arduino tft display project factory

In this Arduino project, a TFT display will be used, which is essentially another screen like an OLED or a common LCD display to show information, graphics or animations as well. Since you will just be getting introduced to this TFT display module which is made into a shield form to perfectly fit an Arduino Uno, the sketch which we will be using will display a simple demo program to show its quality, resolution and ability to show multiple colours as well. Additionally, this module has a resistive touch feature, where the whole screen can be used to play games or to work as an automation system control with interactive buttons. However, this is not a capacitive touch screen so it will defer in sensitivity when compared to your phone, as resistive touch screens rely on mechanical pressure as opposed to natural conduction from your body. For this project, here are the components which you will need:1 2.8" 240x320 TFT LCD Display Module with Resistive Touch

This project"s circuit is by far, the easiest to mount as this shield comes prepared to be fitted onto an Arduino Uno. Each pin on this shield should go into every pin on the Arduino perfectly and I recommend that you line it up carefully before applying pressure to press the display down into each of the pins. However, this LCD module also has a 6-pin ICSP (In-Circuit Serial Programmer) header which matches the male ICSP header pins on the Arduino, thus, ensuring that you match those pins up as well is critical to making sure that you mount this module correctly. Remember, don"t use too much force on the module as it may damage the pins or the display itself, so be careful! Then, once this module has been mounted on to your Arduino board, plug in your USB cable and you are now ready to go. For this project, you will not be importing files into the SD card, so taking out the SD card from this module is not necessary.

With DisplayModule"s DMTFTLibrary, the software part of this project is made 10x easier due to no manual coding needed for each function performed. DisplayModule has also already written the main part of the code, so that will save you some time if you need to use this code again. Firstly, the code starts by defining some libraries used: we declare the SPI (Serial Peripheral Interface) library for communication between the TFT and the Arduino, the DMTFTIli934 library, which is used to drive the TFT with an Arduino and the BubbleDemo library, which is basically the library which stores all the code for this program. Then, we define some pins which aid in the software communication to the TFT display. We mention the TFT chip select pin on pin 10, the SD chip select pin on pin 8, the flash chip select pin on pin 6 and the touch screen chip select pin on pin 4. After that, we now add in a line where we declare the TFT being used with the chip select pin on pin 10 and the data/command (DC) pin being on pin 9 and on the following line, we mention that the bubble demo program will be used, which will consume the whole TFT display"s length and width. Now, thevoid setupsection is present, where we set theTFT_CS,T_CS,SD_CSand theF_CSpins as output pins, so that data will be fed into the Arduino from the TFT display. Next, we declare the same set of pins high, meaning that they will be turned on, active and performing their individual function during this sketch. We then also initialise the display to start it up, which transitions us to thevoid loopsection, with one command only. This command is to basically run thebubbleDemoprogram for 750 loops with a delay time of 20 milliseconds. Now, the software part has been already done and your program should be up and running fine!

arduino tft display project factory

This project involves yet another Arduino-compatible display which can be used as an output to display any information in the form of graphics, text or animations. Since this is a 1.3" 240x240 IPS (In-Plane Switching) TFT display module, it does offer a high-resolution colour display with fine graphics, and that is one of the things which I really enjoy about this display. It is also very easy to program, as it runs on the STT789 display, which is helpful to know, as the Adafruit ST7789 library supports this display, and is what we will be using today. The code used below is a fairly complex code at first, which showcases this display"s capabilities and what it can do, in terms of functionality. For the wiring, a 6-pin wiring configuration is used with the SPI interface to the Arduino, which will be shown below. Finally, for this project, here are the components which you will need:1 1.3" 240x240 IPS TFT Display Module

This project is fairly​ straightforward to set up so make sure you start by unplugging any power source feeding into your Arduino to prevent any shorts while wiring. Firstly, take a jumper wire and connect the GND pin on the display to any of your Arduino"s GND pins and follow that up by connecting the VCC pin from the display to the 3v3 pin of your Arduino to supply a +3.3 volt power supply to the module. +5v will have a possibility to damage the display. Now, for the i2c connections, hook up the SCL (Serial Clock) pin of the display to A13 (analog pin 13) on the Arduino and the SDA (Serial Data) pin to A11 (analog pin 11). For the RES (Reset) pin, connect it up to A8 (analog pin 8) as well as the DC (Data/Command) pin to A9 (analog pin 9). The hardware part is finally done!

