arduino uno tft display tutorial brands

In this article, you will learn how to use TFT LCDs by Arduino boards. From basic commands to professional designs and technics are all explained here. At the end of this article, you can :Write texts and numbers with your desired font.

In electronic’s projects, creating an interface between user and system is very important. This interface could be created by displaying useful data, a menu, and ease of access. A beautiful design is also very important.

There are several components to achieve this. LEDs, 7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.

TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.

In this article, we have used libraries and advanced technics to display data, charts, menu, etc. with a professional design. This can move your project presentation to a higher level.

Size of displays affects your project parameters. Bigger Display is not always better. if you want to display high-resolution images and signs, you should choose a big size display with higher resolution. But it decreases the speed of your processing, needs more space and also needs more current to run.

After choosing the right display, It’s time to choose the right controller. If you want to display characters, tests, numbers and static images and the speed of display is not important, the Atmega328 Arduino boards (such as Arduino UNO) are a proper choice. If the size of your code is big, The UNO board may not be enough. You can use Arduino Mega2560 instead. And if you want to show high resolution images and motions with high speed, you should use the ARM core Arduino boards such as Arduino DUE.

In electronics/computer hardware a display driver is usually a semiconductor integrated circuit (but may alternatively comprise a state machine made of discrete logic and other components) which provides an interface function between a microprocessor, microcontroller, ASIC or general-purpose peripheral interface and a particular type of display device, e.g. LCD, LED, OLED, ePaper, CRT, Vacuum fluorescent or Nixie.

The display driver will typically accept commands and data using an industry-standard general-purpose serial or parallel interface, such as TTL, CMOS, RS232, SPI, I2C, etc. and generate signals with suitable voltage, current, timing and demultiplexing to make the display show the desired text or image.

The LCDs manufacturers use different drivers in their products. Some of them are more popular and some of them are very unknown. To run your display easily, you should use Arduino LCDs libraries and add them to your code. Otherwise running the display may be very difficult. There are many free libraries you can find on the internet but the important point about the libraries is their compatibility with the LCD’s driver. The driver of your LCD must be known by your library. In this article, we use the Adafruit GFX library and MCUFRIEND KBV library and example codes. You can download them from the following links.

You must add the library and then upload the code. If it is the first time you run an Arduino board, don’t worry. Just follow these steps:Go to www.arduino.cc/en/Main/Software and download the software of your OS. Install the IDE software as instructed.

The second adds a library that supports drivers of MCUFRIEND Arduino display shields.#include "TouchScreen.h" // only when you want to use touch screen#include "bitmap_mono.h" // when you want to display a bitmap image from library#include "bitmap_RGB.h" // when you want to display a bitmap image from library#include "Fonts/FreeSans9pt7b.h" // when you want other fonts#include "Fonts/FreeSans12pt7b.h" // when you want other fonts#include "Fonts/FreeSerif12pt7b.h" // when you want other fonts#include "FreeDefaultFonts.h" // when you want other fonts#include "SPI.h" // using sdcard for display bitmap image#include "SD.h"

By these two functions, You can find out the resolution of the display. Just add them to the code and put the outputs in a uint16_t variable. Then read it from the Serial port by Serial.println();. First add Serial.begin(9600); in setup().

fillScreen function change the color of screen to t color. The t should be a 16bit variable containing UTFT color code.#define BLACK 0x0000#define NAVY 0x000F#define DARKGREEN 0x03E0#define DARKCYAN 0x03EF#define MAROON 0x7800#define PURPLE 0x780F#define OLIVE 0x7BE0#define LIGHTGREY 0xC618#define DARKGREY 0x7BEF#define BLUE 0x001F#define GREEN 0x07E0#define CYAN 0x07FF#define RED 0xF800#define MAGENTA 0xF81F#define YELLOW 0xFFE0#define WHITE 0xFFFF#define ORANGE 0xFD20#define GREENYELLOW 0xAFE5#define PINK 0xF81F

Drawing Linestft.drawFastVLine(x,y,h,t);//drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t t)tft.drawFastHLine(x,y,w,t);//drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t t)tft.drawLine(xi,yi,xj,yj,t);//drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint16_t t)

drawLinefunction draws a line that starts in xi and yi locationends is in xj and yj and the color is t.for (uint16_t a=0; a<5; a++){ tft.drawFastVLine(x+a, y, h, t);}for (uint16_t a=0; a<5; a++){ tft.drawFastHLine(x, y+a, w, t);}for (uint16_t a=0; a<5; a++){ tft.drawLine(xi+a, yi, xj+a, yj, t);}for (uint16_t a=0; a<5; a++){ tft.drawLine(xi, yi+a, xj, yj+a, t);}

These three blocks of code draw lines like the previous code with 5-pixel thickness.tft.fillRect(x,y,w,h,t);//fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t t)tft.drawRect(x,y,w,h,t);//drawRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t t)tft.fillRoundRect(x,y,w,h,r,t);//fillRoundRect (int16_t x, int16_t y, int16_t w, int16_t h, uint8_t R , uint16_t t)tft.drawRoundRect(x,y,w,h,r,t);//drawRoundRect(int16_t x, int16_t y, int16_t w, int16_t h, uint8_t R , uint16_t t)

Drawing Circlestft.drawCircle(x,y,r,t); //drawCircle(int16_t x, int16_t y, int16_t r, uint16_t t)tft.fillCircle(x,y,r,t); //fillCircle(int16_t x, int16_t y, int16_t r, uint16_t t)

fillCirclefunction draws a filled circle in x and y location and r radius and t color.for (int p = 0; p < 4000; p++){ j = 120 * (sin(PI * p / 2000));i = 120 * (cos(PI * p / 2000));j2 = 60 * (sin(PI * p / 2000));i2 = 60 * (cos(PI * p / 2000));tft.drawLine(i2 + 160, j2 + 160, i + 160, j + 160, col[n]);}

Drawing Trianglestft.drawTriangle(x1,y1,x2,y2,x3,y3,t);//drawTriangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3,// uint16_t t)tft.fillTriangle(x1,y1,x2,y2,x3,y3,t);//fillTriangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3,// uint16_t t)

This code sets the cursor position to of x and ytft.setTextColor(t); //setTextColor(uint16_t t)tft.setTextColor(t,b); //setTextColor(uint16_t t, uint16_t b)

The second function just displays the string.showmsgXY(x,y,sz,&FreeSans9pt7b,"www.Electropeak.com");//void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg)void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg){ uint16_t x1, y1;uint16_t wid, ht;tft.setFont(f);tft.setCursor(x, y);tft.setTextColor(0x0000);tft.setTextSize(sz);tft.print(msg);}

This function changes the font of the text. You should add this function and font libraries.for (int j = 0; j < 20; j++) {tft.setCursor(145, 290);int color = tft.color565(r -= 12, g -= 12, b -= 12);tft.setTextColor(color);tft.print("www.Electropeak.com");delay(30);}

First you should convert your image to hex code. Download the software from the following link. if you don’t want to change the settings of the software, you must invert the color of the image and make the image horizontally mirrored and rotate it 90 degrees counterclockwise. Now add it to the software and convert it. Open the exported file and copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are sizes of image. you can change the color of the image in the last input.

Upload your image and download the converted file that the UTFT libraries can process. Now copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are size of the image.

