tft display teardown manufacturer
We test the individual components for functionality and can locate defective components within very short time. We fix the component assemblies of LEDs and CCFLs, inverters, display controllers and PSUs. In many cases we also use new display controllers or inverters in order to ensure a longer life time of the monitor.
Display brightness gradually decreases or fails completely. We replace CCFL in displays from 8.4"" to 15"" within shortest time. For the future, we are also equipped for the LED backlight technology.
We stock special tubes such as W-, U- or L-shaped tubes. In this way, we are able to replace the backlight tubes for special displays such as the Sharp LQ150X1LGN2.
Polarization foils turn yellow over the years due to heat and other factors. Eventually, the displayed image becomes unclear or difficult to read. We replace polarization foils for sizes up to 15"".
In order to follow the market tread, Orient Display engineers have developed several Arduino TFT LCD displays and Arduino OLED displays which are favored by hobbyists and professionals.
Although Orient Display provides many standard small size OLED, TN and IPS Arduino TFT displays, custom made solutions are provided with larger size displays or even with capacitive touch panel.
Orient Display sunlight readable TFT displays can be categorized into high brightness TFT displays, high contrast IPS displays, transflective TFT displays, Blanview TFT displays etc.
The brightness of our standard high brightness TFT displays can be from 700 to 1000 nits. With proper adding brightness enhancement film (BEF) and double brightness enhancement film (DBEF) and adjustment of the LED chips, Orient Display high brightness TFT products can achieve 1,500 to 2,000 nits or even higher luminance. Orient Display have special thermal management design to reduce the heat release and largely extend LED life time and reduce energy consumption.
Our high contrast and wide viewing angle IPS displays can achieve contrast ratio higher than 1000:1 which can make readability under strong sunlight with lower backlight luminance. High brightness IPS displays have been widely accepted by our customers with its superb display quality and it has become one of the best sellers in all our display category.Transflective display is an old monochrome display technology but it has been utilized in our color TFT line for sunlight readable application. Orient Display has 2.4” and 3.5” to choose from.
Blanview TFT displays are the new technology developed by Ortustech in Japan. It can provide around 40% of energy consumption for TFT panels which can use smaller rechargeable or disposable batteries and generate less heat. The price is also lower than traditional transflective TFT displays. Orient Display is partnering with the technology inventor to provide 4.3” and 5.0”.
Orient Display can also provide full customized or part customized solutions for our customers to enhance the viewing experience. Orient Display can provide all the different kinds of surface treatments, such as AR (Anti-reflection); AG (Anti-glare), AF (Anti-finger print or Anti-smudge); AS (Anti-smashing); AM (Anti-microbial) etc. Orient Display can also provide both dry bonding (OCA, Optical Clear Adhesive), or wet bonding (OCR, Optical Clear Resin and OCG, Optical Clear Glue) to get rid of light reflective in air bonding products to make the products much more readable under sunlight and be more robust.
Touch panels have been a much better human machine interface which become widely popular. Orient Display has been investing heavy for capacitive touch screen sensor manufacturing capacity. Now, Orient Display factory is No.1 in the world for automotive capacitive touch screen which took around 18% market share in the world automotive market.
Based on the above three types of touch panel technology, Orient Display can also add different kinds of features like different material glove touch, water environment touch, salt water environment touch, hover touch, 3D (force) touch, haptic touch etc. Orient Display can also provide from very low cost fixed area button touch, single (one) finger touch, double finger (one finger+ one gesture) touch, 5 finger touch, 10 points touch or even 16 points touch.
Considering the different shapes of the touch surface requirements, Orient Display can produce different shapes of 2D touch panel (rectangle, round, octagon etc.), or 2.5D touch screen (round edge and flat surface) or 3D (totally curved surface) touch panel.