This code may seem slightly intimidating at first, due to its length and much newer functions, but once it is broken down, it isn"t so hard anymore. In the first three lines, we declare libraries for running this display, the graphics used, and for the interface used, which is the SPI interface. In the next three lines, the RST (Reset) and DC (Data/Command) pins are defined, which are connected to A8 (analog pin 8) and A9 (analog pin 9). In the next line, we initialize the Adafruit ST7789 library for use with this display and we follow that by defining the value of pi as a float variable in that next line. We will be using this float variable later on for graphics and calculations needed. Thevoid setupsection is now here where we first start by begining serial communication with a baud rate of 9600 bauds and printing a test message which is "Hello! ST7789 TFT Test!". In regards to the display, we address that our display module is of 240x240 resolution and we set the rotation of our display in the next line. If your display is flipped, removetft.setRotation(2)​. From there, we print the text "Initialized" as our display is now correctly set up. After that, we count up the seconds from the startup with themillis()function and store it in an unsigned 16-bit integer, namedtime, for use later. We then fill up the TFT screen with a black colour. Since we already started the stopwatch which counts up, we can always reset the stopwatch back to zero by using subtracting thetimefunction with themillis()​.To end off this section, we set a delay for 500 milliseconds before moving on. This section onwards will only be for the animations, graphics and images displayed on the screen, and we start off by filling the screen with a black background and writing some text with a white colour before a 1-second delay. Proceeding that, we execute a print test which basically is already programmed to print out a set of text in different font colours and sizes. We end this test by setting a delay for 4 seconds. From this point, the rest of the code is responsible for printing out the different graphics, which can be composed of shapes, pixels and text. All the different graphics and its individual code are mentioned at the end of the code so I recommend really going through this program to learn all the commands, which can help you build your own demo code, even with your own personal images being displayed. This project is now done!

arduino tft display project factory

Please download the three code libraries from the link given before compiling and uploading the program: https://bitbucket.org/displaymodule/dmtftlibrary/src/master/#include #include #include #define TFT_CS 10#define SD_CS 8#define F_CS 6#define T_CS 4DmTftIli9341 tft = DmTftIli9341(10, 9);BubbleDemo bubbleDemo(&tft, tft.width(), tft.height());void setup (){ // Set CS SPI pin HIGH for all SPI units, so they don"t interfere pinMode(TFT_CS, OUTPUT); pinMode(T_CS, OUTPUT); pinMode(SD_CS, OUTPUT); pinMode(F_CS, OUTPUT); digitalWrite(TFT_CS, HIGH); digitalWrite(T_CS, HIGH); digitalWrite(SD_CS, HIGH); digitalWrite(F_CS, HIGH); tft.init();}void loop(){ bubbleDemo.run(750, 20);}

With DisplayModule"s DMTFTLibrary, the software part of this project is made 10x easier due to no manual coding needed for each function performed. DisplayModule has also already written the main part of the code, so that will save you some time if you need to use this code again. Firstly, the code starts by defining some libraries used: we declare the SPI (Serial Peripheral Interface) library for communication between the TFT and the Arduino, the DMTFTIli934 library, which is used to drive the TFT with an Arduino and the BubbleDemo library, which is basically the library which stores all the code for this program. Then, we define some pins which aid in the software communication to the TFT display. We mention the TFT chip select pin on pin 10, the SD chip select pin on pin 8, the flash chip select pin on pin 6 and the touch screen chip select pin on pin 4. After that, we now add in a line where we declare the TFT being used with the chip select pin on pin 10 and the data/command (DC) pin being on pin 9 and on the following line, we mention that the bubble demo program will be used, which will consume the whole TFT display"s length and width. Now, the void setup section is present, where we set the TFT_CS, T_CS, SD_CS and the F_CS pins as output pins, so that data will be fed into the Arduino from the TFT display. Next, we declare the same set of pins high, meaning that they will be turned on, active and performing their individual function during this sketch. We then also initialise the display to start it up, which transitions us to the void loop section, with one command only. This command is to basically run the bubbleDemo program for 750 loops with a delay time of 20 milliseconds. Now, the software part has been already done and your program should be up and running fine!

arduino tft display project factory

In electronics world today, Arduino is an open-source hardware and software company, project and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices. Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (‘shields’) or breadboards (for prototyping) and other circuits.

