tft display parallel interface brands

A TFT, or Thin-Film Transistor, utilizes a display that allows for each pixel to be controlled by a transistor and separately address each position. The components of a TFT LCD module are a TFT LCD panel, one or more COG or COB driver ICs, a backlight, and an interface. An interface is a shared boundary across which two separate components of a computer system exchange information. As TFT displays have started being mass produced, production has improved, and the price has become more affordable.

There are now a number of TFT display interface technologies. The best interface to choose relies on particular end-product considerations. The last several years have seen the development of numerous TFT display interfaces, including LVDS (Low-Voltage Differential Signaling), parallel, SPI (Serial Peripheral Interface), and I2C or I2C (also known as I squared C) display, and others.

An SPI or Serial Peripheral Interface enables data exchange between two devices. Compared to parallel ones, it has the benefit of more intuitive and simple wiring. Since there is substantially less contact or crosstalk in the cable, SPI also allows for longer cables. The disadvantage of SPI is that it is slow and only allows for writing to the TFT LCD panel. SPI is typically used in smaller TFT LCD screens because of this. But perhaps your project might require a built-in LCD controller, for which an MCU Parallel interface might be a good fit.

An MCUPI or an MCU Parallel interface is usually pretty simple and usually requires display RAM. There are two common types that are found; the first is 6800, and the other is 8080. 8080 is nRD and nWR, 6800 is RD/nWR and E. A unique sort of parallel interface is the RGB interface. There is no need for display RAM. The MCU directly updates the TFT screen by delivering Red, Green, and Blue sub-pixel data (16/18/24 bits) and timing signals. The RGB interface offers a high-speed connection but requires more data cables and has more complicated controls.

A high-speed serial interface between a host CPU and a display module called MIPI Display Serial Interface allows for the integration of displays to provide high performance, low power, and low electromagnetic interference (EMI) while also lowering the number of pins and retaining vendor compatibility. Designers can use MIPI DSI to provide transmission of stereoscopic content and to enable excellent color rendering for the most demanding picture and video situations.

Low-voltage differential signaling, or LVDS, is a high-speed, long-distance digital interface that transmits serial data (one bit at a time) through two copper wires that are 180 degrees apart from one another. This setup makes the noise easier to identify and filter, which lowers noise emissions. Focus LCDs offers a versatile display that uses this technology, E70RA-HW520-C. The monitor in question is a 7.0" TFT with 1024x600 pixels and a maximum color depth of 16.7M. The inbuilt gate and source driver ICs in this display can be programmed using a typical graphics controller.

HDMI is one that many consumers may already be familiar with. High Definition Media Interface provides a connector and cable definition that supports high-bandwidth video and audio streams. HDMI is an almost direct replacement for analog video standards.

There are then a diverse set of interfaces that can be considered for your display project; whether you decide to go with HDMI, LVDS, MIPI DSI, or the others mentioned, or simply can"t decide, feel free to contact Focus LCDs, where we can address use-case specific questions and provide additional details.

tft display parallel interface brands

This article about TFT display interfaces was written by Julia Nielsen. Julia Nielsen is a jack-of-all-trades writer, having written for newspapers, magazines, websites, and blogs for the last 15 years. When she’s not dabbling in the written word, she’s spending time with her beautiful granddaughter. She loves to hear from readers, especially when they offer chocolate.

Display technology has evolved at lightning speed for the last number of years, as opposed to when even the most sophisticated products incorporated numeric or segment displays and alphanumeric or character display technology. The same products also required buttons which have been replaced with resistive and capacitive touch panels.

When color TFT (Thin-Film Transistors) first came onto the stage, they created a buzz in the tech world that hasn’t stop buzzing since. TFT utilizes a type of display that controls each pixel with a transistor, allowing it to individually address each location.

As TFT yields improved with mass production, manufacturing, as well as healthy competition, TFT displays have soared in production performance and dived in price. Because of this, TFTs are considered the de facto standard of displays that boast of full color, brightly backlit (high NIT counts), high video speeds, better viewing angle, specifically for mobile devices and other small devices needing clear displays, such as phones, watches, security systems, and the like.

OLED (organic light-emitting diode) are increasing in popularity, but are still second to TFTs. Much of this is due to the long lead time and shorter half-life of the OLED displays. Although we offer OLED technology, we recommend TFT for the majority of the new design requests we receive.

There are several types of TFT display interfaces which have been designed in the last number of years for all variations of screen size, including LVDS, (Low-Voltage Differential Signaling) parallel, SPI (Serial Peripheral Interface) and I2C or I²C (aka I squared C) display.