Considering different strength requirements, Orient Display can provide low cost chemical tampered soda-lime glass, Asahi (AGC) Dragontrail glass and Corning high end Gorilla glass. With different thickness requirement, Orient Display can provide the thinnest 0.5mm OGS touch panel, to thickness more than 10mm tempered glass to prevent vandalizing, or different kinds of plastic touch panel to provide glass piece free (fear) or flexible substrates need.
Of course, Orient Display can also offer traditional RTP (Resistive Touch Panel) of 4-wire, 5-wire, 8-wire through our partners, which Orient Display can do integration to resistive touch screen displays.
Engineers are always looking for lower cost, faster, more convenient interfaces to transmit signals and to accept data and commands. The numbers of available interfaces available in the market can be dazzling. Orient Display follows market trends to produce various kind of interfaces for our customers to choose.
Genetic Interfaces: Those are the interfaces which display or touch controller manufacturers provide, including parallel, MCU, SPI(,Serial Peripheral Interface), I2C, RGB (Red Green Blue), MIPI (Mobile Industry Processor Interface), LVDS (Low-Voltage Differential Signaling), eDP ( Embedded DisplayPort) etc. Orient Display has technologies to make the above interface exchangeable.
High Level Interfaces: Orient Display has technologies to make more advanced interfaces which are more convenient to non-display engineers, such as RS232, RS485, USB, VGA, HDMI etc. more information can be found in our serious products. TFT modules, Arduino TFT display, Raspberry Pi TFT display, Control Board.
The chip is labeled 8333(made by Seiko Instruments Inc) and is generating multiple voltages for the display. The three caps from L201 going to three diodes are parts of the charge pumps producing positive and negative voltages needed by the panel. (Usually +21,-9,+7 V etc). Input signals come through a 40 pin connector, with four differential pairs running LVDS.
Looks like the connector is carrying (Right to left) Power, GND, 4 diff pairs of LVDS data and what appears to be I2C data to serial EEPROM. The top of the chip has S24C on it and the let side pins are all grounded- typical pinout for an I2C eeprom, where pins 1-3 are address and 4 is GND. Only puzzling part is power pin 8 that seems to go to the connector instead of power plane, and lack any decoupling caps. The EEPROM stores the so called EDIDdata for display identification to the main system. Regular monitors do the same via signals in the VGA cable.
Update 8/5/2012: thanks to the folks at the EEVblog Forum threadfor a lot of insight on how these things work, and their help locating information on some of the parts and the display datasheet(older rev, but very close)
Over the years, LCD modules and LCD displays have grown in popularity. Companies in many different industries, including but not limited to the medical, automotive, consumer, food services, industrial, and technology sectors rely on at least one TFT LCD module or TFT LCD display on a daily basis. Although touchscreens are very durable and designed to withstand the hands of time, older modules and displays sometimes need to be repaired. When weighing the cost of having your displays repaired, you should take the time to consider your options.
After doing some research on the cost of repairs, many business owners find that it makes more sense to have their TFT LCDs replaced. Although units may cost less to repair initially, the cost of having to repair your older displays over and over again can add up. This is because older units may need to be repaired more than once. Even if multiple repairs will not cost any additional money, repairs lead to downtime and can have a tremendous impact on your business.
Older units in need of repair can have a long-term impact on a company’s bottom line. This is because outdated displays do not perform as well as new and improved displays. As many business owners have come to discover, new and improved touchscreen technology can increase efficiency, boost productivity, and improve customer satisfaction. This a top reason why so many companies decide to have a TFT LCD display or module replaced.
If you are thinking about having your older touchscreens repaired, then you should consider how having newer technology in place will help your business grow. Focusing strictly on the cost of replacing your displays can have a long-term impact on your business in more ways than one. For better results, you should consider all of the benefits of having new custom touchscreens specifically manufactured for your business. Ultimately, having new and improved displays in place for your employees and customers to use will be a business decision that pays for itself over time.