In this template, We just used a string and 8 filled circles that change their colors in order. To draw circles around a static point, You can use sin(); and cos(); functions. you should define the PI number. To change colors, you can use color565(); function and replace your RGB code.#include "Adafruit_GFX.h"#include "MCUFRIEND_kbv.h"MCUFRIEND_kbv tft;#include "Fonts/FreeSans9pt7b.h"#include "Fonts/FreeSans12pt7b.h"#include "Fonts/FreeSerif12pt7b.h"#include "FreeDefaultFonts.h"#define PI 3.1415926535897932384626433832795int col[8];void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg){int16_t x1, y1;uint16_t wid, ht;tft.setFont(f);tft.setCursor(x, y);tft.setTextColor(0x0000);tft.setTextSize(sz);tft.print(msg);}void setup() {tft.reset();Serial.begin(9600);uint16_t ID = tft.readID();tft.begin(ID);tft.setRotation(1);tft.invertDisplay(true);tft.fillScreen(0xffff);showmsgXY(170, 250, 2, &FreeSans9pt7b, "Loading...");col[0] = tft.color565(155, 0, 50);col[1] = tft.color565(170, 30, 80);col[2] = tft.color565(195, 60, 110);col[3] = tft.color565(215, 90, 140);col[4] = tft.color565(230, 120, 170);col[5] = tft.color565(250, 150, 200);col[6] = tft.color565(255, 180, 220);col[7] = tft.color565(255, 210, 240);}void loop() {for (int i = 8; i > 0; i--) {tft.fillCircle(240 + 40 * (cos(-i * PI / 4)), 120 + 40 * (sin(-i * PI / 4)), 10, col[0]); delay(15);tft.fillCircle(240 + 40 * (cos(-(i + 1)*PI / 4)), 120 + 40 * (sin(-(i + 1)*PI / 4)), 10, col[1]); delay(15);tft.fillCircle(240 + 40 * (cos(-(i + 2)*PI / 4)), 120 + 40 * (sin(-(i + 2)*PI / 4)), 10, col[2]); delay(15);tft.fillCircle(240 + 40 * (cos(-(i + 3)*PI / 4)), 120 + 40 * (sin(-(i + 3)*PI / 4)), 10, col[3]); delay(15);tft.fillCircle(240 + 40 * (cos(-(i + 4)*PI / 4)), 120 + 40 * (sin(-(i + 4)*PI / 4)), 10, col[4]); delay(15);tft.fillCircle(240 + 40 * (cos(-(i + 5)*PI / 4)), 120 + 40 * (sin(-(i + 5)*PI / 4)), 10, col[5]); delay(15);tft.fillCircle(240 + 40 * (cos(-(i + 6)*PI / 4)), 120 + 40 * (sin(-(i + 6)*PI / 4)), 10, col[6]); delay(15);tft.fillCircle(240 + 40 * (cos(-(i + 7)*PI / 4)), 120 + 40 * (sin(-(i + 7)*PI / 4)), 10, col[7]); delay(15);}}

In this template, We converted a.jpg image to.c file and added to the code, wrote a string and used the fade code to display. Then we used scroll code to move the screen left. Download the.h file and add it to the folder of the Arduino sketch.#include "Adafruit_GFX.h" // Core graphics library#include "MCUFRIEND_kbv.h" // Hardware-specific libraryMCUFRIEND_kbv tft;#include "Ard_Logo.h"#define BLACK 0x0000#define RED 0xF800#define GREEN 0x07E0#define WHITE 0xFFFF#define GREY 0x8410#include "Fonts/FreeSans9pt7b.h"#include "Fonts/FreeSans12pt7b.h"#include "Fonts/FreeSerif12pt7b.h"#include "FreeDefaultFonts.h"void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg){int16_t x1, y1;uint16_t wid, ht;tft.setFont(f);tft.setCursor(x, y);tft.setTextSize(sz);tft.println(msg);}uint8_t r = 255, g = 255, b = 255;uint16_t color;void setup(){Serial.begin(9600);uint16_t ID = tft.readID();tft.begin(ID);tft.invertDisplay(true);tft.setRotation(1);}void loop(void){tft.invertDisplay(true);tft.fillScreen(WHITE);tft.drawRGBBitmap(100, 50, Logo, 350, 200);delay(1000);tft.setTextSize(2);for (int j = 0; j < 20; j++) {color = tft.color565(r -= 12, g -= 12, b -= 12);tft.setTextColor(color);showmsgXY(95, 280, 1, &FreeSans12pt7b, "ELECTROPEAK PRESENTS");delay(20);}delay(1000);for (int i = 0; i < 480; i++) {tft.vertScroll(0, 480, i);tft.drawFastVLine(i, 0, 320, 0xffff); // vertical linedelay(5);}while (1);}

In this template, We used draw lines, filled circles, and string display functions.#include "Adafruit_GFX.h"#include "MCUFRIEND_kbv.h"MCUFRIEND_kbv tft;uint16_t ox=0,oy=0;int ave=0, avec=0, avet=0;////////////////////////////////////////////////////////////////void aveg(void){int z=0;Serial.println(ave);Serial.println(avec);avet=ave/avec;Serial.println(avet);avet=avet*32;for (int i=0; i<24; i++){for (uint16_t a=0; a<3; a++){tft.drawLine(avet+a, z, avet+a, z+10, 0xFB21);} // thickfor (uint16_t a=0; a<2; a++){ tft.drawLine(avet-a, z, avet-a, z+10, 0xFB21);} delay(100); z=z+20; } } ////////////////////////////////////////////////////////////////// void dchart_10x10(uint16_t nx,uint16_t ny) { ave+=nx; avec++; nx=nx*32; ny=ny*48; tft.drawCircle(nx, ny, 10, 0x0517); tft.drawCircle(nx, ny, 9, 0x0517); tft.fillCircle(nx, ny, 7, 0x0517); delay (100); ox=nx; oy=ny; } /////////////////////////////////////////////////////////////////////// void dotchart_10x10(uint16_t nx,uint16_t ny) { ave+=nx; avec++; nx=nx*32; ny=ny*48; int plus=0; float fplus=0; int sign=0; int y=0,x=0; y=oy; x=ox; float xmines, ymines; xmines=nx-ox; ymines=ny-oy; if (ox>nx){xmines=ox-nx;sign=1;}elsesign=0;for (int a=0; a<(ny-oy); a++){fplus+=xmines/ymines;plus=fplus;if (sign==1)tft.drawFastHLine(0, y, x-plus, 0xBFDF);elsetft.drawFastHLine(0, y, x+plus, 0xBFDF);y++;delay(5);}for (uint16_t a=0; a<2; a++){tft.drawLine(ox+a, oy, nx+a, ny, 0x01E8);} // thickfor (uint16_t a=0; a<2; a++){tft.drawLine(ox, oy+a, nx, ny+a, 0x01E8);}ox=nx;oy=ny;}////////////////////////////////////////////////////////////////////void setup() {tft.reset();Serial.begin(9600);uint16_t ID = tft.readID();tft.begin(ID);}void loop() {tft.invertDisplay(true);tft.fillScreen(0xffff);dotchart_10x10(3, 0);dotchart_10x10(2, 1);dotchart_10x10(4, 2);dotchart_10x10(4, 3);dotchart_10x10(5, 4);dotchart_10x10(3, 5);dotchart_10x10(6, 6);dotchart_10x10(7, 7);dotchart_10x10(9, 8);dotchart_10x10(8, 9);dotchart_10x10(10, 10);dchart_10x10(3, 0);dchart_10x10(2, 1);dchart_10x10(4, 2);dchart_10x10(4, 3);dchart_10x10(5, 4);dchart_10x10(3, 5);dchart_10x10(6, 6);dchart_10x10(7, 7);dchart_10x10(9, 8);dchart_10x10(8, 9);dchart_10x10(10, 10);tft.setRotation(1);tft.setTextSize(2);tft.setTextColor(0x01E8);tft.setCursor(20, 20);tft.print("Average");int dl=20;for (int i=0;i<6;i++){for (uint16_t a=0; a<3; a++){tft.drawLine(dl, 40+a, dl+10, 40+a, 0xFB21);}dl+=16;}tft.setRotation(0);aveg();while(1);}