LVDS is a differential signaling system, meaning it transmits information as the difference between the voltages on a pair of wires. Its popularity comes from the benefit of reducing noise levels and low power consumption, which results in even more benefits, such as lower heat dissipation and longer battery life; and because the differential drivers can be included on the LVD interface, smaller parts count, lowered parts cost, and increased reliability is a win-win for businesses and consumers.

Commercial and military, as well as aerospace applications also use LVDs in their products for a robust, long-term solution for high-speed data transmission needs. Flat panel displays, printers, digital copiers, and even cell phones incorporate LVDs to provide an excellent display quality. There are different types of LVDS protocols. When looking for the right LVDs, consider data rate, operating temperature range, and supply voltage, using these filters.

Note: Most TFT displays will operate down to -30C without the need of a heater. OLEDs will operate down to -40C without a heater, but OLEDs that are larger than 3.5” are much more expensive and have a longer lead time than TFTs.

Parallel interface or parallel port is a type of display interface found on computers for connecting peripherals. In the past, most people associated a ‘parallel’ interface with a printer port. This type of interface refers to a multi-line channel with each line capable of transmitting several bits of data on each simultaneously (bi-directional) or parallel to each line.

Newer PC’s have eliminated parallel interfaces in exchange for fire wire, USB2 and USB3. Parallel interfaces are still the most common for several LCD technologies such as character and monochrome graphics.

Parallel interface is nothing new, going back to the beginning of the 1970’s in its development and implementation. The first printer to use the interface was the Centronics 101 model printer, which became the standard at that time. But because a number of cables were required, Dataproducts and other developers had to create up to 50-pin connectors.

Fast forward to 1981 and IBM introduced their computers and printers with a 25-pin connector on the PC end and a 36-pin connector on the Centronics printer, thus the parallel interface had evolved to using both systems. In 1987, IBM introduced a bidirectional parallel interface. Since then, the parallel interface has evolved, with other companies developing their own, with even more parallel ports, including scanners.

Since technology has advanced exponentially in the last decade, so has the parallel interface, evolving to include supercomputers that allow for high-performance interfaces and network storage devices. These super performance display interfaces are capable of transferring billions of bits of data per second over short distances on local area networks. Graphical printers, along with a variety of other devices have been designed to communicate with the parallel ports including:External modems

Some of the early MP3 players and digital cameras also used a parallel port connection for transferring songs to a device, so you can see how far back the interface has been utilized in electronics.

Serial Peripheral Interface allows the serial (one bit at a time) exchange of data between two devices. A master, which controls one or more devices. Each device has its own slave connection. The master can interface with multiple slaves independently.

The term SPI was coined by Motorola and is typically used in communication systems between the CPU (Central Processing Unit) and peripheral devices (Any computer device not part of the essential computer, but situated close by). Serial interfaces have an advantage over parallel ones, that of simpler wiring. They can also have longer cables since there is much less interaction or crosstalk among the conductors in the cable. Many types of devices use SPI, such as:Shift registers

A key difference between SPI and Parallel is that with a serial interface, it only allows for transferring data one bit at a time but decreased the pins required, as opposed to the parallel, which allows multiple bits at a time, but requires more pins (8 data pins and 3 controllers). The downside with a SPI is that you can’t read from the display you can only write on it, and it’s typically slower.

I²C, Inter-integrated Circuit pronounced I-squared-C or I-2-C for a less technical term, is a serial protocol for two-wire interface to connect low-speed devices like micro-controllers, EEPROMS, A/D and D/A converters, I/O Interfaces and other peripherals in embedded systems. It was designed to allow easy communication between components which reside on the same circuit board. I²C only requires two wires: SCL (serial clock) and SDA (serial data). It is a multi-master, multi-slave, single-ended, serial-computer bus, (a communication system that transfers data between components inside a computer or between computers) and was invented by Phillips Semiconductor.

SMbus, (System Management Bus) developed by Intel in 1995, is a subset of I²C, which defines the protocols more strictly. Modern systems employ rules and policies from SMbus, sometimes supporting both systems, requiring minimum reconfiguration. Since 1982, there have been seven revisions to the I²C interface, and has evolved, as every other interface, with new technology always on the horizon.

As far as these two TFT display interfaces, we find that SPI is more popular than I2C when designing a custom LCD. We get hit with questions such as:Why is SPI more popular than I2C?