This 240x320 resolution LCD TFT is a Premium display with 8-bit or 16-bit parallel interface, offering high visibility up to 70° from any direction due to the multi-domain vertical alignment (MVA) technology in this LCD display. This Liquid Crystal Display has a built-in ST7789Vi controller, FFC ZIF I/O connection, is RoHS compliant and does not come with a touchscreen.
Choose from a wide selection of interface options or talk to our experts to select the best one for your project. We can incorporate HDMI, USB, SPI, VGA and more into your display to achieve your design goals.
Equip your display with a custom cut cover glass to improve durability. Choose from a variety of cover glass thicknesses and get optical bonding to protect against moisture and debris.
We develop, design, manufacture, and sell displays where it is necessary for the interface that deliver a lot of information at an instant and deliver it to the global market. We create interactive spaces that go beyond the expected, elevate everyday lives, and move people"s hearts. From bases in major cities in Asia, Europe, and North America, we build strong customer relationships by developing products that respond to market needs.
26785 tft lcd repair products are offered for sale by suppliers on Alibaba.comAbout 12% % of these are mobile phone lcds, 1%% are lcd modules, and 1%% are other machinery & industrial equipment.
A wide variety of tft lcd repair options are available to you, such as original manufacturer, odm and agency.You can also choose from datasheet, tft lcd repair,as well as from tft, ips, and standard tft lcd repair,
25931 repair tft screen products are offered for sale by suppliers on Alibaba.comAbout 12% % of these are mobile phone lcds, 1%% are lcd modules, and 1%% are lcd touch screen.
A wide variety of repair tft screen options are available to you, such as original manufacturer, odm and agency.You can also choose from datasheet, repair tft screen,as well as from tft, ips, and standard repair tft screen,
Is your phone broken? You have several options when choosing a new TFT LCD display. In this article, we will advise which is the best and most advantageous.
Both the iPhone SE (2020) and the iPhone 11 are among the more affordable models in the Apple brand portfolio with more or less integrated equipment. This is reflected, for example, in displays that use In-Cell TFT LCD technology, which can also be found in older models, including:
Despite the fact that TFT LCD displays lag significantly behind more modern OLED displays, they are still top displays. This is also evidenced by the fact that devices with this technology (whether it is the iPhone SE (2020), iPhone 11, or one of the older models) are still very popular with users. Thanks to this popularity, there are several options on the market when it comes to replacing a cracked display on such a device.
In the case of broken glass on the iPhone TFT LCD display, there are basically three different options. The first is the exchange for the original. Although this option guarantees the same quality as the original display, we prefer not to recommend it due to its higher price. In this case, the customer pays only "per brand". The price difference between the original and the quality display from the OEM manufacturer does not balance essentially zero difference in the quality of both components.
Displays from OEM manufacturers also differ in quality and also here it is possible to reach for verified brands and quality. In our portfolio, you will find, for example, top FixPremium displays from the SHARP Electronics brand. Like the originals, these panels use In-Cell TFT LCD technology, which provides superior color rendering and excellent viewing angles. In addition, thanks to constantly innovated production, FixPremium displays are less energy-intensive, and with the new display, it is even possible to achieve better battery life.
There are other cheaper alternatives on the market. However, they often cannot be compared at all with the quality of original or FixPremium displays, and by purchasing them, the customer is exposed to unnecessary risk.
We, therefore, recommend looking for a replacement display, for example, in our e-shop, or having the entire replacement carried out by us. We guarantee professional service, verified quality of spare parts, and fast return of the device to its owner.
Reports suggest that Apple is getting closer to implementing MicroLED in its future product releases, including the Apple Watch, with the display technology potentially offering a number of benefits compared to other methods. AppleInsider explains how the current TFT and OLED display technologies work, and how MicroLED differs.
MicroLED shows promise as a display technology, potentially offering power savings and a reduced screen thickness when put beside current-generation display panels. Apple has recognized the potential, and has invested heavily into developing the technology over the last few years, with a view to using it in the company"s future products.