In this template, We added a converted image to code and then used two black and white arcs to create the pointer of volumes. Download the.h file and add it to the folder of the Arduino sketch.#include "Adafruit_GFX.h"#include "MCUFRIEND_kbv.h"MCUFRIEND_kbv tft;#include "Volume.h"#define BLACK 0x0000int a = 0,b = 4000,c = 1000,d = 3000;int s=2000;int j, j2;int i, i2;int White;void setup(){Serial.begin(9600);uint16_t ID = tft.readID();tft.begin(ID);tft.invertDisplay(true);tft.setRotation(1);}void loop(void){tft.invertDisplay(true);tft.fillScreen(BLACK);tft.drawRGBBitmap(0, 0, test, 480, 320);White = tft.color565(255, 255, 255);while(1){if (a < s) {j = 14 * (sin(PI * a / 2000));i = 14 * (cos(PI * a / 2000));j2 = 1 * (sin(PI * a / 2000));i2 = 1 * (cos(PI * a / 2000));tft.drawLine(i2 + 62, j2 + 240, i + 62, j + 240, White);j = 14 * (sin(PI * (a-300) / 2000));i = 14 * (cos(PI * (a-300) / 2000));j2 = 1 * (sin(PI * (a-300) / 2000));i2 = 1 * (cos(PI * (a-300) / 2000));tft.drawLine(i2 + 62, j2 + 240, i + 62, j + 240, 0x0000);tft.fillRect(50, 285, 30, 30, 0x0000);tft.setTextSize(2);tft.setTextColor(0xffff);tft.setCursor(50, 285);tft.print(a / 40); tft.print("%");a++;}if (b < s) {j = 14 * (sin(PI * b / 2000));i = 14 * (cos(PI * b / 2000));j2 = 1 * (sin(PI * b / 2000));i2 = 1 * (cos(PI * b / 2000));tft.drawLine(i2 + 180, j2 + 240, i + 180, j + 240, White);j = 14 * (sin(PI * (b-300) / 2000));i = 14 * (cos(PI * (b-300) / 2000));j2 = 1 * (sin(PI * (b-300) / 2000));i2 = 1 * (cos(PI * (b-300) / 2000));tft.drawLine(i2 + 180, j2 + 240, i + 180, j + 240, 0x0000);tft.fillRect(168, 285, 30, 30, 0x0000);tft.setTextSize(2);tft.setTextColor(0xffff);tft.setCursor(168, 285);tft.print(b / 40); tft.print("%");b++;}if (c < s) {j = 14 * (sin(PI * c / 2000));i = 14 * (cos(PI * c / 2000));j2 = 1 * (sin(PI * c / 2000));i2 = 1 * (cos(PI * c / 2000));tft.drawLine(i2 + 297, j2 + 240, i + 297, j + 240, White);j = 14 * (sin(PI * (c-300) / 2000));i = 14 * (cos(PI * (c-300) / 2000));j2 = 1 * (sin(PI * (c-300) / 2000));i2 = 1 * (cos(PI * (c-300) / 2000));tft.drawLine(i2 + 297, j2 + 240, i + 297, j + 240, 0x0000);tft.fillRect(286, 285, 30, 30, 0x0000);tft.setTextSize(2);tft.setTextColor(0xffff);tft.setCursor(286, 285);tft.print(c / 40); tft.print("%");c++;}if (d < s) { j = 14 * (sin(PI * d / 2000)); i = 14 * (cos(PI * d / 2000)); j2 = 1 * (sin(PI * d / 2000)); i2 = 1 * (cos(PI * d / 2000)); tft.drawLine(i2 + 414, j2 + 240, i + 414, j + 240, White); j = 14 * (sin(PI * (d-300) / 2000)); i = 14 * (cos(PI * (d-300) / 2000)); j2 = 1 * (sin(PI * (d-300) / 2000)); i2 = 1 * (cos(PI * (d-300) / 2000)); tft.drawLine(i2 + 414, j2 + 240, i + 414, j + 240, 0x0000); tft.fillRect(402, 285, 30, 30, 0x0000); tft.setTextSize(2); tft.setTextColor(0xffff); tft.setCursor(402, 285); tft.print(d / 40); tft.print("%"); d++;} if (a > s) {j = 14 * (sin(PI * a / 2000));i = 14 * (cos(PI * a / 2000));j2 = 1 * (sin(PI * a / 2000));i2 = 1 * (cos(PI * a / 2000));tft.drawLine(i2 + 62, j2 + 240, i + 62, j + 240, White);j = 14 * (sin(PI * (a+300) / 2000));i = 14 * (cos(PI * (a+300) / 2000));j2 = 1 * (sin(PI * (a+300) / 2000));i2 = 1 * (cos(PI * (a+300) / 2000));tft.drawLine(i2 + 62, j2 + 240, i + 62, j + 240, 0x0000);tft.fillRect(50, 285, 30, 30, 0x0000);tft.setTextSize(2);tft.setTextColor(0xffff);tft.setCursor(50, 285);tft.print(a / 40); tft.print("%");a--;}if (b > s) {j = 14 * (sin(PI * b / 2000));i = 14 * (cos(PI * b / 2000));j2 = 1 * (sin(PI * b / 2000));i2 = 1 * (cos(PI * b / 2000));tft.drawLine(i2 + 180, j2 + 240, i + 180, j + 240, White);j = 14 * (sin(PI * (b+300) / 2000));i = 14 * (cos(PI * (b+300) / 2000));j2 = 1 * (sin(PI * (b+300) / 2000));i2 = 1 * (cos(PI * (b+300) / 2000));tft.drawLine(i2 + 180, j2 + 240, i + 180, j + 240, 0x0000);tft.fillRect(168, 285, 30, 30, 0x0000);tft.setTextSize(2);tft.setTextColor(0xffff);tft.setCursor(168, 285);tft.print(b / 40); tft.print("%");b--;}if (c > s) {j = 14 * (sin(PI * c / 2000));i = 14 * (cos(PI * c / 2000));j2 = 1 * (sin(PI * c / 2000));i2 = 1 * (cos(PI * c / 2000));tft.drawLine(i2 + 297, j2 + 240, i + 297, j + 240, White);j = 14 * (sin(PI * (c+300) / 2000));i = 14 * (cos(PI * (c+300) / 2000));j2 = 1 * (sin(PI * (c+300) / 2000));i2 = 1 * (cos(PI * (c+300) / 2000));tft.drawLine(i2 + 297, j2 + 240, i + 297, j + 240, 0x0000);tft.fillRect(286, 285, 30, 30, 0x0000);tft.setTextSize(2);tft.setTextColor(0xffff);tft.setCursor(286, 285);tft.print(c / 40); tft.print("%");c--;}if (d > s) {j = 14 * (sin(PI * d / 2000));i = 14 * (cos(PI * d / 2000));j2 = 1 * (sin(PI * d / 2000));i2 = 1 * (cos(PI * d / 2000));tft.drawLine(i2 + 414, j2 + 240, i + 414, j + 240, White);j = 14 * (sin(PI * (d+300) / 2000));i = 14 * (cos(PI * (d+300) / 2000));j2 = 1 * (sin(PI * (d+300) / 2000));i2 = 1 * (cos(PI * (d+300) / 2000));tft.drawLine(i2 + 414, j2 + 240, i + 414, j + 240, 0x0000);tft.fillRect(402, 285, 30, 30, 0x0000);tft.setTextSize(2);tft.setTextColor(0xffff);tft.setCursor(402, 285);tft.print(d / 40); tft.print("%");d--;}}}