TFTs and OLEDs are standard, off-the-shelf displays that come with the interface already chosen for you. In many of the TFTS that Focus Display Solutions offers, the built-in controller allows the user to select from multiple display interfaces. Including RGB (Red, Green, Blue).

As a general rule, the larger the display the better it is to choose a LVDS interface since it transfers data so quickly. LVDS is more expensive than SPI, I2C, RGB and parallel. If you are not sure which display to use, try our online Quick LCD selector tool. The displays in this selector tool are in-stock and can ship the same day.

Need a LCD for a new project? Not sure which technology to choose? Contact a real human at Focus Displays now to begin your design process by calling us at 480-503-4295. Or, you can fill out the contact form and we"ll email or call you immediately.

tft display parallel interface brands

A full color 240xRGBx320 pixel TFT display module with 2.2" diagonal active area. Very small text and images look sharp on this graphic display, with its dense pixel pitch of 0.141 x 0.141 millimeters. The TFT"s 6:00 o" clock viewing direction works well for devices that must be easy to read above eye level without fading, such as signal analyzers or other benchtop laboratory equipment.

With a built-in Sitronix ST7789V or compatible display controller, the logic voltage range of 2.5v to 3.3v allows direct connection to 3.3v processors.

Buy with confidence. Our Logistics department is experienced at sending products anywhere in the world where permitted. This TFT display module has a limited 1-year warranty and free technical support.

tft display parallel interface brands

We offer many TFT LCDs that support multiple interfaces, making communicating with a TFT display as straight-forward as possible. Whether you need a parallel interface or a more commonly found SPI interface and even Generic RGB / DOT-CLK crystalfontz has all of TFT LCDs you need in assorted resolutions and sizes. If you"re not finding the correct TFT LCD display module for your product or project, please contact our awesome support team to see if they can help you find an appropriate TFT LCD display module for you.

tft display parallel interface brands

In this Display 101 article we discuss thedigital parallelRGB LCD display interface and how the row and column driving signals are generated from the digital parallel RGB interface.

An LCD display consists of an array of liquid crystal segments. The crystal itself doesn’t emit light. With no electrical field, crystals organize in a random pattern. When an electric field is applied, the crystals align to the electrical field. Various strength of electric fields works like a “gate” to pass different intensity of backlight through the crystals. If the crystals are aligned perpendicular to the backlight, then the backlight can’t pass through the crystals. [1]

How to generate a specific color for a pixel? Each pixel is composed of 3 segments that individually pass light through a red, green, and blue filter, to make an RGB display color pixel. For a 320*240 RGB TFT display, there are 960 (320*3) columns and 240 rows.

Most LCD displays have a digital parallel RGB interface. It works between the graphic controller as a signal source and the input of the RGB display module.

The image data is transmitted digitally as “0 ”or “1 “ by TTL voltage levels. For the RGB interface, each of the signals has a corresponding line. Below are the signal connections of the LCD RGB display interface of 24 bits per pixel.

tft display parallel interface brands

Our new line of 10.1” TFT displays with IPS technology are now available! These 10.1” IPS displays offer three interface options to choose from including RGB, LVDS, and HDMI interface, each with two touchscreen options as capacitive or without a touchscreen.

The new line of 3.5” TFT displays with IPS technology is now available! Three touchscreen options are available: capacitive, resistive, or without a touchscreen.

tft display parallel interface brands

Orient Display sunlight readable TFT displays can be categorized into high brightness TFT displays, high contrast IPS displays, transflective TFT displays, Blanview TFT displays etc.

The brightness of our standard high brightness TFT displays can be from 700 to 1000 nits. With proper adding brightness enhancement film (BEF) and double brightness enhancement film (DBEF) and adjustment of the LED chips, Orient Display high brightness TFT products can achieve 1,500 to 2,000 nits or even higher luminance. Orient Display have special thermal management design to reduce the heat release and largely extend LED life time and reduce energy consumption.

Our high contrast and wide viewing angle IPS displays can achieve contrast ratio higher than 1000:1 which can make readability under strong sunlight with lower backlight luminance. High brightness IPS displays have been widely accepted by our customers with its superb display quality and it has become one of the best sellers in all our display category.Transflective display is an old monochrome display technology but it has been utilized in our color TFT line for sunlight readable application. Orient Display has 2.4” and 3.5” to choose from.

Blanview TFT displays are the new technology developed by Ortustech in Japan. It can provide around 40% of energy consumption for TFT panels which can use smaller rechargeable or disposable batteries and generate less heat. The price is also lower than traditional transflective TFT displays. Orient Display is partnering with the technology inventor to provide 4.3” and 5.0”.