The boards feature serial communications interfaces, including Universal Serial Bus (USB) on some models, which are also used for loading programs. The microcontrollers can be programmed using the C and C++ programming languages, using a standard API which is also known as the “Arduino language”. In addition to using traditional compiler toolchains, the Arduino project provides an integrated development environment (IDE) and a command line tool developed in Go. It aims to provide a low-cost and easy way for hobbyist and professionals to create devices that interact with their environment using sensors and actuators. Common examples of such devices intended for beginner hobbyists include simple robots, thermostats and motion detectors.

In order to follow the market tread, Orient Display engineers have developed several Arduino TFT LCD displays and Arduino OLED displays which are favored by hobbyists and professionals.

Although Orient Display provides many standard small size OLED, TN and IPS Arduino TFT displays, custom made solutions are provided with larger size displays or even with capacitive touch panel.

arduino tft display project factory

TFT LCD screens combined with Human Machine Interface (HMI) technology result in exciting project ideas applicable to a wide variety of industries. STONE HMI TFT LCD Arduino project ideas. After all, HMI is a smart technology that uses touch to draw out information from both the human user and the display machine.

And when high-quality display screen modules such as STONE Tech’s TFT LCD products are laden with HMI technology, the result is outstanding machine performance capable of bringing out the best in every customer and business.

Now, this article will feature STONE HMI. Furthermore, we will also present some exciting project development initiatives carried out by the company using its vast range of TFT LCD modules paired with HMI technology, and the TFT LCD Arduino project.

The interface with which HMI works consists of both hardware and software. These two work together to let users input signals using direct or indirect touch (such as by using a special screen stylus) on the machine display. Once the touch signals have been inputted, the machine recognizes them and sends them to the software to begin interpretation. The machine then responds by showing the desired information to the human user.

Medical equipment in hospital settings uses HMI to display pertinent information regarding a patient. For instance, a ventilator machine can display data such as vital signs and a selection of possible breathing patterns for the patient. It can also alert medical practitioners when there is a problem with the patient or the machine through alarms and sounds.

Another HMI machine used in daily life is the car dashboard. An on-board car control panel using an intelligent touch screen can be used to display important car information like speed, gas levels, and time. The screen dashboard can also be used to toggle many functions like turning the AC and beam on or off using a single touch.

HMIs are user-friendly by nature. Graphics and colors can easily be added to the display to communicate with the end-users. Any problems arising from the HMI screen can also be detected easily using color codes, alarms, and sounds. Furthermore, you’ll need only a few touches to fix any issues detected by an HMI device.

What makes HMI a good choice for industrial use is that it is fully flexible and customizable to fit several industrial needs. The TFT LCD screen sizes can be tailor-made to suit the HMI’s application. Furthermore, the software that comes with the machines can be adjusted as well.

STONE Technologies is a proud manufacturer of superior quality TFT LCD modules and LCD screens. The company also provides intelligent HMI solutions that perfectly fit in with its excellent hardware offerings.

STONE TFT LCD modules come with a microcontroller unit that has a cortex-m4 32-bit CPU. Such a module can easily be transformed into an HMI screen. Simple hexadecimal instructions can be used to control the module through the UART port. Furthermore, you can seamlessly develop STONE TFT LCD color user interface modules and add touch control, features to it.

You can also use a peripheral MCU to serially connect STONE’s HMI display via TTL. This way, your HMI display can supply event notifications and the peripheral MCU can then execute them. Moreover, this TTL-connected HMI display can further be linked to microcontrollers such as:

Each customizable TFT-LCD HMI display module comes with free access to STONE’s dedicated design software. STONE TOOLBox software is an easy-to-use program that allows you to set up graphical user interface functions such as:

Intricate and intuitive interfaces will require a bit more steps. Nevertheless, using the TOOLBox program allows you to save time on developing HMI projects due to its ease of use.

HMI projects can quickly be done with Stone’s HMI-ready display modules. As previously mentioned, STONEprovides complete modules that include hardware and a free downloadable GUI design software – everything you need to get started on your HMI concept.

With faster project timelines comes greater production savings. Stone’s modules are cost-effective and since they have superior quality, you’re assured of a quick return on investment (ROI) with fewer costs on maintenance and repairs in the long run.