To understand fully how MicroLED can benefit Apple, it is worth understanding how the commonly-used display technologies work in the first place, before examining how different MicroLED really is in a comparison.
The most common display technology used by consumer products today, and the oldest of the technologies examined in this article, TFT"s full name of TFT LCD stands for Thin-film-transistor liquid-crystal display. This technology is extensively used by Apple in its products, found in iPads, iPhones, MacBooks, and iMac lines.
The LCD part relates to the concept of defining small translucent or transparent areas in a thin and flexible liquid crystal-filled panel, like the displays used in calculators. Passing current through the segment changes the molecular properties of the defined segment area, allowing it to switch between being see-through or opaque.
TFT takes this a stage further, by effectively covering an entire panel with a grid of isolated liquid crystal segments, which again can vary between opaque and transparent based on the level of electrical current. In this case, there are far more segments needed to make up the display than with a normal calculator.
Polarizing filters on either side of the TFT display sandwich are used to prevent light from passing through directly, with the liquid crystal reaction of each segment affecting polarized light passing through the first filter to go through the second.
Sometimes these types of display are known as "LED," but this somewhat of a misnomer, as this actually refers to the use of Light Emitting Diodes as a light source. The LED backlight shines light through the various layers making up the TFT LCD.
Displays that use collections of LEDs as individual pixels do exist, but it isn"t usually found in consumer products. LED screens are commonly used for billboards, in attractions, and as a large-scale display for events.
TFT LCD screens continue to be widely used in production for a number of reasons. Manufacturers have spent a long time perfecting the production of the display panels to make it as cheap as possible, while its high usage allows it to benefit from economies of scale.
Used in consumer devices in a similar way to TFT LCD, OLED (Organic Light-Emitting Diode) is a display technology that is similar in the basic concept, but differs considerably in its execution. Again, the idea is for a thin panel to be divided up into segments, with charge applied to each section to alter its molecular properties, but that"s where the techniques diverge.
These self-emitting pixels gives OLED a considerable advantage over LCD-based systems in a number of areas. Most obviously, by not needing a backlight, OLED panels can be made far thinner than an equivalent LCD-based display, allowing for the production of thinner devices or more internal area for other components, like a larger battery.
The power efficiency of OLED panels can be far greater, as while a TFT screen requires an always-on backlight, the brightness of OLED pixels themselves determine power usage, with a black pixel consuming no power at all. OLED screens are also faster to respond than LCD displays, making them more useful for VR displays, where response time needs to be as rapid as possible.
This also allows OLED to provide superior contrast ratios compared to TFT, as the lack of backlight bleed-through that occurs in TFT simply doesn"t happen in OLED.
OLED also can be produced on plastic substrates instead of glass, allowing it to be used to create flexible displays. While this is currently embodied in curved and other non-flat screens in some devices, it has the potential to be employed in foldable smartphones or rolled up for storage, an area Apple is also allegedly examining.
Despite the advantages, OLED is still lagging behind TFT in terms of adoption. The cost of production is far higher, in part due to the need for extremely clean environments, as a single speck of dust can potentially ruining a display during fabrication.
OLED panels are also affected by the presence of water, both in production and in use. Small amounts of water contacting the organic substrate can cause immediate damage to the display, rendering parts of the screen useless.
Thought to be the next big thing in display technology, MicroLED basically takes the idea of using LEDs for pixels in a large stadium-style screen and miniaturizes it all.
Using extremely small LEDs, three MicroLEDs are put together to create each pixel, with each subpixel emitting a different color from the usual red, blue, and green selection. As each LED emits light, there is no need for a backlight as used in TFT screens.
MicroLED doesn"t use an organic compound to produce light, making it less susceptible to failure compared to OLED. Just like OLED, it can be applied onto a flexible material, allowing it to be used for curved displays or non-stationary components, like a watch strap, and can result in an extremely thin display panel.
