter of the bulb was used to describe its dimensions. As these round tubes were used to display rectangular images, the diagonal measurement of the visible rectangle was smaller than the diameter of the tube due to the thickness of the glass surrounding the phosphor screen (which was hidden from the viewfinder by the body and the bezel). This method continued even when the cathode ray tubes were made in the form of rounded rectangles; its advantage was that it was a unique number that determined the size and was not confusing when the aspect ratio was universal 4:3. In the USA, when almost all TV tubes had a 4:3 aspect ratio, the screen size was defined as the true diagonal of the screen with a V following it (this was a requirement in the USA market, but not in other countries). In almost all other markets, the outer diameter of the tube was specified. What was 27V in the USA may have been 28 inches elsewhere. However, in advertising in the USA the terminology V was often omitted, citing 27V as 27 inches. This was not misleading to the consumer because the law required the seller to specify the actual size of the screen. Flat panels, on the contrary, use the actual diagonal of their visible size so that the size is the actual size presented to the viewer in all markets. This means that a similar sized screen will be larger than a flat panel screen compared to a cathode ray tube screen.

When the overall aspect ratio increased from 4:3 to 16:9, the new widescreen screens in the US were marked with the letter W. The display, which is approximately 27 W high, will have an output power of 32 W. Vizio and other U.S. TV manufacturers have introduced even larger screens with a 21:9 aspect ratio to match the aspect ratio used in movie theaters. To evaluate the relative size of these new screens, it is necessary to consider the aspect ratio of the screen. In a commercial market where different aspect ratios are sold, two numbers are always needed to describe the screen size, some combination of diagonal, aspect ratio, height or width.

Dimensions are often given as a “class” because screens from different manufacturers will have small differences in size. However, the “class” must be less than 1/2″ of the actual size. The reasons for differences in size within a class are due to differences in the manufacturers’ equipment. As manufacturers change from one size to another, larger sizes should fit in the same size as the glass, although with fewer monitors cut from it. Some sizes fit well and maximize the use of glass, others fit worse and waste glass. For example, in some cases, increasing the screen size by up to 0.1 inches may cause the LCD manufacturer to move from 12 screens mounted on their glass sheets to 9, which will make them uncompetitive compared to other screen manufacturers.

To illustrate the point, here is a comparison chart we’ve developed of all modern (popular) phones, tablets and wearables. This screen size comparison chart shows the screen resolution and the pixel density of each device as well as other metrics like the CSS width.

lcd screen size comparison manufacturer

... and dusty conditions. Plus, the protective glass serves to protect the display against sharp foreign objects, meaning the screen is still operable even with scratches on the surface.

... be used on the screen to maximize safety and hygiene. Plus, white-colored housing makes it easy for users to detect and remove dust or any other foreign substances.

... with a complete digital advertising solution. The wall-mounted outdoor display combines a high-bright screen with a weatherproof body. The 1,500 NITS screen captures attention, and auto-dimming keeps ...

... engaging digital signage in any weather. The high-brightness LCD screen keeps your content clear in direct sunlight, for maximum customer engagement. An IP54/NEMA 4 enclosure protects the screen ...

... turn-key system solutions in a stainless steel enclosure as wall, floor or ceiling mounting versions. The screen of the POLARIS Remote 15"" is a TFT display with an XGA resolution (1024 x 768 pixels) ...

... the main display for applications requiring a small screen. End-cap shelf displays in retail settings or as personal gaming screens as part of a larger interactive gaming table benefit from the features and design of ...

An LCD monitor is a flat screen using liquid crystal technology to create the display. It is used in place of CRT (cathode ray tube) monitors to display all types of verbal or graphic information.

These monitors are used wherever displays are necessary, including numerical control screens for machine tools, human-machine interfaces (HMI) or simply as industrial computer screens.

LCD monitors are among those that control the transmission or reflection of a separate light source rather than generating their own. The various technologies include twisted nematic (TN), super twisted nematic (STN), film compensated super twisted nematic (FSTN) and thin film transistor (TFT).

lcd screen size comparison manufacturer

On 2D displays, such as computer monitors and TVs, the display size (or viewable image size or VIS) is the physical size of the area where pictures and videos are displayed. The size of a screen is usually described by the length of its diagonal, which is the distance between opposite corners, usually in inches. It is also sometimes called the physical image size to distinguish it from the "logical image size," which describes a screen"s display resolution and is measured in pixels.