STONE creates modules that are easy to assemble if you’re doing an HMI project. Add to that its user-friendly GUI software that lets you seamlessly create GUIs for your new HMI device.

Also, STONE manufactures several TFT LCD touch screen sizes that range from 3.5 to 15.1 inches. Customized options are also available depending on your needs. There are also plenty of options and models for each screen size.

Indeed, STONE produces a plethora of HMI-ready TFT LCD screens. You won’t have a hard time finding the right display module compatible with your microcontroller projects.

Over the years, Stone’s modules have been used to create numerous projects featuring its reputable HMI technology. These project ideas cater to a wide variety of fields and industries.

STONE developed an oxygen monitor for an Italian customer. The monitor uses Stone’s 7-inch TFT LCD screen and was connected to an oxygen tank for medical use.

The finished product displays information about the connected oxygen tank such as concentration levels and other advanced data. All these data are displayed on a streamlined interface developed using TOOLBox software.

The end-product featured a touch screen display where fan functions such as speed, dose, and RF are controlled. Moreover, the resulting fan control board can operate at temperatures ranging from -20°C to 70°C, making it a simple yet heavy-duty device.

STONE’s display screen was connected to the Arduino development board through UART. But this required a level conversion achieved by the MAX3232. Meanwhile, the same Arduino board was wired to the MAX30100 module through an IIC interface.

Some modifications to the MAX30100 module were made, specifically to the IIC pull-up resistor. The remainder of the project was finished using Arduino codes to finally create a responsive display for heart rate and blood oxygen monitoring.

This project aims to create a fingerprint door lock that can enter, scan, compare, and delete fingerprints. It utilized an STM32 development board, fingerprint identification module, and Stone’s STVC050WT-01 LCD display.

STONE LCD screen’s role here is to display the fingerprint module’s status. As with all other projects, STONE TOOLBox software was used to generate the user interface flashed on the screen. Meanwhile, Stone’s LCD screen was connected to the development board and fingerprint identification module with MCU through UART-TTL signals.

The idea for this project is a real-time display of pictures collected by the camera on the LCD display screen. The TFT LCD STONE module used for this project is a 7-inch serial display module with 800×480 resolution. A camera module, development board, and some wires are needed to complete the project.

The user interface was designed using STONE TOOLBox and Adobe Photoshop. Then, the hardware parts were wired together; some parts needed welding. After that, a simple program was written following MCU to the command control TFT-LCD module.

This particular project used a STONE serial LCD touch display screen. This functions as the main display for the coffee machine. With the screen installed, you can:

RGB lamps that can be controlled through a touch display – this is the aim of this project idea. STONE’s 7-inch TFT LCD display module in STVC070WT-01 was used to connect and control an RGB lamp.

Last but not least is a basic appliance controller made using STONE’s 7-inch TFT LCD touch screen and an STM32 development board. The touch screen controls lights for various parts of the house. The finished product also collects data about humidity, temperature (indoor and outdoor), and air quality.

This project resulted in a simple electronic scale made by connecting STONE’s 5-inch touch screen to a development board, an ADC conversion module, and a pressure acquisition module. The finished product can:

STONE’s TFT LCD intelligent touch modules can be paired with Arduino technology to automate a variety of processes. This project clearly demonstrates this.

Here, a sensor directly connected to Arduino Uno is monitored by the display screen in real-time. Moreover, two light bulbs connected to Arduino are directly controlled by the display screen as well.

This project is all about making a car display dashboard using a 10.1-inch STONE LCD touch screen. The on-board display interface for a used car contains the following:

We presented an overview of what HMI technology is, how it works, and which applications use it. Also, we covered Stone’s range of HMI-capable TFT LCD display modules. Furthermore, we discussed a lengthy list of exciting project ideas made using Stone’s superior quality HMI displays.