Orient Display can also provide full customized or part customized solutions for our customers to enhance the viewing experience. Orient Display can provide all the different kinds of surface treatments, such as AR (Anti-reflection); AG (Anti-glare), AF (Anti-finger print or Anti-smudge); AS (Anti-smashing); AM (Anti-microbial) etc. Orient Display can also provide both dry bonding (OCA, Optical Clear Adhesive), or wet bonding (OCR, Optical Clear Resin and OCG, Optical Clear Glue) to get rid of light reflective in air bonding products to make the products much more readable under sunlight and be more robust.

Touch panels have been a much better human machine interface which become widely popular. Orient Display has been investing heavy for capacitive touch screen sensor manufacturing capacity. Now, Orient Display factory is No.1 in the world for automotive capacitive touch screen which took around 18% market share in the world automotive market.

Based on the above three types of touch panel technology, Orient Display can also add different kinds of features like different material glove touch, water environment touch, salt water environment touch, hover touch, 3D (force) touch, haptic touch etc. Orient Display can also provide from very low cost fixed area button touch, single (one) finger touch, double finger (one finger+ one gesture) touch, 5 finger touch, 10 points touch or even 16 points touch.

Considering the different shapes of the touch surface requirements, Orient Display can produce different shapes of 2D touch panel (rectangle, round, octagon etc.), or 2.5D touch screen (round edge and flat surface) or 3D (totally curved surface) touch panel.

Considering different strength requirements, Orient Display can provide low cost chemical tampered soda-lime glass, Asahi (AGC) Dragontrail glass and Corning high end Gorilla glass. With different thickness requirement, Orient Display can provide the thinnest 0.5mm OGS touch panel, to thickness more than 10mm tempered glass to prevent vandalizing, or different kinds of plastic touch panel to provide glass piece free (fear) or flexible substrates need.

Of course, Orient Display can also offer traditional RTP (Resistive Touch Panel) of 4-wire, 5-wire, 8-wire through our partners, which Orient Display can do integration to resistive touch screen displays.

Engineers are always looking for lower cost, faster, more convenient interfaces to transmit signals and to accept data and commands. The numbers of available interfaces available in the market can be dazzling. Orient Display follows market trends to produce various kind of interfaces for our customers to choose.

Genetic Interfaces: Those are the interfaces which display or touch controller manufacturers provide, including parallel, MCU, SPI(,Serial Peripheral Interface), I2C, RGB (Red Green Blue), MIPI (Mobile Industry Processor Interface), LVDS (Low-Voltage Differential Signaling), eDP ( Embedded DisplayPort) etc. Orient Display has technologies to make the above interface exchangeable.

High Level Interfaces: Orient Display has technologies to make more advanced interfaces which are more convenient to non-display engineers, such as RS232, RS485, USB, VGA, HDMI etc. more information can be found in our serious products. TFT modules, Arduino TFT display, Raspberry Pi TFT display, Control Board.

tft display parallel interface brands

FC Mono TFT LCD series are monochrome displays applied in the active matrix TFT technology. They are an alternative to full color displays offering an impressive enhancement to a conventional STN graphic display. Important features include:

Monochrome TFT LCD is an ideal high performance display for automotive and industrial applications. Driving this kind display is less complex, but in the same time they offer the same performance characteristics as full color TFT.

tft display parallel interface brands

TFT LCDs have become the norm for small-to-medium size displays in a variety of products within industrial, medical, POS and consumer applications. Compared to passive-addressed monochrome LCDs, TFT displays offer higher contrast, wider viewing angles, faster response time and full color. And, TFT LCDs are now on cost parity with similar size passive LCD displays.

A typical TFT LCD module product consists of a TFT LCD panel, one or more COG (chip-on-glass) driver ICs, a backlight unit, and an interface FPC. Several TFT display interface technologies coexist today. Picking the right technology depends on specific end-product concerns. Most often the display panel input will dictate that choice since TFT panels are designed to be COG bonding pad compatible with a very limited number of driver ICs. This article discusses the interfaces between TFT LCD modules and the typical CPUs found in embedded applications.

Typical TFT interfaces are determined by the particular TFT panel size and resolution, as shown in the below table. HDMI and eDP require interface converting boards and generally are not used for small to medium-size TFT LCDs.TFT LCD SizesResolutionsTypical Interfaces UsedUp to 3.5″128×160 to 240×320SPI, parallel MPU or RGB

Only the three SPI signals, a CS, and a reset signal are needed. Drawbacks are the inability to read from the display, only write. Also, the frame rate is low and unsuitable for displaying video or high-resolution images.