In this template, We just display some images by RGBbitmap and bitmap functions. Just make a code for touchscreen and use this template. Download the.h file and add it to folder of the Arduino sketch.#include "Adafruit_GFX.h" // Core graphics library#include "MCUFRIEND_kbv.h" // Hardware-specific libraryMCUFRIEND_kbv tft;#define BLACK 0x0000#define RED 0xF800#define GREEN 0x07E0#define WHITE 0xFFFF#define GREY 0x8410#include "images.h"#include "Fonts/FreeSans9pt7b.h"#include "Fonts/FreeSans12pt7b.h"#include "Fonts/FreeSerif12pt7b.h"#include "FreeDefaultFonts.h"int a = 3000;int b = 4000;int j, j2;int i, i2;void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg){int16_t x1, y1;uint16_t wid, ht;// tft.drawFastHLine(0, y, tft.width(), 0xffff);tft.setFont(f);tft.setCursor(x, y);tft.setTextColor(WHITE);tft.setTextSize(sz);tft.print(msg);delay(1000);}void setup(){Serial.begin(9600);uint16_t ID = tft.readID();tft.begin(ID);tft.invertDisplay(true);tft.setRotation(1);}void loop(void){tft.invertDisplay(true);tft.fillScreen(BLACK);tft.drawRGBBitmap(0, 0, test, 480, 320);tft.drawBitmap(20, 20, Line1, 45, 45, 0xffff);//batterytft.drawBitmap(65, 20, Line2, 45, 45, 0xffff);//wifitft.drawBitmap(125, 25, Line3, 45, 45, 0xffff);//mailtft.drawBitmap(185, 25, Line4, 45, 45, 0xffff);//instagramtft.drawBitmap(245, 25, Line6, 45, 45, 0xffff);//powertft.drawBitmap(20, 260, Line5, 45, 45, 0xffff);//twittertft.drawBitmap(410, 140, Line7, 45, 45, 0xffff);//raintft.setTextSize(6);tft.setTextColor(0xffff);tft.setCursor(280, 210);tft.print("20:45");tft.setTextSize(2);tft.setTextColor(0xffff);showmsgXY(330, 280, 1, &FreeSans12pt7b, "Saturday");showmsgXY(300, 305, 1, &FreeSans12pt7b, "6 October 2018");while (1);}

arduino uno tft display tutorial brands

In this tutorial, you will learn how to use and set up 2.4″ Touch LCD Shield for Arduino. First, you’ll see some general information about this shield. And after learning how to set the shield up, you’ll see 3 practical projects.

The role of screens in electronic projects is very important. Screens can be of very simple types such as 7 Segment or character LCDs or more advanced models like OLEDs and TFT LCDs.

One of the most important features of this LCD is including a touch panel. If you are about to use the LCD, you need to know the coordinates of the point you touch. To do so, you should upload the following code on your Arduino board and open the serial monitor. Then touch your desired location and write the coordinates displayed on the serial monitor. You can use this coordination in any other project./*TFT LCD - TFT Touch CoordinateBased on Librery Examplemodified on 21 Feb 2019by Saeed Hosseinihttps://electropeak.com/learn/*/#include #include "TouchScreen.h"#define YP A2#define XM A3#define YM 8#define XP 9// For better pressure precision, we need to know the resistance// between X+ and X- Use any multimeter to read it// For the one we"re using, its 300 ohms across the X plateTouchScreen ts = TouchScreen(XP, YP, XM, YM, 300);void setup(void) {Serial.begin(9600);}void loop(void) {TSPoint p = ts.getPoint();if (p.z > ts.pressureThreshhold) {Serial.print("X = "); Serial.print(p.x);Serial.print("\tY = "); Serial.print(p.y);Serial.print("\tPressure = "); Serial.println(p.z);}delay(100);}

Displaying Text and Shapes on Arduino 2.4 LCD/*TFT LCD - TFT Simple drivingmodified on 21 Feb 2019by Saeed Hosseinihttps://electropeak.com/learn/*/#include #include #define LCD_CS A3#define LCD_CD A2#define LCD_WR A1#define LCD_RD A0#define LCD_RESET A4#define BLACK 0x0000#define BLUE 0x001F#define RED 0xF800#define GREEN 0x07E0#define CYAN 0x07FF#define MAGENTA 0xF81F#define YELLOW 0xFFE0#define WHITE 0xFFFF#define ORANGE 0xFD20#define GREENYELLOW 0xAFE5#define NAVY 0x000F#define DARKGREEN 0x03E0#define DARKCYAN 0x03EF#define MAROON 0x7800#define PURPLE 0x780F#define OLIVE 0x7BE0#define LIGHTGREY 0xC618#define DARKGREY 0x7BEFAdafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);void setup() {Serial.begin(9600);Serial.println(F("TFT LCD test"));#ifdef USE_ADAFRUIT_SHIELD_PINOUTSerial.println(F("Using Adafruit 2.4\" TFT Arduino Shield Pinout"));#elseSerial.println(F("Using Adafruit 2.4\" TFT Breakout Board Pinout"));#endifSerial.print("TFT size is ");Serial.print(tft.width());Serial.print("x");Serial.println(tft.height());tft.reset();uint16_t identifier = tft.readID();if (identifier == 0x9325) {Serial.println(F("Found ILI9325 LCD driver"));} else if (identifier == 0x9328) {Serial.println(F("Found ILI9328 LCD driver"));} else if (identifier == 0x7575) {Serial.println(F("Found HX8347G LCD driver"));} else if (identifier == 0x9341) {Serial.println(F("Found ILI9341 LCD driver"));} else if (identifier == 0x8357) {Serial.println(F("Found HX8357D LCD driver"));} else {Serial.print(F("Unknown LCD driver chip: "));Serial.println(identifier, HEX);Serial.println(F("If using the Adafruit 2.4\" TFT Arduino shield, the line:"));Serial.println(F(" #define USE_ADAFRUIT_SHIELD_PINOUT"));Serial.println(F("should appear in the library header (Adafruit_TFT.h)."));Serial.println(F("If using the breakout board, it should NOT be #defined!"));Serial.println(F("Also if using the breakout, double-check that all wiring"));Serial.println(F("matches the tutorial."));return;}tft.begin(identifier);Serial.println(F("Benchmark Time (microseconds)"));Serial.print(F("Screen fill "));Serial.println(FillScreen());delay(500);tft.setTextColor(YELLOW);tft.setCursor(70, 180);tft.setTextSize(1);tft.println("Electropeak");delay(200);tft.fillScreen(PURPLE);tft.setCursor(50, 170);tft.setTextSize(2);tft.println("Electropeak");delay(200);tft.fillScreen(PURPLE);tft.setCursor(20, 160);tft.setTextSize(3);tft.println("Electropeak");delay(500);tft.fillScreen(PURPLE);for (int rotation = 0; rotation < 4; rotation++) { tft.setRotation(rotation); tft.setCursor(0, 0); tft.setTextSize(3); tft.println("Electropeak"); delay(700); } delay(500); Serial.print(F("Rectangles (filled) ")); Serial.println(testFilledRects(YELLOW, MAGENTA)); delay(500); } void loop() { } unsigned long FillScreen() { unsigned long start = micros(); tft.fillScreen(RED); delay(500); tft.fillScreen(GREEN); delay(500); tft.fillScreen(BLUE); delay(500); tft.fillScreen(WHITE); delay(500); tft.fillScreen(MAGENTA); delay(500); tft.fillScreen(PURPLE); delay(500); return micros() - start; } unsigned long testFilledRects(uint16_t color1, uint16_t color2) { unsigned long start, t = 0; int n, i, i2, cx = tft.width() / 2 - 1, cy = tft.height() / 2 - 1; tft.fillScreen(BLACK); n = min(tft.width(), tft.height()); for (i = n; i > 0; i -= 6) {i2 = i / 2;start = micros();tft.fillRect(cx - i2, cy - i2, i, i, color1);t += micros() - start;// Outlines are not included in timing resultstft.drawRect(cx - i2, cy - i2, i, i, color2);}return t;}