The size of a screen is usually described by the length of its diagonal, which is the distance between opposite corners, usually in inches. It is also sometimes called the physical image size to distinguish it from the "logical image size," which describes a screen"s display resolution and is measured in pixels.

The method of measuring screen size by its diagonal was inherited from the method used for the first generation of CRT television, when picture tubes with circular faces were in common use. Being circular, the external diameter of the bulb was used to describe their size. Since these circular tubes were used to display rectangular images, the diagonal measurement of the visible rectangle was smaller than the diameter of the tube due to the thickness of the glass surrounding the phosphor screen (which was hidden from the viewer by the casing and bezel). This method continued even when cathode ray tubes were manufactured as rounded rectangles; it had the advantage of being a single number specifying the size, and was not confusing when the aspect ratio was universally 4:3. In the US, when virtually all TV tubes were 4:3, the size of the screen was given as the true screen diagonal with a V following it (this was a requirement in the US market but not elsewhere). In virtually all other markets, the size of the outer diameter of the tube was given. What was a 27V in the US could be a 28" elsewhere. However the V terminology was frequently dropped in US advertising referring to a 27V as a 27". This was not misleading for the consumer as the seller had to give the actual screen size by law. Flat panel displays by contrast use the actual diagonal of their visible display size, thus the size is the actual size presented to the viewer in all markets. This means that a similarly specified size of display will be larger as a flat panel display compared with a cathode ray tube display.

When the common aspect ratio went from 4:3 to 16:9, the new widescreens were labeled with a W in the US. A screen that is approximately the same height as a 27V would be a 32W. Vizio and other US TV manufacturers have introduced even wider screens with a 21:9 aspect ratio in order to match aspect ratios used in cinemas. In order to gauge the relative sizes of these new screens, the screen aspect must be considered. In a commercial market where multiple aspect ratios are being sold, it will always take two numbers to describe the screen size, some combination of diagonal, aspect ratio, height or width.

Set sizes are frequently given as a "class" as screens from different manufacturers will have slight differences in size. However the "class" should be within 1/2" of the actual size. The reasons for the different sizes within a class stem from differences in the manufacturers" equipment. As manufacturers move from one size to another, newer larger sizes must fit on the same size glass, though with fewer displays being cut from it. Some sizes fit well and maximize glass utilization, other sizes fit more poorly and waste glass. As an example, in some cases, increasing the screen size by even 0.1" can cause an LCD manufacturer to go from 12 screens fitting on their glass sheet to 9. This would make them uncompetitive with other screen makers.

The resolution of the human eye (with 20/20 vision) is about one minute of arc. For full HDTV resolution, this one minute of arc implies that the TV watcher should sit 4 times the height of the screen away. At this distance the individual pixels can not be resolved while simultaneously maximising the viewing area. So the ideal set size can be determined from the chart below by measuring the distance from where the watcher would sit to the screen in centimeters (or inches), dividing that by 4, and comparing with the screen heights below. At this distance, viewers with better than 20/20 vision will still be able to see the individual pixels.

The TV image is composed of many lines of pixels. Ideally, the TV watcher sits far enough away from the screen that the individual lines merge into one solid image. The watcher may sit even farther away and still see a good picture, but it will be a smaller portion of their visual field.

Common screen dimensions are listed in the table below (the most common diagonal dimensions in inches as of 2020 are bolded). If the display is not listed, then the following equations can be used. Note that D is the diagonal (in centimeters or inches), W is the width (in pixels), and H is the height (in pixels).

lcd screen size comparison manufacturer

Mimo Monitors can create a custom-size LCD monitor to almost any specification. Whether it is a minor modification to an existing design, or by utilizing our extensive experience in the industry, we can almost always build what you need.

Size –Measured in inches diagonally from corner to corner – Typical sizes are 7, 10.1, 13.3, 15.6, 18.5, 21.5. We can go bigger than this if necessary. Almost any size is possible.