MicroLED offers the same lower power consumption and high contrast ratio benefits as OLED when compared to TFT. However, MicroLED is also capable of producing a far brighter image than OLED, up to 30 times brighter, and is in theory more efficient in converting electricity into light.
As a relatively new and in-development technology, the cost of MicroLED production is extremely high in comparison to the more established OLED and TFT mass production lines, in part due to lower than required yields. Manufacturing equipment vendors have produced hardware for MicroLED production that cuts defects in half and reduces deposition deviance from 3 nanometers down to 1 nanometer, but it is unclear if this is enough to help mass production move forward.
While MicroLED is an attractive proposition for Apple, it is not the only technology under development by the company"s engineers. Apple has previously filed patent applications for a technology described as "Quantum Dot LED and OLED Integration for High Efficiency Displays."
Quantum Dots are photoluminescent particles included in an LED-backed TFT display that can produce brighter and more vibrant colors, with the colors produced depending on their size. While available in current QLED televisions, the technology is only really being used to enhance the backlight, rather than being used to illuminate individual pixels.
Image: Lee, Changhee & BAE, Wanki & KWAK, Jeonghun. (2014). "Quantum Dot LED (QLED) Emerging as a Next-generation Display Technology" in Physics and High Technology
The technology in theory can create an even thinner display than OLED, along with a more streamlined manufacturing process. True QD displays are also capable of high pixel densities of up to 1,000ppi, multiple times the density required to be called a Retina-quality display, and based on Apple"s hybrid invention, will also boast the response times of OLED technology.
The QD patent application certainly shows Apple is thinking about display technology in multiple ways, and how it can be applied to future devices, but short of getting firm supply chain information or an official announcement from Apple directly, it is difficult to confirm which direction it will be heading.
Apple has been interested in using the technology for some time now, with the first notable sign being its acquisition of LuxVue in May 2014, alongside assorted related patents. A MicroLED specialist, LuxVue was rumored to have been the display producer for the ill-fated Google Glass headset, but was also the holder of assorted patents in the LED display field, including MicroLED.
At the time, the acquisition was thought to be an attempt by Apple to bring part of its display technology development in-house, with suggestions the MicroLED technology would be used in another rumored-at-the-time device, the Apple Watch. A more recent report suggests Apple is working with TSMC to make small panels for a future premium Apple Watch, potentially starting mass production by the end of the year.
The facility is also claimed to be sufficient in size to perform small scale manufacturing of display panels, allowing the company to keep development and testing in-house without involving third-parties. Considering Apple"s previous history in developing technologies before issuing information to manufacturing partners, it is possible that Apple is trying to work out the kinks in production before suppliers even attempt to make MicroLED panels.
The rumored small screen production may be for the Apple Watch now, but it may also benefit another often-rumored device, namely the VR or AR headset. This type of hardware relies on light components to keep the weight off the user"s head and neck, as well as displays with a high refresh rate and as close to perfect color reproduction as possible.
Apple is also apparently planning to use the technology in larger displays, said to be bigger in size than those in the MacBook Pro lines. This could be an iMac or iMac Pro, or even an external display, but ultimately there"s no real indication of Apple"s plans at this point, regardless of the scale of the screen.
Reports from last year also suggest Apple"s investment in MicroLED was a cause for concern for Samsung, LG, and other South Korean suppliers who provide display panels for the company"s products. Owning the process for MicroLED manufacturing could allow Apple to migrate away from its existing display suppliers in the coming years, reducing revenues and profits.
Aside from Apple"s development, there has been little in the way of announcements from other firms for products using the technology that could be bought by consumers in the coming months. The exception is Samsung, Apple"s main rival in the mobile marketplace and a major supplier of display panels, but its usage of MicroLED is not aimed at producing smaller screens.