The LCD controller signals are two types: data signals and control signals. The data signals are connected to the LCD data bus and depend on the LCD color depth (8-bit, 9-bit, 16-bit, 18-bit). The control signals are used to define the operation type (read or write), and whether the operation involves in addressing LCD registers or the display RAM.

An RGB interface is a special kind of parallel interface. This interface works for displays without a frame buffer. The MCU is responsible for updating the display, by providing both the RGB sub-pixel data (16-bit, 18-bit, 24-bit) and the timing signals (HSYNC, VSYNC, DE, CLK).

LVDS interfacing has several benefits for TFT displays. It is much less susceptible to EMI and crosstalk issues, allowing the transmitting device to be located farther from the display. Also, LVDS generally consumes less power, pin counts are lower and there are far fewer worries about signal integrity.

High-speed serial interface commonly used on smartphones and tablets. By standardizing this interface, components may be developed that provide higher performance, lower power, less electromagnetic interference and fewer pins than current devices, while maintaining compatibility across products from multiple vendors.

Modern TFT driver ICs are highly integrated chips combining the source driver, gate driver and timing controller (TCON) – as well as other functional circuits such as memory, power circuit, and image processors – into one single IC die. Some driver ICs support multiple interfaces that are selectable on the module FPC or through initialization code firmware.

As a designer and manufacturer of custom LCD modules, New Vision Display works with customers to select the most appropriate and cost-effective TFT display and electronic interface solution for their particular requirement. New Vision Display has nearly 30 years of industry experience as one of the world’s leading TFT LCD screen manufacturers.

tft display parallel interface brands

TFT LCD DisplayROYAL DISPLAY, established in the year 2003 in Mumbai, India with a vision of bringing the best technology in Display-world to our esteemed customers. Royal display began operations with an aim to distribute LCD displays to all prospective industries. In the initial stages, while in 2003, all our displays were sourced from Taiwan and we managed to set up an efficient supply chain for display from Taiwan into India. This not only leveraged us the first-movers advantage but also put us on top of a very fast-growing customer base in India A further expansion of customer base in year 2007, we have started TFT, Touch screen and OLED marketing and started direct dialogue with most manufacturers in Korea & Taiwan making it possible for us to buy from origin. This was our answer to customers on quality-assurance. From supplying LCD Modules to public phone Manufacturer back in 2003 to selling Displays for Military applications, Medical & Industrial applications, Royal Display has come a long way in defining and redefining values for its products to customers in India.

We are successfully ranked amongst the topnotch entity offering a wide range of TFT Displays. These displays are made available with Bit MCU interface. Also, the displays are made available in 3.5, 7.5, 7, 10.4 sizes. The dot pitch and pixel rate of the displays differ according to the size and configurations. In addition, the pixel configuration is RGB vertical stripe. In order to develop such fine displays, at our vendor’s end, engineers have used quality components and approved materials during fabrication.

tft display parallel interface brands

Graphical displays can be more attractive when it comes to creating a flexible user interface. But, they require more CPU time to update the data than other display types, i.e., segmented or character displays.

The most popular type of interface used in display modules is the parallel interface. MCU (microcontroller unit) and RGB parallel interface are the two most common types of parallel interface.

MCU interfaces are available in two standard forms, Intel-8080 and Motorola-6800 series. These interfaces communicate through an integrated display controller and frame buffer.

We know that you might have some bubbling questions by now, such as, what is an Integrated display controller? What is a frame buffer? What do all of them get to do with the MCU interface? What is the difference between RGB and MCU interfaces?

The frame buffer is the memory space that holds the pixel data being displayed. There are internal frame buffers in smart displays that are stored on RAM. The MCU display interface reads the frame buffer every time to update the display.

The MCU interface progresses through frames at an increased rate to read pixels from the display controller. It can read and write data and display images directly from the internal memory.

Well, that completely depends on the deployable application of the displays. Different interfaces may exhibit diversified requirements in terms of processing speed and memory space.

Despite needing more pins, higher processing speed, and memory allocation, RGB display interfaces can be deployed easily in high-performance displays.

After a mutual comparison of features and working mechanisms, we can conclude that choosing parallel MCU can be more advantageous for displaying images. These are less expensive and easily controllable.

Microtips Technology, a US-based LCD display manufacturer and distributor with global exposure, has been using both RGB and MCU interfaces in their TFT display panels and touch panel displays. However, most of their deliverables feature MCU interfaces primarily.