Resolution - The number of pixels in the display – This will depend somewhat on the aspect ratio chosen. Higher resolution is better, but remember the pixel size on a 65” 1080p HDTV is actually 15x worse than on a 800x480 7” display. In other words, resolution doesn’t matter as much as sizes get smaller. Common resolutions are 800x480, 1024x600, 1280x800, 1366x768 1920x1080

Viewing Angle - This will depend on the technology of the LCD panel. TN vs. VA vs. IPS. More here (http://www.tnpanel.com/tn-vs-ips-va/) . In general, the better the viewing angle, the more expensive the resulting display. Typical are 150x140, 170x170 and 179x179. Or more commonly wide viewing angle or standard viewing angle.

Brightness or Luminance - It is the level of light emitted by an LCD display monitor. Luminance is reported in nits or cd/m2. They are actually the same thing.  This matters for indoor and outdoor viewing and also if you want to draw people toward the display for advertising. Typical indoor brightness is 150 nits, indoor advertising is 300, bright indoor advertising is 700 and outdoor panels are 1000+

Touch panel - Optional human interface for interactivity. Typical choices are Display Only, Resistive (4 or 5 wire), and Capacitive touch options. Our blog discusses the advantages and disadvantages of capacitive touchscreens. SAW is another touch technology that is becoming less and less common.

lcd screen size comparison manufacturer

A lot goes into determining the best viewing distance, and there are several different criteria you can use. Aside from size, things like resolution and even how strong your eyesight is can affect how you see the screen. Because everyone"s eyesight is different, this is less an exact science and more of a general guide based on scientific principles of vision and resolution.

That doesn"t mean you should be sitting a foot away from your TV. Having the largest screen possible isn"t always ideal. The human visual system has a total horizontal field of view of about 200 degrees, although a portion of that is peripheral vision. While it makes some sense to get as large a TV as you can for movies, not all content is made to fill the entire field of view. This becomes very apparent if you try to watch sports from up close while fixating on a single part of the screen, which quickly starts to feel nauseating.

The Society of Motion Picture and Television Engineers recommends sitting at a distance where the screen fills up a minimum of 30° of your field of vision for a good experience.

This is generally good guidance, but people who use their TVs mostly for watching movies might benefit from sitting a bit closer to get a more theater-like experience. The SMPTE "reference" position for movie theaters and the THX recommendation is about 40°. The minimum angle of vision works well for most usages, though, and sitting at a distance where the screen fills 30° of your horizontal field of view should be comfortable for most people.

Our size and distance tool above is based on the 30° guideline that is suitable for mixed usage, but you can find distances for a variety of sizes at 40° here.Learn more about the human visual field.

For instance, sitting close to a 1080p TV can look almost like watching through a screen door because you can see the individual pixels, even if it"s playing a high-quality 1080p HD movie. Increasing your distance to the TV also increases the density of details, producing a better image. Since 4k TVs have such a large density of pixels, it"s much more difficult for this issue to arise. You need to be quite close to a fairly large TV for the pixels to be noticeably distracting.

With 8k TVs, that density increases further, making it even harder to notice flaws with the resolution unless you"re sitting extremely close. However, this also decreases the point at which the perceived difference in picture quality becomes noticeable. Because the pixels are more densely packed with an 8k resolution, you need to sit closer to actually resolve those details. For that reason—content aside—8k only really makes sense if you want a really big screen and plan on sitting close to it. Learn more about the difference between 4k and 8k.

This chart shows the point at which an upgrade in resolution becomes worth it depending on size and distance to the TV. Each line represents the optimal viewing distance for each resolution, but any TV that falls within the range of that color will be suitable to notice a difference in picture quality. So, for example, if you have a 65 inch TV, the viewing distance at which the eye can actually process the details of 4k content is about 4 feet. However, any distance between 4 and about 8.5 feet will be enough to appreciate the difference between 4k and 1080p on a 65 inch TV. Go too far, and the image will look identical to 1080p HD.

You"re probably thinking something along the lines of "My couch is 10" away from my TV, which according to the chart means I need a 75 inch TV. This is insane!" It"s true that if you want to take full advantage of higher resolutions, that"s the ideal size you should get. That said, this may not be possible for everyone, which brings us to budget.

