sainsmart 2.4 tft lcd display i factory

This is Sainsmart 2.4 inch TFT LCD module with the TFT LCD shield kit for arduino enthusiasts.It includes one piece of 2.4 inch TFT LCD display and a TFT LCD shield for Arduino MEGA2560 (R3).We will provided you the whole document including the example project of arduino due with the kit. We will supply you the technical support after your purchase.

Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.(Click here)

It is 100% compatible with the normal MCU like ARM AVR PIC and 8051,especially on arduino family such as arduino due and arduino mega2560(R3).The module uses the LCD controller Chip SSD1963 with 5 inch LCD including the touchscreen.

The shield defines that all the the data transmit ports are PC1-PC8 and PC12-PC19,the controll pins are PD0-PD3.The perfect design could realize that the data transmits in high speed.The SPI interface is designed in the ISP header of arduino due so that the SPI transfer with DMA could be achieved in high speed with no drag.

sainsmart 2.4 tft lcd display i factory

Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.

sainsmart 2.4 tft lcd display i factory

This is SainSmart 2.4 inch TFT LCD module with the TFT LCD shield kit for Arduino enthusiasts.It includes one piece of 2.4 inch TFT LCD display and a TFT LCD shield for Arduino MEGA2560. We will provided you the whole document including the example project of  Arduino MEGA2560 with the kit. We will supply you the technical support after your purchase.

The SainSmart Mega 2560 is a microcontroller board based on the ATmega2560 (Datasheet). It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. The Mega is compatible with most shields designed for the Arduino Duemilanove or Diecimila.

SainSmart 2.4" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controllerILI9325, it"s a support 8/16bit data interface , easy to drive by many MCU like arduino families,STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC isXPT2046, and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.

Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.

It is 100% compatible with the normal MCU like ARM AVR PIC and 8051,especially on arduino family such as arduino due and arduino mega2560(R3).The module uses the LCD controller Chip SSD1963 with 5 inch LCD including the touchscreen.

The shield defines that all the the data transmit ports are PC1-PC8 and PC12-PC19,the controll pins are PD0-PD3.The perfect design could realize that the data transmits in high speed.The SPI interface is designed in the ISP header of arduino due so that the SPI transfer with DMA could be achieved in high speed with no drag.

sainsmart 2.4 tft lcd display i factory

ER-TFT024-3 is 240x320 dots 2.4" color tft lcd module display with ILI9341 controller and optional 4-wire resistive touch panel and capacitive touch panel,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8-bit,9-bit,16-bit,18-bit parallel,3-wire,4-wire serial spi interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 2.4"TFT Touch Shield with Libraries, EXxamples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.

You may wish to have NEWHAVEN NHD-2.4-240320,our part number ER-TFT024-4 should meet this requirment that is the completely the same withNEWHAVEN NHD-2.4-240320.

ER-TFT024-4 is still not our general product ,we don"t have enough stock .You have to email ([email protected]) our sales to buy samples or orders. Besides the minimum order quantity is no less than 500pcs per order.The production lead time is 5-6 weeks.

sainsmart 2.4 tft lcd display i factory

Spice up your Arduino project with a beautiful touchscreen display shield with built in microSD card connection. This TFT display is 2.4" diagonal and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. As a bonus, this display has a optional capacitive touch panel and resistive touch panel with controller XPT2046 attached by default.

The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).

This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!

If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.

sainsmart 2.4 tft lcd display i factory

After spending about half an hour wiring the display to an Arduino and double checking I found a couple of libraries online but the ones I found were old and out of date and would not compile.

sainsmart 2.4 tft lcd display i factory

When autocomplete results are available use up and down arrows to review and enter to select. Touch device users, explore by touch or with swipe gestures.

sainsmart 2.4 tft lcd display i factory

This 240x320 resolution LCD TFT is a standard display with 8-bit/16-bit Parallel interface, offering 262K colors and a 6:00 optimal view. This Liquid Crystal Display has a built-in ST7789Vi controller, FFC ZIF I/O connection, is RoHS compliant and does not come with a touchscreen.

Adjust the length, position, and pinout of your cables or add additional connectors. Get a cable solution that’s precisely designed to make your connections streamlined and secure.

Enhance your user experience with capacitive or resistive touch screen technology. We’ll adjust the glass thickness or shape of the touch panel so it’s a perfect fit for your design.

Choose from a wide selection of interface options or talk to our experts to select the best one for your project. We can incorporate HDMI, USB, SPI, VGA and more into your display to achieve your design goals.