Displaying BMP pictures/*This code is TFTLCD Library Example*/#include #include #include #include #define LCD_CS A3#define LCD_CD A2#define LCD_WR A1#define LCD_RD A0#define SD_CS 10Adafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, A4);void setup(){Serial.begin(9600);tft.reset();uint16_t identifier = tft.readID();if (identifier == 0x9325) {Serial.println(F("Found ILI9325 LCD driver"));} else if (identifier == 0x9328) {Serial.println(F("Found ILI9328 LCD driver"));} else if (identifier == 0x7575) {Serial.println(F("Found HX8347G LCD driver"));} else if (identifier == 0x9341) {Serial.println(F("Found ILI9341 LCD driver"));} else if (identifier == 0x8357) {Serial.println(F("Found HX8357D LCD driver"));} else {Serial.print(F("Unknown LCD driver chip: "));Serial.println(identifier, HEX);Serial.println(F("If using the Adafruit 2.4\" TFT Arduino shield, the line:"));Serial.println(F(" #define USE_ADAFRUIT_SHIELD_PINOUT"));Serial.println(F("should appear in the library header (Adafruit_TFT.h)."));Serial.println(F("If using the breakout board, it should NOT be #defined!"));Serial.println(F("Also if using the breakout, double-check that all wiring"));Serial.println(F("matches the tutorial."));return;}tft.begin(identifier);Serial.print(F("Initializing SD card..."));if (!SD.begin(SD_CS)) {Serial.println(F("failed!"));return;}Serial.println(F("OK!"));bmpDraw("pic1.bmp", 0, 0);delay(1000);bmpDraw("pic2.bmp", 0, 0);delay(1000);bmpDraw("pic3.bmp", 0, 0);delay(1000);}void loop(){}#define BUFFPIXEL 20void bmpDraw(char *filename, int x, int y) {File bmpFile;int bmpWidth, bmpHeight; // W+H in pixelsuint8_t bmpDepth; // Bit depth (currently must be 24)uint32_t bmpImageoffset; // Start of image data in fileuint32_t rowSize; // Not always = bmpWidth; may have paddinguint8_t sdbuffer[3 * BUFFPIXEL]; // pixel in buffer (R+G+B per pixel)uint16_t lcdbuffer[BUFFPIXEL]; // pixel out buffer (16-bit per pixel)uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbufferboolean goodBmp = false; // Set to true on valid header parseboolean flip = true; // BMP is stored bottom-to-topint w, h, row, col;uint8_t r, g, b;uint32_t pos = 0, startTime = millis();uint8_t lcdidx = 0;boolean first = true;if ((x >= tft.width()) || (y >= tft.height())) return;Serial.println();Serial.print(F("Loading image ""));Serial.print(filename);Serial.println("\"");// Open requested file on SD cardif ((bmpFile = SD.open(filename)) == NULL) {Serial.println(F("File not found"));return;}// Parse BMP headerif (read16(bmpFile) == 0x4D42) { // BMP signatureSerial.println(F("File size: ")); Serial.println(read32(bmpFile));(void)read32(bmpFile); // Read & ignore creator bytesbmpImageoffset = read32(bmpFile); // Start of image dataSerial.print(F("Image Offset: ")); Serial.println(bmpImageoffset, DEC);// Read DIB headerSerial.print(F("Header size: ")); Serial.println(read32(bmpFile));bmpWidth = read32(bmpFile);bmpHeight = read32(bmpFile);if (read16(bmpFile) == 1) { // # planes -- must be "1"bmpDepth = read16(bmpFile); // bits per pixelSerial.print(F("Bit Depth: ")); Serial.println(bmpDepth);if ((bmpDepth == 24) && (read32(bmpFile) == 0)) { // 0 = uncompressedgoodBmp = true; // Supported BMP format -- proceed!Serial.print(F("Image size: "));Serial.print(bmpWidth);Serial.print("x");Serial.println(bmpHeight);// BMP rows are padded (if needed) to 4-byte boundaryrowSize = (bmpWidth * 3 + 3) & ~3;// If bmpHeight is negative, image is in top-down order.// This is not canon but has been observed in the wild.if (bmpHeight < 0) { bmpHeight = -bmpHeight; flip = false; } // Crop area to be loaded w = bmpWidth; h = bmpHeight; if ((x + w - 1) >= tft.width()) w = tft.width() - x;if ((y + h - 1) >= tft.height()) h = tft.height() - y;// Set TFT address window to clipped image boundstft.setAddrWindow(x, y, x + w - 1, y + h - 1);for (row = 0; row < h; row++) { // For each scanline...// Seek to start of scan line. It might seem labor-// intensive to be doing this on every line, but this// method covers a lot of gritty details like cropping// and scanline padding. Also, the seek only takes// place if the file position actually needs to change// (avoids a lot of cluster math in SD library).if (flip) // Bitmap is stored bottom-to-top order (normal BMP)pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize;else // Bitmap is stored top-to-bottompos = bmpImageoffset + row * rowSize;if (bmpFile.position() != pos) { // Need seek?bmpFile.seek(pos);buffidx = sizeof(sdbuffer); // Force buffer reload}for (col = 0; col < w; col++) { // For each column... // Time to read more pixel data? if (buffidx >= sizeof(sdbuffer)) { // Indeed// Push LCD buffer to the display firstif (lcdidx > 0) {tft.pushColors(lcdbuffer, lcdidx, first);lcdidx = 0;first = false;}bmpFile.read(sdbuffer, sizeof(sdbuffer));buffidx = 0; // Set index to beginning}// Convert pixel from BMP to TFT formatb = sdbuffer[buffidx++];g = sdbuffer[buffidx++];r = sdbuffer[buffidx++];lcdbuffer[lcdidx++] = tft.color565(r, g, b);} // end pixel} // end scanline// Write any remaining data to LCDif (lcdidx > 0) {tft.pushColors(lcdbuffer, lcdidx, first);}Serial.print(F("Loaded in "));Serial.print(millis() - startTime);Serial.println(" ms");} // end goodBmp}}bmpFile.close();if (!goodBmp) Serial.println(F("BMP format not recognized."));}// These read 16- and 32-bit types from the SD card file.// BMP data is stored little-endian, Arduino is little-endian too.// May need to reverse subscript order if porting elsewhere.uint16_t read16(File f) {uint16_t result;((uint8_t *)&result)[0] = f.read(); // LSB((uint8_t *)&result)[1] = f.read(); // MSBreturn result;}uint32_t read32(File f) {uint32_t result;((uint8_t *)&result)[0] = f.read(); // LSB((uint8_t *)&result)[1] = f.read();((uint8_t *)&result)[2] = f.read();((uint8_t *)&result)[3] = f.read(); // MSBreturn result;}