The price of a TV is usually exponential to its size. Size isn"t the only factor though, as resolution, panel type, and features all play into it as well. Looking at 65 inch TVs, for instance, an OLED like the LG CX OLED is inevitably going to cost more than a budget LED TV like the Hisense H8G, and both of these will seem downright cheap compared to an 8k TV like the Samsung Q900TS 8k QLED. Fortunately, though, as technology improves and the availability of higher resolution TVs expands, larger TVs have become more common and therefore more affordable. Feel free to compare the prices of our picks for the best 65 inch TVs, the best 70 to 75 inch TVs, and the best 80 to 85 inch TVs to really see the difference that size makes.

We recommend a field of vision of about 30 degrees for mixed usage. In general, we also recommend getting a 4k TV since lower resolution TVs are becoming harder to find. To easily find out what size you should buy, you can divide your TV viewing distance (in inches) by 1.6 (or use our TV size calculator above) which roughly equals a 30-degree angle. If the best size is outside your budget, just get the biggest TV you can afford. These are guidelines, after all, and since most TVs nowadays are 4k, you can"t really go wrong with the size that works for you, especially since picture quality also depends a lot on the content and viewing conditions. Ideally, you would optimize the capacity of your TV by getting one that"s large enough for you to notice all the visual detail that 4k has to offer, but ultimately, you should watch however feels most comfortable to you, whatever the size and distance may be.

lcd screen size comparison manufacturer

NDSsi uses only “Grade A” LCD panels in all of its products, while many competitors use “Grade B” panels in order to save cost, and as a result compromise quality. In medical applications, it is important not to compromise the quality of the displayed image since it is often the basis for making clinical decisions. The following tables and images show the differences between “Grade A” and “Grade B” LCD panels in terms of different types of allowable defects.

There are essentially two different types of pixel defects, bright (stuck pixels) and dark (dead pixels).The table and images below show the differences between Grade A and Grade B LCD panels in terms of allowable pixel defects.

lcd screen size comparison manufacturer

OLED displays have higher contrast ratios (1 million : 1 static compared with 1,000 : 1 for LCD screens), deeper blacks and lower power consumption compared with LCD displays. They also have greater color accuracy. However, they are more expensive, and blue OLEDs have a shorter lifetime.

OLED displays offer a much better viewing angle. In contrast, viewing angle is limited with LCD displays. And even inside the supported viewing angle, the quality of the picture on an LCD screen is not consistent; it varies in brightness, contrast, saturation and hue by variations in posture of the viewer.

There are no geographical constraints with OLED screens. LCD screens, on the other hand, lose contrast in high temperature environments, and lose brightness and speed in low temperature environments.

Blue OLEDs degrade more rapidly than the materials that produce other colors. Because of this, the manufacturers of these displays often compensate by calibrating the colors in a way that oversaturates the them and adds a bluish tint to the screen.

With current technology, OLED displays use more energy than backlit LCDs when displaying light colors. While OLED displays have deeper blacks compared with backlit LCD displays, they have dimmer whites.

LCDs use liquid crystals that twist and untwist in response to an electric charge and are lit by a backlight. When a current runs through them, they untwist to let through a specific amount of light. They are then paired with color filters to create the display.

AMOLED (Active-Matrix Organic Light-Emitting Diode) is a different form of OLED used in some mobile phones, media players and digital cameras. It offers higher refresh rates with OLEDs and consume a lot less power, making them good for portable electronics. However, they are difficult to view in direct sunlight. Products with AMOLED screens include Galaxy Nexus, Galaxy S II, HTC Legend and PlayStation Vita.

lcd screen size comparison manufacturer

There are plenty of new and confusing terms facing TV shoppers today, but when it comes down to the screen technology itself, there are only two: Nearly every TV sold today is either LCD or OLED.

The biggest between the two is in how they work. With OLED, each pixel provides its own illumination so there"s no separate backlight. With an LCD TV, all of the pixels are illuminated by an LED backlight. That difference leads to all kinds of picture quality effects, some of which favor LCD, but most of which benefit OLED.