Equip your display with a custom cut cover glass to improve durability. Choose from a variety of cover glass thicknesses and get optical bonding to protect against moisture and debris.

sainsmart 2.4 tft lcd display i factory

I was torn in deciding how many stars to give this. For starters, I must mention that I own 5 of these things -- 3 of the Mega2560R3 kits and 2 of the Due kits. This review is the collective findings of both varieties.I"m going to start with a key problem and warning that everyone who has bought or is thinking of buying these things should read:WARNING: The configuration jumpers on ALL five of the units I"ve received were jumpered incorrectly from the factory. The Mega2560R3 boards had both the 5v and 3.3v selection jumpers soldered, meaning if you plug it in as-is, you"ll short out the two power supplies. Their pictures of the board all show only the 3.3v jumpers selected, which is correct, but the three Mega boards I received, the LCD shield boards were jumpered wrong with both voltages selected. The two Due boards were also jumpered wrong. However, they didn"t have both jumper sets applied, they only had the 5v jumpers applied. Even if the LCD could stand 5v (and would be OK since all of its I/O pins are outputs from the processor), jumping it wrong would also mean powering the touchscreen chip from 5v causing the inputs to the Due processor to see 5v, and the input pins of the SAM micro are NOT 5v tolerant.This problem is likely why some of the other reviewers mentioned processors and things getting hot. So step one, regardless of which board set you get, check your jumpers! The LCD should be configured for 3.3v and only one voltage selection jumper should be applied per option so you don"t short out both supply voltages.Of the five units I received, one LCD screen glass was cracked. It still functions, but the crack renders the touchscreen portion somewhat unusable. Another LCD screen apparently has a panel that was wired backwards (between the driver chip and the LCD panel itself). I thought at first it was defective as the screen had the appearance of the old SSAVI style cable scrambling technique with a "torn" picture. But the pre-init white screen looked OK, so I was suspicious that it was functioning, but in a weird way. After some experimenting, I found that if I swapped the sync settings around and the horizontal/vertical addressing modes around it worked, but exactly backwards from what it should -- addressing was going the wrong way and scrolling was backwards, etc... It is usable, but only if I correct for their problem in software. I didn"t exchange either one of these because the cost and hassle of doing so wouldn"t have been worth it.I was also suspicious that the one screen that was behaving backwards simply had a different LCD driver chip. But, I read the Device ID out of all of them and they all reported 9325. So they should have all functioned the same. And, for what it"s worth, the LCD driver chip at least thinks it"s a 9325.As for software and support, I don"t understand the reviews that say there"s no software or support out there, as the item description posted on Amazon even has a link to a zip file from SainSmart with the CTE UTFT libraries already preconfigured for these screens (maybe those reviews were done before that was posted?). And in any case, this is a clone of the CTE (Cold Tears Electronics) boards and there"s plenty of documentation and software for it, including schematics and even board layouts, if you Google it.One reviewer mentioned it not being a true "CTE" board because no SPI Flash chip was installed. Well, even the original CTE boards don"t come with the flash chip by default -- that"s an optional add-on (as per their "official" website). This clone certainly has the pads, just get a chip and solder it on... Though you"ll probably still want to read the font data out and store it in memory, as the latency of reading it from flash every time text is rendered would serious slow down performance. So why not just put the font you want in the main flash of the micro? Though I guess you could use the chip to store anything you want and aren"t limited to just fonts.Another thing to look out for on the board is solder splash and cold solder joints, specifically on all of the through-hole parts. Two of my boards had a solder splash on the power input connector, shorting it out had I not seen and removed it. Various through-hole connectors were marginally soldered and needed some touch-up work. So expect to do some soldering right out of the gate. And be sure to look your board over thoroughly and fix these things before using it.The processor boards (apart from a couple of soldering issues) were fairly functional and I guess a decent value for the price. But, the Mega, for example, has a old bootloader version installed. One of the first things you"ll want to do is reflash it (via the ISP port) with the current stk500v2 bootloader. Also, it didn"t have the lock bits sets, meaning you could easily accidentally overwrite the bootloader during programming and end up with a brain-dead board until you reflashed the bootloader via the ISP port... So I suggest flashing the current bootloader and setting the lock fuses first thing.I"m suspicious, though, that the ATmega2560 processor is a counterfeit chip as the efuse bits don"t seem to want to stay set. You can program them, and they seem to program OK, even verify correctly, but later on will occasionally randomly read back as 0xFF. I have only seen that happen with the efuse bits, which is primarily just brownout voltage threshold setting, so it isn"t too critical (compared to the other fuse bits), but makes me wonder about the integrity of the processor as a whole and wonder if it"s possibly a "counterfeit chip".I haven"t done as much checking of bootloader code on the Due board, or its ARM micro. It came up and talked to the bossa loader without any issues, so I haven"t had a need to analyze it to the extent I have the Mega boards. Plus, being a newer Arduino board, it"s more likely to have a new bootloader and also the different nature of the programming process on the ARM of the Due isn"t as likely to have flash overwrite issues as the Mega does.The LCD screens themselves are decent, assuming yours isn"t cracked or wired backwards, but be aware that this 9325 chip, at least the way it"s configured on this LCD panel, does NOT support hardware scrolling in the vertical direction when in landscape mode. It does do hardware scrolling, but only vertical for portrait mode (or horizontal for landscape). If your project needs hardware scrolling in the vertical direction of landscape mode (as my project needs), this LCD screen won"t do it!The touchscreen, however, I found to work quite well -- but ONLY after you"ve calibrated it. It didn"t work at all until I did the calibration. Perhaps the reviewers saying they couldn"t get touchscreen to work didn"t calibrate it? You first need to get your LCD working with their demo. Then, load their UTouch calibration program and follow the prompts on the screen for creating the calibration parameters. Then plug those parameters into the UTouch source code, et voila. I was pleasantly surprised at how well the touchscreen seemed to function for the money -- it had good response, was accuracy and seemed repeatable, and didn"t require a lot of excess pressure, etc. From some of the other reviews I"ve seen on this screen, I wasn"t sure what to expect, but was pleasantly surprised to find the touchscreen performing well (at least on the screens I received -- maybe they too have quality control issues?).The UTFT code isn"t the best of code, but is functional and works well on both the Mega and Due. I did tweak it to work a little more efficiently and fix potential memory access faults, and to add hardware scrolling support (the library itself didn"t originally support hardware scrolling at all).A better software library to use with the screen is Andy Brown"s xmemtft, available on GitHub. To use it, you"ll have to use the Gpio16 include files for the ili9325 chip and properly set the port mapping for your processor. Speaking of port mapping, the correct settings on the UTFT library (that"s linked in the item description of these boards) for this 2.8" 320x240 TFT LCD in their example code is as follows:Mega:UTFT myGLCD(CTE28,38,39,40);UTouch myTouch(6,5,4,3,2);Due:UTFT myGLCD(CTE28,25,26,27,28);UTouch myTouch(6, 5, 32, 3, 2); (note: it will support "4" in place of the "32", but only if you add a jumper on the adapter shield)So all-in-all, it"s usable, but only if you do a little work on them, don"t get a bad LCD, and don"t need vertical scroll in landscape. It definitely isn"t a kit for a novice. Don"t expect to plug it together and start using it without doing some soldering and fixing things. And if you are new to programming, you may want to get some experience on a more ready-to-use package, like an Adafruit kit or something, first.But, if you don"t mind learning a little and working through the BS and you happen to get lucky and the one you receive isn"t defective, this is a decent deal for the money, as most vendors sell just the processor board for the cost of this entire kit.So, as a cheap, knock-off clone, it"s usable, but...