STONE Technologies is truly your best bet for powering your HMI-driven development ideas(projects based on TFT LCD Arduino, STM32, ESP, etc.). Take inspiration from the actual examples we’ve shown you and build your very own HMI display device today.

arduino tft display project factory

8 bit parallel TFT touch pannel module for Arduino UNO.It has a ST7781 (ID=0x7783) LCD controller.I use adafruit library which was modified ILI932x to ST7783.

arduino tft display project factory

Please download the three code libraries from the link given before compiling and uploading the program: https://bitbucket.org/displaymodule/dmtftlibrary/src/master/#include #include #include #define TFT_CS 10#define SD_CS 8#define F_CS 6#define T_CS 4DmTftIli9341 tft = DmTftIli9341(10, 9);BubbleDemo bubbleDemo(&tft, tft.width(), tft.height());void setup (){ // Set CS SPI pin HIGH for all SPI units, so they don"t interfere pinMode(TFT_CS, OUTPUT); pinMode(T_CS, OUTPUT); pinMode(SD_CS, OUTPUT); pinMode(F_CS, OUTPUT); digitalWrite(TFT_CS, HIGH); digitalWrite(T_CS, HIGH); digitalWrite(SD_CS, HIGH); digitalWrite(F_CS, HIGH); tft.init();}void loop(){ bubbleDemo.run(750, 20);}

With DisplayModule"s DMTFTLibrary, the software part of this project is made 10x easier due to no manual coding needed for each function performed. DisplayModule has also already written the main part of the code, so that will save you some time if you need to use this code again. Firstly, the code starts by defining some libraries used: we declare the SPI (Serial Peripheral Interface) library for communication between the TFT and the Arduino, the DMTFTIli934 library, which is used to drive the TFT with an Arduino and the BubbleDemo library, which is basically the library which stores all the code for this program. Then, we define some pins which aid in the software communication to the TFT display. We mention the TFT chip select pin on pin 10, the SD chip select pin on pin 8, the flash chip select pin on pin 6 and the touch screen chip select pin on pin 4. After that, we now add in a line where we declare the TFT being used with the chip select pin on pin 10 and the data/command (DC) pin being on pin 9 and on the following line, we mention that the bubble demo program will be used, which will consume the whole TFT display"s length and width. Now, the void setup section is present, where we set the TFT_CS, T_CS, SD_CS and the F_CS pins as output pins, so that data will be fed into the Arduino from the TFT display. Next, we declare the same set of pins high, meaning that they will be turned on, active and performing their individual function during this sketch. We then also initialise the display to start it up, which transitions us to the void loop section, with one command only. This command is to basically run the bubbleDemo program for 750 loops with a delay time of 20 milliseconds. Now, the software part has been already done and your program should be up and running fine!

arduino tft display project factory

The component TFT supports a 2.8 inch TFT display with a resolution of 240*320 pixels.The display is not soldered on the board, but there is a 14 pin connector for a TFT display. The ILI9341 has been tested.

There are four sample projects for the Arduino IDE which could be downloaded: TFT-Box3D (download here), TFT-Graphic-Test (download here), TFT-HelloWorld (download here) and TFT-HowToUseFonts (download here). And there are two examples for the Arduino IDE for using the touch functionality which could be downloaded: TFT-TouchBtn (download here) and TFT-TouchDraw (download here).

There are two dip switches for the component: SW311 and SW314. If you want to use the TFT display all switches on SW311 have to be on on. If you additonally want to use the touchpad of the display all switch of SW314 have to be on. The following two tables shows the functions and the potential conflicts with other components

After the download it"s necessary to add both libraries to your Arduino IDE. Open Sketch > Include Library > Add .ZIP Library ... and select the downloaded archive. Do it for both libraries.

There are four sample projects for the Arduino IDE which could be downloaded: TFT-Box3D (download here), TFT-Graphic-Test (download here), TFT-HelloWorld (download here) and TFT-HowToUseFonts (download here).

And there are two examples for the Arduino IDE for using the touch functionality which could be downloaded: TFT-TouchBtn (download here) and TFT-TouchDraw (download here).

arduino tft display project factory

The first part of this three-part series discussed common touchscreen technologies and their typical use-cases. Then, the second part investigated a few readily available and affordable touch display options for makers and hobbyists. This article documents how to get started with one of the recommended Arduino-compatible 2.8” resistive touchscreens from part two.

The TFT display I use contains a resistive overlay, which allows users to control an Arduino-based project with touch inputs. The display controller that comes with the touchscreen supports a few different communication methods. However, I’ll only outline two of them as I find these to be the most useful. The first method uses eight parallel communication lines to transmit pixel data from the Arduino to the display. I recommend using this method in multimedia applications where the Arduino needs to transfer a lot of pixel data.