LCDs are made by a number of companies across Asia. All current OLED TVs are built by LG Display, though companies like Sony and Vizio buy OLED panels from LG and then use their own electronics and aesthetic design.

So which one is better? Read on for their strengths and weaknesses. In general we"ll be comparing OLED to the best (read: most expensive) LCD has to offer, mainly because there"s no such thing as a cheap OLED TV (yet).

The better LCDs have local dimming, where parts of the screen can dim independently of others. This isn"t quite as good as per-pixel control because the black areas still aren"t absolutely black, but it"s better than nothing. The best LCDs have full-array local dimming, which provides even finer control over the contrast of what"s onscreen -- but even they can suffer from "blooming," where a bright area spoils the black of an adjacent dark area.

One of the main downsides of LCD TVs is a change in picture quality if you sit away from dead center (as in, off to the sides). How much this matters to you certainly depends on your seating arrangement, but also on how much you love your loved ones.

A few LCDs use in-plane switching (IPS) panels, which have better off-axis picture quality than other kinds of LCDs, but don"t look as good as other LCDs straight on (primarily due to a lower contrast ratio).

OLED doesn"t have the off-axis issue LCDs have; its image looks basically the same, even from extreme angles. So if you have a wide seating area, OLED is the better option.

Nearly all current TVs are HDR compatible, but that"s not the entire story. Just because a TV claims HDR compatibility doesn"t mean it can accurately display HDR content. All OLED TVs have the dynamic range to take advantage of HDR, but lower-priced LCDs, especially those without local-dimming backlights, do not. So if you want to see HDR content it all its dynamic, vibrant beauty, go for OLED or an LCD with local dimming.

In our tests comparing the best new OLED and LCD TVs with HDR games and movies, OLED usually looks better. Its superior contrast and lack of blooming win the day despite LCD"s brightness advantage. In other words LCD TVs can get brighter, especially in full-screen bright scenes and HDR highlights, but none of them can control that illumination as precisely as an OLED TV.

OLED"s energy consumption is directly related to screen brightness. The brighter the screen, the more power it draws. It even varies with content. A dark movie will require less power than a hockey game or ski competition.

The energy consumption of LCD varies depending on the backlight setting. The lower the backlight, the lower the power consumption. A basic LED LCD with its backlight set low will draw less power than OLED.

LG has said their OLED TVs have a lifespan of 100,000 hours to half brightness, a figure that"s similar to LED LCDs. Generally speaking, all modern TVs are quite reliable.

Does that mean your new LCD or OLED will last for several decades like your parent"s last CRT (like the one pictured). Probably not, but then, why would you want it to? A 42-inch flat panel cost $14,000 in the late 90"s, and now a 65-inch TV with more than 16x the resolution and a million times better contrast ratio costs $1,400. Which is to say, by the time you"ll want/need to replace it, there will be something even better than what"s available now, for less money.

OLED TVs are available in sizes from 48 to 88 inches, but LCD TVs come in smaller and larger sizes than that -- with many more choices in between -- so LCD wins. At the high end of the size scale, however, the biggest "TVs" don"t use either technology.

You can get 4K resolution, 50-inch LCDs for around $400 -- or half that on sale. It"s going to be a long time before OLEDs are that price, but they have come down considerably.

LCD dominates the market because it"s cheap to manufacture and delivers good enough picture quality for just about everybody. But according to reviews at CNET and elsewhere, OLED wins for overall picture quality, largely due to the incredible contrast ratio. The price difference isn"t as severe as it used to be, and in the mid- to high-end of the market, there are lots of options.

lcd screen size comparison manufacturer

Two measures describe the size of your display: the aspect ratio and the screen size. Historically, computer displays, like most televisions, have had an aspect ratio of 4:3. This means that the ratio of the width of the display screen to the height is 4 to 3.

For widescreen LCD monitors, the aspect ratio is 16:9 (or sometimes 16:10 or 15:9). Widescreen LCD displays are useful for viewing DVD movies in widescreen format, playing games and displaying multiple windows side by side. High definition television (HDTV) also uses a widescreen aspect ratio.