sainsmart 2.4 tft lcd display i factory

Needed this a bit deeper for the reprapdiscount controller board that I"m using on my prusa. Had the original knob on board previously. ... Works great.

Remixed Drawer mount. The original had a usb dongle holder and extender from the main board. I didn"t want any of that so I removed them. I also noticed the guides for the drawer on top print a few layers above the front so I brought those down, to...

Remix of a model uploaded by CorpseDragon. All parts made manifold solid. Mesh topology is still far from perfection. Body is hollow with walls ~2.5mm thick....

Someone made a front bezel for the Elecrow 5” Raspberry Pi touch screen but no rear. I made a rear cover. I havent come up with a way to stick them together yet, and I also removed my pin connector from the pcb. If people are interested i could add a...

The power switch on the Prusa MK3 is (understandably) located on the power supply. Convenient for initial construction and minimizing material use. Unfortunately, this is not near the rest of the controls and can be a pain to...

This is my attempt at a nice Retro Apple II Faceplace for the MK3. The print had an issue with supports on the button but I believe I have fixed that and will be updating the images and files as I continue. I want this to be a cool throwback. Im also...

This remix is inspired by https://www.thingiverse.com/thing:4901758 by Junr05, but technically is a remix of the original fixed vertical mount listed. I had issues with the model by Junr05 - issues with the model downloaded showed in the final print,...

This is a remix of my other designs. I hated having to put 4 screws in the back of the case to hold the face on. Pain in the b***. I was going through Fusion 360 tutorials and found one on how to make a snap together case. I made some prototypes and...

I wanted display on my Ender 3 V2 on the left side and because I didn"t found any good I decided to design my own. It"s easy to print. Display is in 45° tilt and for mounting I used screws from the original one....

To install it, align the left side first to a face plate and then pop the right side in by gently pressing the locking tab in to secure it to the mounting hole. The fits will...

Created with Design Spark Mechanical, a FREE and extremity easy to learn and use CAD http://www.rs-online.com/designspark/electronics/eng/page/mechanical

sainsmart 2.4 tft lcd display i factory

This is SainSmart 2.4 inch TFT LCD module with the TFT LCD shield kit For arduino enthusiasts.It includes one pcs of 2.4 inch TFT LCD display and a TFT LCD shield for arduino UNO(R3) and the Arduino UNO R3

2.4" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller ILI9325, it"s a support 8/16bit data interface , easy to drive by many MCU like arduino familiesSTM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is XPT2046 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.