To display pictures on this LCD you should save the picture in 24bit BMP colored format and size of 240*320. Then move them to SD card and put the SD card in the LCD shield. we use the following function to display pictures. This function has 3 arguments; the first one stands for the pictures name, and the second and third arguments are for length and width coordinates of the top left corner of the picture.bmpdraw(“filename.bmp”,x,y);

Create A Paint App w/ Arduino 2.4 Touchscreen/*This code is TFTLCD Library Example*/#include #include #include #if defined(__SAM3X8E__)#undef __FlashStringHelper::F(string_literal)#define F(string_literal) string_literal#endif#define YP A3#define XM A2#define YM 9#define XP 8#define TS_MINX 150#define TS_MINY 120#define TS_MAXX 920#define TS_MAXY 940TouchScreen ts = TouchScreen(XP, YP, XM, YM, 300);#define LCD_CS A3#define LCD_CD A2#define LCD_WR A1#define LCD_RD A0#define LCD_RESET A4#define BLACK 0x0000#define BLUE 0x001F#define RED 0xF800#define GREEN 0x07E0#define CYAN 0x07FF#define MAGENTA 0xF81F#define YELLOW 0xFFE0#define WHITE 0xFFFFAdafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);#define BOXSIZE 40#define PENRADIUS 3int oldcolor, currentcolor;void setup(void) {Serial.begin(9600);Serial.println(F("Paint!"));tft.reset();uint16_t identifier = tft.readID();if(identifier == 0x9325) {Serial.println(F("Found ILI9325 LCD driver"));} else if(identifier == 0x9328) {Serial.println(F("Found ILI9328 LCD driver"));} else if(identifier == 0x7575) {Serial.println(F("Found HX8347G LCD driver"));} else if(identifier == 0x9341) {Serial.println(F("Found ILI9341 LCD driver"));} else if(identifier == 0x8357) {Serial.println(F("Found HX8357D LCD driver"));} else {Serial.print(F("Unknown LCD driver chip: "));Serial.println(identifier, HEX);Serial.println(F("If using the Adafruit 2.4\" TFT Arduino shield, the line:"));Serial.println(F(" #define USE_ADAFRUIT_SHIELD_PINOUT"));Serial.println(F("should appear in the library header (Adafruit_TFT.h)."));Serial.println(F("If using the breakout board, it should NOT be #defined!"));Serial.println(F("Also if using the breakout, double-check that all wiring"));Serial.println(F("matches the tutorial."));return;}tft.begin(identifier);tft.fillScreen(BLACK);tft.fillRect(0, 0, BOXSIZE, BOXSIZE, RED);tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, YELLOW);tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, GREEN);tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, CYAN);tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, BLUE);tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, MAGENTA);tft.drawRect(0, 0, BOXSIZE, BOXSIZE, WHITE);currentcolor = RED;pinMode(13, OUTPUT);}#define MINPRESSURE 10#define MAXPRESSURE 1000void loop(){digitalWrite(13, HIGH);TSPoint p = ts.getPoint();digitalWrite(13, LOW);pinMode(XM, OUTPUT);pinMode(YP, OUTPUT);if (p.z > MINPRESSURE && p.z < MAXPRESSURE) {if (p.y < (TS_MINY-5)) {Serial.println("erase");tft.fillRect(0, BOXSIZE, tft.width(), tft.height()-BOXSIZE, BLACK);}p.x = map(p.x, TS_MINX, TS_MAXX, tft.width(), 0);p.y = map(p.y, TS_MINY, TS_MAXY, tft.height(), 0);if (p.y < BOXSIZE) {oldcolor = currentcolor;if (p.x < BOXSIZE) {currentcolor = RED;tft.drawRect(0, 0, BOXSIZE, BOXSIZE, WHITE);} else if (p.x < BOXSIZE*2) {currentcolor = YELLOW;tft.drawRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, WHITE);} else if (p.x < BOXSIZE*3) {currentcolor = GREEN;tft.drawRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, WHITE);} else if (p.x < BOXSIZE*4) {currentcolor = CYAN;tft.drawRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, WHITE);} else if (p.x < BOXSIZE*5) {currentcolor = BLUE;tft.drawRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, WHITE);} else if (p.x < BOXSIZE*6) { currentcolor = MAGENTA; tft.drawRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, WHITE); } if (oldcolor != currentcolor) { if (oldcolor == RED) tft.fillRect(0, 0, BOXSIZE, BOXSIZE, RED); if (oldcolor == YELLOW) tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, YELLOW); if (oldcolor == GREEN) tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, GREEN); if (oldcolor == CYAN) tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, CYAN); if (oldcolor == BLUE) tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, BLUE); if (oldcolor == MAGENTA) tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, MAGENTA); } } if (((p.y-PENRADIUS) > BOXSIZE) && ((p.y+PENRADIUS) < tft.height())) {tft.fillCircle(p.x, p.y, PENRADIUS, currentcolor);}}}

Final NotesIf you want to display pictures without using an SD card, you can convert it to code and then display it. You can display even several photos sequentially without delay to create an animation. (Check this)But be aware that in this case, Arduino UNO may not be suitable (because of low processor speed). We recommend using the Arduino Mega or Arduino DUE.

arduino uno tft display tutorial brands

In this article, you will learn how to use TFT LCDs by Arduino boards. From basic commands to professional designs and technics are all explained here.

In electronic’s projects, creating an interface between user and system is very important. This interface could be created by displaying useful data, a menu, and ease of access. A beautiful design is also very important.

There are several components to achieve this. LEDs,  7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.

TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.

In this article, we have used libraries and advanced technics to display data, charts, menu, etc. with a professional design. This can move your project presentation to a higher level.

In electronic’s projects, creating an interface between user and system is very important. This interface could be created by displaying useful data, a menu, and ease of access. A beautiful design is also very important.