All types of displays include a projection surface, commonly referred to as the screen. Screen sizes are normally measured in inches from one corner to the corner diagonally across from it. This diagonal measuring system actually came about because the early television manufacturers wanted to make the screen size of their TVs sound more impressive.

Interestingly, the way in which the screen size is measured for CRT and LCD monitors is different. For CRT monitors, screen size is measured diagonally from outside edges of the display casing. In other words, the exterior casing is included in the measurement as seen below.

For LCD monitors, screen size is measured diagonally from the inside of the beveled edge. The measurement does not include the casing as indicated in the image below.

­Because of the differences in how CRT and LCD monitors are measured, a 17-inch LCD display is comparable to a 19-inch CRT display. For a more accurate representation of a CRT"s size, find out its viewable screen size. This is the measurement of a CRT display without its outside casing.

­ Popular screen sizes are 15, 17, 19 and 21 inches. Notebook screen sizes are smaller, typically ranging from 12 to 17 inches. As technologies improve in both desktop and notebook displays, even larger screen sizes are becoming available. For professional applications, such as medical imaging or public information displays, some LCD monitors are 40 inches or larger!

Obviously, the size of the display directly affects resolution. The same pixel resolution is sharper on a smaller monitor and fuzzier on a larger monitor because the same number of pixels is spread out over a larger number of inches. An image on a 21-inch monitor with an 800x600 resolution will not appear nearly as sharp as it would on a 15-inch display at 800x600. ­

lcd screen size comparison manufacturer

In recent years, smartphone displays have developed far more acronyms than ever before with each different one featuring a different kind of technology. AMOLED, LCD, LED, IPS, TFT, PLS, LTPS, LTPO...the list continues to grow.

There are many display types used in smartphones: LCD, OLED, AMOLED, Super AMOLED, TFT, IPS and a few others that are less frequently found on smartphones nowadays, like TFT-LCD. One of the most frequently found on mid-to-high range phones now is IPS-LCD. But what do these all mean?

LCD means Liquid Crystal Display, and its name refers to the array of liquid crystals illuminated by a backlight, and their ubiquity and relatively low cost make them a popular choice for smartphones and many other devices.

LCDs also tend to perform quite well in direct sunlight, as the entire display is illuminated from behind, but does suffer from potentially less accurate colour representation than displays that don"t require a backlight.

Within smartphones, you have both TFT and IPS displays. TFT stands for Thin Film Transistor, an advanced version of LCD that uses an active matrix (like the AM in AMOLED). Active matrix means that each pixel is attached to a transistor and capacitor individually.

The main advantage of TFT is its relatively low production cost and increased contrast when compared to traditional LCDs. The disadvantage of TFT LCDs is higher energy demands than some other LCDs, less impressive viewing angles and colour reproduction. It"s for these reasons, and falling costs of alternative options, that TFTs are not commonly used in smartphones anymore.Affiliate offer

IPS technology (In-Plane Switching) solves the problem that the first generation of LCD displays experience, which adopts the TN (Twisted Nematic) technique: where colour distortion occurs when you view the display from the side - an effect that continues to crop up on cheaper smartphones and tablets.

The PLS (Plane to Line Switching) standard uses an acronym that is very similar to that of IPS, and is it any wonder that its basic operation is also similar in nature? The technology, developed by Samsung Display, has the same characteristics as IPS displays - good colour reproduction and viewing angles, but a lower contrast level compared to OLED and LCD/VA displays.

This is a very common question after "LED" TVs were launched, with the short answer simply being LCD. The technology used in a LED display is liquid crystal, the difference being LEDs generating the backlight.

One of the highlights from TV makers at the CES 2021 tradeshow, mini-LED technology seemed far removed from mobile devices until Apple announced the 2021 iPad Pro. As the name implies, the technique is based on the miniaturization of the LEDs that form the backlight of the screen — which still uses an LCD panel.

Despite the improvement in terms of contrast (and potentially brightness) over traditional LCD/LED displays, LCD/mini-LEDs still divide the screen into brightness zones — over 2,500 in the case of the iPad and 2021 "QNED" TVs from LG — compared to dozens or hundreds of zones in previous-generation FALD (full-array local dimming) displays, on which the LEDs are behind the LCD panel instead of the edges.