The second method involves using SPI to communicate with the display controller. Doing so saves a few digital I/O lines with the tradeoff of being slower than the parallel communication method. To enable the display’s SPI mode, you have to close these three solder pad jumpers on the bottom side of the board:

Note that I used the SPI method to send data from the Arduino to the display. Either way, in addition to the pixel data lines, you’ll further need to employ two additional digital I/O lines and two more analog pins of the Arduino if you want to add resistive touch detection to your project. In addition, this touchscreen module comes with a built-in micro SD card reader I won’t discuss further in this article.

You have to install two libraries before you can send image data to the TFT display. First, use the Arduino IDE’s built-in library manager to download the Adafruit ILI9341 library. This package handles low-level communication between the Arduino and the display controller IC. Then, download the Adafruit_GFX library. The second library contains helpful code for drawing graphics primitives such as simple shapes and text. I recommend you read this article if you don’t know how to use the library manager in the Arduino IDE.

This short test program first initializes the TFT display in the setup()-function. Then, I defined a few helper methods. The resetAndClearScreen()-method resets the display’s rotation and erases all previously drawn pixels. The next function is drawIntroText(). It prints a short status message in the top left corner of the display. Lastly, drawTouchButton() creates a rectangle at the specified position with the given width and height. Then, the method places a string at the center of the previously drawn rectangle. As the name suggests, I’ll later use these rectangles to detect user inputs. The loop()-method refreshes the screen twice a second. But because there’s no interactivity built into the program yet, users can’t change what the screen displays at this point.

To use the resistive touch capabilities of this display, download the Adafruit_TouchScreen library using the Arduino IDE’s built-in library manager. The example code from above prints a few lines of text and then draws two touch buttons. Next, we’ll have to detect when a user presses one of the buttons. If that happens, the Arduino should refresh the screen and draw all the components using different colors. Therefore, I added the following method to detect whether a user touched one of the buttons:

Before making the previously discussed calls to the various draw-functions, the loop() method also checks whether the user touched the resistive screen. The TSPoint class contains a z-value we can use to determine how hard a user pressed down on the screen. This z-value is also perfect for preventing the Arduino from detecting unwanted inputs. If the z-value is greater than a fixed threshold value, the Arduino detects a touch input. The code then calls the touchedWithin()-function to determine whether the user pressed one of the buttons.

Arduino-compatible touchscreens allow you to quickly add a touchscreen to your existing or new DIY projects. Simple-to-use libraries let you get the display up and running in practically no time. The screen I used offers a few ways for devices to send pixel data to it. A parallel interface allows you to achieve higher screen refresh rates, which might be essential in multimedia applications. The parallel interface is also perfect for MCUs with a large number of I/O pins. The SPI method, on the other hand, is a bit slower compared to parallel communication. It, however, allows you to cut down on the number of required I/O pins, which is the preferred option in most Arduino projects.

arduino tft display project factory

SainSmart 2.8" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controllerILI9325, it"s a support 8/16bit data interface , easy to drive by many MCU like arduino families,STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC isXPT2046, and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.

Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.(Click here)

arduino tft display project factory

Arduino shields are meant to extend the capabilities of the Arduino, while also making initial development of a new device much easier for the user. In this case, our NHD-FT81x-SHIELD provides seamless connectivity and direct software compatibility for the user with any of our EVE2 TFT Modules and an Arduino. This shield has built-in logic level shifting, an on-board buck switching regulator, an audio power amplifier, and a microSD card reader for expandable data storage.

Choose from a wide selection of interface options or talk to our experts to select the best one for your project. We can incorporate HDMI, USB, SPI, VGA and more into your display to achieve your design goals.

Equip your display with a custom cut cover glass to improve durability. Choose from a variety of cover glass thicknesses and get optical bonding to protect against moisture and debris.

arduino tft display project factory

Nextion is a Human Machine Interface (HMI) solution combining an onboard processor and memory touch display with Nextion Editor software for HMI GUI project development.

Using the Nextion Editor software, you can quickly develop the HMI GUI by drag-and-drop components (graphics, text, button, slider, etc.) and ASCII text-based instructions for coding how components interact on the display side.

Nextion HMI display connects to peripheral MCU via TTL Serial (5V, TX, RX, GND) to provide event notifications that peripheral MCU can act on, the peripheral MCU can easily update progress, and status back to Nextion display utilizing simple ASCII text-based instructions.