There are several components to achieve this. LEDs,  7-segments, Character and Graphic displays, and full-color TFT LCDs. The right component for your projects depends on the amount of data to be displayed, type of user interaction, and processor capacity.

TFT LCD is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

In Arduino-based projects, the processor frequency is low. So it is not possible to display complex, high definition images and high-speed motions. Therefore, full-color TFT LCDs can only be used to display simple data and commands.

In this article, we have used libraries and advanced technics to display data, charts, menu, etc. with a professional design. This can move your project presentation to a higher level.

Size of displays affects your project parameters. Bigger Display is not always better. if you want to display high-resolution images and signs, you should choose a big size display with higher resolution. But it decreases the speed of your processing, needs more space and also needs more current to run.

After choosing the right display, It’s time to choose the right controller. If you want to display characters, tests, numbers and static images and the speed of display is not important, the Atmega328 Arduino boards (such as Arduino UNO) are a proper choice. If the size of your code is big, The UNO board may not be enough. You can use Arduino Mega2560 instead. And if you want to show high resolution images and motions with high speed, you should use the ARM core Arduino boards such as Arduino DUE.

In electronics/computer hardware a display driver is usually a semiconductor integrated circuit (but may alternatively comprise a state machine made of discrete logic and other components) which provides an interface function between a microprocessor, microcontroller, ASIC or general-purpose peripheral interface and a particular type of display device, e.g. LCD, LED, OLED, ePaper, CRT, Vacuum fluorescent or Nixie.

The display driver will typically accept commands and data using an industry-standard general-purpose serial or parallel interface, such as TTL, CMOS, RS232, SPI, I2C, etc. and generate signals with suitable voltage, current, timing and demultiplexing to make the display show the desired text or image.

The LCDs manufacturers use different drivers in their products. Some of them are more popular and some of them are very unknown. To run your display easily, you should use Arduino LCDs libraries and add them to your code. Otherwise running the display may be very difficult. There are many free libraries you can find on the internet but the important point about the libraries is their compatibility with the LCD’s driver. The driver of your LCD must be known by your library. In this article, we use the Adafruit GFX library and MCUFRIEND KBV library and example codes. You can download them from the following links.

You must add the library and then upload the code. If it is the first time you run an Arduino board, don’t worry. Just follow these steps:Go to www.arduino.cc/en/Main/Software and download the software of your OS. Install the IDE software as instructed.

By these two functions, You can find out the resolution of the display. Just add them to the code and put the outputs in a uint16_t variable. Then read it from the Serial port by Serial.println(); . First add Serial.begin(9600); in setup().

First you should convert your image to hex code. Download the software from the following link. if you don’t want to change the settings of the software, you must invert the color of the image and make the image horizontally mirrored and rotate it 90 degrees counterclockwise. Now add it to the software and convert it. Open the exported file and copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are sizes of image. you can change the color of the image in the last input.

Upload your image and download the converted file that the UTFT libraries can process. Now copy the hex code to Arduino IDE. x and y are locations of the image. sx and sy are size of the image.

In this template, We converted a .jpg image to .c file and added to the code, wrote a string and used the fade code to display. Then we used scroll code to move the screen left. Download the .h file and add it to the folder of the Arduino sketch.

In this template, We used sin(); and cos(); functions to draw Arcs with our desired thickness and displayed number by text printing function. Then we converted an image to hex code and added them to the code and displayed the image by bitmap function. Then we used draw lines function to change the style of the image. Download the .h file and add it to the folder of the Arduino sketch.

In this template, We created a function which accepts numbers as input and displays them as a pie chart. We just use draw arc and filled circle functions.

In this template, We added a converted image to code and then used two black and white arcs to create the pointer of volumes.  Download the .h file and add it to the folder of the Arduino sketch.

In this template, We added a converted image and use the arc and print function to create this gauge.  Download the .h file and add it to folder of the Arduino sketch.

while (a < b) { Serial.println(a); j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 255, 255)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)

while (b < a) { j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 0, 0)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99)

In this template, We display simple images one after each other very fast by bitmap function. So you can make your animation by this trick.  Download the .h file and add it to folder of the Arduino sketch.

In this template, We just display some images by RGBbitmap and bitmap functions. Just make a code for touchscreen and use this template.  Download the .h file and add it to folder of the Arduino sketch.

arduino uno tft display tutorial brands

The first part of this three-part series discussed common touchscreen technologies and their typical use-cases. Then, the second part investigated a few readily available and affordable touch display options for makers and hobbyists. This article documents how to get started with one of the recommended Arduino-compatible 2.8” resistive touchscreens from part two.

The TFT display I use contains a resistive overlay, which allows users to control an Arduino-based project with touch inputs. The display controller that comes with the touchscreen supports a few different communication methods. However, I’ll only outline two of them as I find these to be the most useful. The first method uses eight parallel communication lines to transmit pixel data from the Arduino to the display. I recommend using this method in multimedia applications where the Arduino needs to transfer a lot of pixel data.

The second method involves using SPI to communicate with the display controller. Doing so saves a few digital I/O lines with the tradeoff of being slower than the parallel communication method. To enable the display’s SPI mode, you have to close these three solder pad jumpers on the bottom side of the board:

Note that I used the SPI method to send data from the Arduino to the display. Either way, in addition to the pixel data lines, you’ll further need to employ two additional digital I/O lines and two more analog pins of the Arduino if you want to add resistive touch detection to your project. In addition, this touchscreen module comes with a built-in micro SD card reader I won’t discuss further in this article.

You have to install two libraries before you can send image data to the TFT display. First, use the Arduino IDE’s built-in library manager to download the Adafruit ILI9341 library. This package handles low-level communication between the Arduino and the display controller IC. Then, download the Adafruit_GFX library. The second library contains helpful code for drawing graphics primitives such as simple shapes and text. I recommend you read this article if you don’t know how to use the library manager in the Arduino IDE.

This short test program first initializes the TFT display in the setup()-function. Then, I defined a few helper methods. The resetAndClearScreen()-method resets the display’s rotation and erases all previously drawn pixels. The next function is drawIntroText(). It prints a short status message in the top left corner of the display. Lastly, drawTouchButton() creates a rectangle at the specified position with the given width and height. Then, the method places a string at the center of the previously drawn rectangle. As the name suggests, I’ll later use these rectangles to detect user inputs. The loop()-method refreshes the screen twice a second. But because there’s no interactivity built into the program yet, users can’t change what the screen displays at this point.

To use the resistive touch capabilities of this display, download the Adafruit_TouchScreen library using the Arduino IDE’s built-in library manager. The example code from above prints a few lines of text and then draws two touch buttons. Next, we’ll have to detect when a user presses one of the buttons. If that happens, the Arduino should refresh the screen and draw all the components using different colors. Therefore, I added the following method to detect whether a user touched one of the buttons:

Before making the previously discussed calls to the various draw-functions, the loop() method also checks whether the user touched the resistive screen. The TSPoint class contains a z-value we can use to determine how hard a user pressed down on the screen. This z-value is also perfect for preventing the Arduino from detecting unwanted inputs. If the z-value is greater than a fixed threshold value, the Arduino detects a touch input. The code then calls the touchedWithin()-function to determine whether the user pressed one of the buttons.