However, for even greater contrast control, done individually at each point on the screen, it is necessary to go to panels equipped with microLED technologies – still cost-prohibitive in 2021 – or OLED, which until recently were manufactured on a large scale only in sizes for smartphones or televisions.Affiliate offer

AMOLED stands for Active Matrix Organic Light-Emitting Diode. While this may sound complicated it actually isn"t. We already encountered the active matrix in TFT LCD technology, and OLED is simply a term for another thin-film display technology.

OLED is an organic material that, as the name implies, emits light when a current is passed through it. As opposed to LCD panels, which are back-lit, OLED displays are "always off" unless the individual pixels are electrified.

This means that OLED displays have much purer blacks and consume less energy when black or darker colours are displayed on-screen. However, lighter-coloured themes on AMOLED screens use considerably more power than an LCD using the same theme. OLED screens are also more expensive to produce than LCDs.

Because the black pixels are "off" in an OLED display, the contrast ratios are also higher compared to LCD screens. AMOLED displays have a very fast refresh rate too, but on the downside are not quite as visible in direct sunlight as backlit LCDs. Screen burn-in and diode degradation (because they are organic) are other factors to consider.Affiliate offer

Super AMOLED is the name given by Samsung to its displays that used to only be found in high-end models but have now trickled down to more modestly specced devices. Like IPS LCDs, Super AMOLED improves upon the basic AMOLED premise by integrating the touch response layer into the display itself, rather than as an extra layer on top.

In the same vein, the term "Fluid AMOLED" used by OnePlus on its most advanced devices basically highlights the high refresh rates employed, which results in more fluid animations on the screen.Affiliate offer

Resolution describes the number of individual pixels (or points) displayed on the screen and is usually presented for phones by the number of horizontal pixels — vertical when referring to TVs and monitors. More pixels on the same display allow for more detailed images and clearer text.

To make it easier to compare different models, brands usually adopt the same naming scheme made popular by the TV market with terms like HD, FullHD and UltraHD. But with phones adopting a wide range of different screen proportions, just knowing that is not enough to know the total pixels displayed on the screen.Common phone resolutions

But resolution in itself is not a good measure for image clarity, for that we need to consider the display size, resulting in the pixel density by area measured by DPI/PPI (dots/points per inch).Affiliate offer

Speaking of pixel density, this was one of Apple"s highlights back in 2010 during the launch of the iPhone 4. The company christened the LCD screen (LED, TFT, and IPS) used in the smartphone as "Retina Display", thanks to the high resolution of the panel used (960 by 640 pixels back then) in its 3.5-inch display.

The name coined by Apple"s marketing department is applied to screens which, according to the company, the human eye is unable to discern the individual pixels from a normal viewing distance. In the case of iPhones, the term was applied to displays with a pixel density that is greater than 300 ppi (dots per inch).

As a kind of consolation prize for iPhone XR and iPhone 11 buyers, who continued relying on LCD panels, Apple classified the display used in the smartphones with a new term, "Liquid Retina". This was later applied also to the iPad Pro and iPad Air models, with the name defining screens that boast a high range and colour accuracy, at least based on the company"s standards.

Nit, or candela per square meter in the international system (cd/m²), is a unit of measurement of luminance, i.e. the intensity of light emitted. In the case of smartphone screens and monitors in general, such a value defines just how bright the display is - the higher the value, the more intense the light emitted by the screen.

The result is smoother animations on the phone, both during regular use and in games, compared to screens that have a 60 Hz refresh rate which remains the standard rate in the market when it comes to displays.

Originally touted to be a "gimmick" in 2017, with the launch of the Razer Phone, the feature gained more and more momentum in due time, even with a corresponding decrease in battery life. In order to make the most of this feature, manufacturers began to adopt screens with variable refresh rates, which can be adjusted according to the content displayed - which is 24 fps in most movies, 30 or 60 fps in home video recordings, and so forth.

The same unit of measurement is used for the sampling rate. Although similar, the value here represents the number of times per second the screen is able to register touches. The higher the sample rate, the faster the smartphone registers such touches, which results in a faster response time.