The impending use of the technology in a high-priced consumer product could be considered proof that MicroLED display technology is maturing enough for use in devices. If the reports claiming Apple is getting close to mass producing panels is true, the inclusion of MicroLED in the Apple Watch could end up being the first mainstream usage of the technology.
Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.
Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:
Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:
MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:
Sony produces and sells commercial MicroLED displays called CLEDIS (Crystal-LED Integrated Displays, also called Canvas-LED) in small quantities.video walls.
"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.
"Business Place Information – Global Operation | SAMSUNG DISPLAY". www.samsungdisplay.com. Archived from the original on 2018-03-26. Retrieved 2018-04-01.
"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.
Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.
Byeonghwa, Yeon. "Business Place Information – Global Operation – SAMSUNG DISPLAY". Samsungdisplay.com. Archived from the original on 2018-03-26. Retrieved 2018-04-01.
www.etnews.com (30 June 2017). "Samsung Display to Construct World"s Biggest OLED Plant". Archived from the original on 2019-06-09. Retrieved 2019-06-09.
"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.
Apollo specializes in TFT-LCD flat panel technologies and supply chain solutions. We offer a huge selection of TFT-LCD monitors and touchscreens, as well as corresponding components. We also offer hardware and software solutions for all of our products and digital signage applications.
As a worldwide supplier of state-of-the-art TFT technologies and system solutions, Apollo Displays supports you in all project phases – 1 from construction of the metal housing and procurement of specific parts to in-house development of controller boards and touchscreen integration.
VIS024TN01 is a 2.4″ TFT LCD display module model that adopts TN type LCD with 240*320 resolution. CTP (Capacity Touch Panel) or RTP(Resistive Touch Panel) can be added according to user requirements.
The 2.4-inch TFT-LCD is probably the most sold LCD panel size in the world in terms of unit shipments. It has a wide range of applications and life cycle.
Based on the substantial and long-term shipments of 2.4 inch TFT LCD panels, we can guarantee a stable supply of this LCD display module throughout the life cycle of your product.
Based on the 2.4 inch LCD’s high stability, low price, and excellent storage and operating temperature range, this type of LCD display module can be widely used in feature phones, smart homes, pos machines, industrial instruments (meters), and small medical equipment and other products.
This graphic display module is a 2.4" diagonal, full color TFT. Suitable for embedded applications, it is low-power, uses a white LED backlight, and has an integrated touch panel which has its connection brought out to the main TAB connector for the display.
It has an on-board controller and 3v single voltage for supply and logic (backlight not included), so you can easily use any modern microcontroller to interface with this display. It uses an 8 or 16 bit parallel interface, specified via connections to the display.
The connector on the CFAF240320K-024T-TS is a flex tail mated with a "COG" (chip on glass) display construction. This style of connector is designed to be soldered directly to corresponding pads on your PCB by using a hot-bar soldering machine. High volume contract manufacturers will be familiar with this type of construction and its assembly methods. There are hot-bar soldering machines made that are designed for prototype, rework or repair work of TAB connections.
EarthLCD is a leading “Assembled In The U.S.A.” manufacturer of Industrial ezLCD “Smart” Touch Serial LCD’s for Embedded Systems, LCD Touch Monitors, Industrial Grade LCD Kits, LCD Touch Screen Kits, Industrial NTSC Monitors & Kits, Open Frame Monitors, Smart LCD Screens, Touch Screen Monitors, Industrial LCD Touch Screen Monitors, All in one Monitors, Custom OEM solutions, Integrated Solutions for OEM, LCD Touch Screen Modules, Custom LCD Display and LCD Controller Cards.
EarthLCD is a division of Earth Computer Technologies, Inc. originally founded in 1984. A full line of products plus custom engineered solutions are available. We source LCD displays direct from major manufacturers world wide allowing for a cost advantage over our competitors. EarthLCD offer’s the world’s widest variety of LCD’s in fully integrated solutions for OEM supply chain requirements.