Arduino-compatible touchscreens allow you to quickly add a touchscreen to your existing or new DIY projects. Simple-to-use libraries let you get the display up and running in practically no time. The screen I used offers a few ways for devices to send pixel data to it. A parallel interface allows you to achieve higher screen refresh rates, which might be essential in multimedia applications. The parallel interface is also perfect for MCUs with a large number of I/O pins. The SPI method, on the other hand, is a bit slower compared to parallel communication. It, however, allows you to cut down on the number of required I/O pins, which is the preferred option in most Arduino projects.

arduino uno tft display tutorial brands

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

Here’s that function which uses the ultrasonic sensor to calculate the distance and print the values with SevenSegNum font in green color, either in centimeters or inches. If you need more details how the ultrasonic sensor works you can check my particular tutorialfor that. Back in the loop section we can see what happens when we press the select unit buttons as well as the back button.

Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.

In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work  you can check my particular tutorial. Here you can download that file:

arduino uno tft display tutorial brands

Note: The following picture is the connection diagram of the 2.8-inch TFT screen and Arduino uno, but this product is connected in exactly the same way.

If the Arduino board has an ICSP interface, set the SPI Config switch on the display module to the ICSP direction (by default) (the company"s Arduino UNO motherboard has an ICSP interface, just plug it in directly.).

This product uses the same LCD control chip and touch panel control chip as the 3.5-inch TFT screen of the same series of our company, so the code is completely compatible. The following takes 3.5-inch TFT as an example to introduce.

LCD_Show can display colorful patterns with different shapes and times. LCD_ShowBMP is for displaying the picture in BMP, and LCD_Touch is for using the touching function.

The display controller used in this product is ILI9486, and we need to initialize the controller through the SPI communication protocol, and the initialization functions are written in LCD_Driver.cpp.

The function functions related to the screen display are written in LCD_GUI.cpp. The function of each function and the parameters passed are explained in the source code. You can call it directly when you need to use it.

Before using LCD_ShowBMP to display pictures, first copy the pictures in the PIC folder in the data to the root directory of the SD card (you should understand that in the root directory, that is to save the pictures directly to the SD card, do not put them in any subfolders folder.).

Here is an explanation. This demo shows that the BMP picture first reads the picture data in the BMP format in the SD card through the SPI protocol, and then displays the data as an image.

These functions are all written in LCD_Bmp.cpp. In fact, the image data in BMP format with a specific file name is read from the SD card, and then the display function written by us is called to re-express the data as an image.

In fact, you can also use Image2Lcd image modulo software to convert images of different sizes and formats into array data, and then use the functions we wrote to display them.

Note: The following picture is the connection diagram of the 2.8-inch TFT screen and XNUCLEO-F103RB, but this product is connected in exactly the same way.

This product uses the same LCD control chip and touch panel control chip as the 3.5-inch TFT screen of the same series of our company, so the code is completely compatible. The following takes 3.5-inch TFT as an example to introduce.

After running the demo, it displays some characters and patterns at first, then displays four pictures, and finally displays the touch sketchpad function. Actually, three projects in the Arduino platform code are integrated in the main function, we place the three main functions in sequence and place TP_DrawBoard(); in an infinite loop to achieve the above functions.

Before using LCD_ShowBMP to display pictures, copy the pictures in the PIC folder in the data to the root directory of the SD card, and then insert the SD card into the SD card slot on the back of the screen to start the download program verification.

In fact, you can also use Image2Lcd image modulo software to convert images of different sizes and formats into array data, and then use the functions we wrote to display them.

arduino uno tft display tutorial brands

This is a 3.5-inch 320 * 480 resolution TFT color screen. It supports working boards such as Arduino uno and Arduino mega2560 and Arduino due. Also supports STM32, 51 and other conventional microcontrollers.

When using this screen, you do not need any wiring operations, just plug onto your arduino board, we will provide the corresponding Arduino library files, the development code is open source, you can use arduino and this screen to build some applications.The backlight always on, can not control the backlight, backlight is connect to 3.3V.

arduino uno tft display tutorial brands

{"id":4846767439943,"title":"3.5\" inch TFT LCD Touch Screen Display Board 480x320 For Arduino UNO R3 Mega2560","handle":"3-5-inch-tft-lcd-touch-screen-display-board-480x320-for-arduino-uno-r3-mega2560","description":"\u003cstrong\u003eFeatures:\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\n\u003cul\u003e\n\u003cli\u003e3.5 inch TFT LCD Module, Resolution 480x320, Controller ili9481 ili9468, ili9488 hx8357, or r61581.\u003c\/li\u003e\n\u003cli\u003eDesigned with a TF(Micro SD) card socket on the back of board so that you can conveniently insert a card.\u003c\/li\u003e\n\u003cli\u003eSupport touch screen function.\u003c\/li\u003e\n\u003cli\u003eThe test code is provided below.\u003c\/li\u003e\n\u003cli\u003eThis kit requires certain professional knowledge and ability, make sure you know how to use it, please. We cannot provide any technical assistance.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cstrong\u003eSpecifications:\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\n\u003cul\u003e\n\u003cli\u003eController: ili9481 ili9468, ili9488 hx8357, or r61581\u003c\/li\u003e\n\u003cli\u003eResolution: 480x320\u003c\/li\u003e\n\u003cli\u003eVoltage: 5V\/3.3V\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2020-09-23T14:45:22+08:00","created_at":"2020-09-23T14:45:21+08:00","vendor":"DIYMORE","type":"","tags":[],"price":1199,"price_min":1199,"price_max":1199,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":32576306151495,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"X30590","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"3.5\" inch TFT LCD Touch Screen Display Board 480x320 For Arduino UNO R3 Mega2560","public_title":null,"options":["Default Title"],"price":1199,"weight":0,"compare_at_price":null,"inventory_management":"shopify","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_1.jpg?v=1600843523","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_2.jpg?v=1600843524","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_4.jpg?v=1600843524","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_5.jpg?v=1600843524","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_3.jpg?v=1600843524","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_6.jpg?v=1600843524"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_1.jpg?v=1600843523","options":["Title"],"media":[{"alt":null,"id":7475166085191,"position":1,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_1.jpg?v=1600843523"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_1.jpg?v=1600843523","width":1000},{"alt":null,"id":7475166117959,"position":2,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_2.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_2.jpg?v=1600843524","width":1000},{"alt":null,"id":7475166150727,"position":3,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_4.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_4.jpg?v=1600843524","width":1000},{"alt":null,"id":7475166183495,"position":4,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_5.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_5.jpg?v=1600843524","width":1000},{"alt":null,"id":7475166216263,"position":5,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_3.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_3.jpg?v=1600843524","width":1000},{"alt":null,"id":7475166249031,"position":6,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_6.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_6.jpg?v=1600843524","width":1000}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003cstrong\u003eFeatures:\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\n\u003cul\u003e\n\u003cli\u003e3.5 inch TFT LCD Module, Resolution 480x320, Controller ili9481 ili9468, ili9488 hx8357, or r61581.\u003c\/li\u003e\n\u003cli\u003eDesigned with a TF(Micro SD) card socket on the back of board so that you can conveniently insert a card.\u003c\/li\u003e\n\u003cli\u003eSupport touch screen function.\u003c\/li\u003e\n\u003cli\u003eThe test code is provided below.\u003c\