TFT(Thin Film Transistor) - a type of LCD display that adopts a thin semiconductor layer deposited on the panel, which allows for active control of the colour intensity in each pixel, featuring a similar concept as that of active-matrix (AM) used in AMOLED displays. It is used in TN, IPS/PLS, VA/PVA/MVA panels, etc.

LTPS(Low Temperature PolySilicon) - a variation of the TFT that offers higher resolutions and lower power consumption compared to traditional TFT screens, based on a-Si (amorphous silicon) technology.

IGZO(Indium Gallium Zinc Oxide) - a semiconductor material used in TFT films, which also allows higher resolutions and lower power consumption, and sees action in different types of LCD screens (TN, IPS, VA) and OLED displays

LTPO(Low Temperature Polycrystaline Oxide) - a technology developed by Apple that can be used in both OLED and LCD displays, as it combines LTPS and IGZO techniques. The result? Lower power consumption. It has been used in the Apple Watch 4 and the Galaxy S21 Ultra.

Among televisions, the long-standing featured technology has always been miniLED - which consists of increasing the number of lighting zones in the backlight while still using an LCD panel. There are whispers going around that smartphones and smartwatches will be looking at incorporating microLED technology in their devices soon, with it being radically different from LCD/LED displays as it sports similar image characteristics to that of OLEDs.

A microLED display has one light-emitting diode for each subpixel of the screen - usually a set of red, green, and blue diodes for each dot. Chances are it will use a kind of inorganic material such as gallium nitride (GaN).

This is one of the reasons that explain the adoption of such technology to date remains rather limited in scope. You will see them mainly in large screens of 75 to 150 inches only, which enable 4K resolution (3,840 x 2,160 resolution, which is close to 8.3 million pixels or 24.8 million RGB subpixels). This is a huge number of pixels to look at!

Each technology has its own advantages and disadvantages but in recent years, OLED screens have gained prominence, especially with the adoption of the component in high-end flagship smartphones. It gained an even greater degree of popularity after the launch of the iPhone X, which cemented the position of OLED panels in the premium segment.

As previously stated, OLED/AMOLED screens have the advantage of a varied contrast level, resulting from individual brightness control for the pixels. Another result of this is the more realistic reproduction of black, as well as low power consumption when the screen shows off dark images - which has also helped to popularize dark modes on smartphones.

In addition, the organic diodes that give OLED screens their name can lose their ability to change their properties over time, and this happens when the same image is displayed for a long period of time. This problem is known as "burn-in", tends to manifest itself when higher brightness settings are applied for long periods of time.

In the case of LCD displays, the main advantage lies in the low manufacturing cost, with dozens of players in the market offering competitive pricing and a high production volume. Some brands have taken advantage of this feature to prioritize certain features - such as a higher refresh rate - instead of adopting an OLED panel, such as the Xiaomi Mi 10T.

lcd screen size comparison manufacturer

What constitutes a great phone display? Is it the high resolution and pixel density? Well, that, and great screen quality test numbers, that"s why the Sony Xperia 1 IV specs with the 1644p 4K panel top our list. What about the high brightness and contrast that offer good outdoor visibility in the sun outdoors? That"s certainly important, but most of today"s flagships have HDR-certified panels that breach the 1000-nit barrier upwards to fit the standard, and their OLED tech ensures practically infinite contrast ratio, so it"s hard to pick on that merit alone.

Moreover, the Find X5 Pro has the best white balance score, nearest to the 6500K reference point that means the screens colors are spot on in terms of warmth, neither too yellowish, nor cold and blueish. Adding the high typical or peak brightness levels, the company has managed to beat its own best phone displays record.

To take full advantage of its excellent display panel"s abilities, the Find X5 Pro employs a "multi-brightness color calibration," meaning that the screen is as color-credible in all lighting conditions, be it on the beach or in the dark.

As usual, Apple offers great individual color calibration and the Super Retina XDR panel is HDR certified to show 4K Dolby Vision HDR video recorded by the phone"s own cameras. The only ho-hum part is the just average greyscale representation, so while the iPhone 14 Pro Max may have the brightest phone screen it"s not the most accurate in terms of color credibility.