Voltage type: 5v or 3v voltage input voltage???input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.

sainsmart 2.4 tft lcd display i factory

Found in 2007, SAEF TECH is an experienced LCD/LCM manufacturer. With good quality, professional service, and competitive price, we have been qualified by many wellknown companies around the world. Our strategic customers include LG in Korea(white goods & remote controller), Uniden in Japan(scanner), Cisco in USA(conference phone), Jabil in UK(industrial meter & instrument), Vtech in HK(IP phone in conference room), Ametek in Germany(bulldozer dash board), AML in USA(banking system), Spectrum mfg in Canada(meter), etc.

sainsmart 2.4 tft lcd display i factory

We covered the basics of accelerometer previously inUsing Arduino with Parts and Sensors – Accelerometer Part 1andUsing Arduino with Parts and Sensors – Accelerometer Part 2. Today we’ll be testing KX022-1020 accelerometer using TFT liquid crystal panel. We’ll discuss how to control the TFT LCD in more detail in the next article. In addition, we’ll further exploreArduino Create. For more information about Arduino Create, please refer back tothisarticle.

Let’s briefly review what accelerometer is. An accelerometer is a sensor that can detect the state of motion, such as “tilt,” “shock,” “vibration” and so forth. Accelerometers are classified into one axis, two axes, and three axes. For example, one axis detects one direction (vertical only); two axes detects two directions (vertical and horizontal); and three axes three directions (vertical, horizontal and height).

Now, let’s test the accelerometer. Download the library from the “Software” section at the bottom of theaccelerometer page from theRohm Sensor Evaluation Kit website.

We’ll continue using Arduino Create Web Editor as we did in our lasttutorial. To add the library, you can upload the zip file by selecting it from “Libraries” on the left menu and clicking on “ADD ZIP LIBRARY.”

After adding the library, attach the accelerometer to the Sensor Shield (I2C I/F) and try running the sample program. The accelerometer should be set to 1.8V or 3.0V.

Now the sample program is working fine, let’s try to display the values on a 1.8 inch TFT LCD monitor. Although this TFT liquid crystal monitor has a resolution slightly smaller than 126 x 160 px, it’ll be quite useful when displaying numbers or letters with Arduino etc.

In the past, we used 7-segment LED to display numerical values only. But this time, I tried to display the graph along with the values obtained from the accelerometer.

When using the TFT monitor, the connection method and the library used in the program may be different depending on the specification of each TFT monitor. The TFT monitor used in this tutorial is a monitorSainSmart ST7735R. In addition to Arduino, the monitor is also compatible with Raspberry.

In order to use the monitor to run the program in Arduino, we’ll have to modify the downloaded library a little bit.We’ll go over how to control the TFT LCD in more detail in the next article. Once everything is set, you will be able to output numerical values in the monitor as shown in the video below:

In the next part, we’ll create a simple device using the same accelerometer and TFT monitor. We’ll show how to create graphs and display the values obtained from the accelerometer on the TFT monitor.

sainsmart 2.4 tft lcd display i factory

Afghanistan, Algeria, American Samoa, Andorra, Angola, Argentina, Armenia, Bahrain, Bangladesh, Belarus, Benin, Bermuda, Bhutan, Bolivia, Botswana, Brunei Darussalam, Burkina Faso, Burundi, Cambodia, Cameroon, Cape Verde Islands, Central African Republic, Central America and Caribbean, Chad, China, Comoros, Cook Islands, Côte d"Ivoire (Ivory Coast), Democratic Republic of the Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Falkland Islands (Islas Malvinas), Fiji, French Guiana, French Polynesia, Gabon Republic, Gambia, Georgia, Ghana, Gibraltar, Greenland, Guam, Guernsey, Guinea, Guinea-Bissau, Guyana, Hong Kong, Iceland, India, Indonesia, Iraq, Jersey, Jordan, Kenya, Kiribati, Kuwait, Kyrgyzstan, Laos, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Macau, Madagascar, Malawi, Mali, Marshall Islands, Mauritania, Mauritius, Mayotte, Micronesia, Mongolia, Morocco, Mozambique, Namibia, Nauru, Nepal, New Caledonia, Niger, Nigeria, Niue, Oman, Pakistan, Palau, Papua New Guinea, Qatar, Republic of the Congo, Reunion, Russian Federation, Saint Helena, Saint Pierre and Miquelon, San Marino, Saudi Arabia, Senegal, Seychelles, Sierra Leone, Solomon Islands, Somalia, South Africa, Sri Lanka, Suriname, Svalbard and Jan Mayen, Swaziland, Tajikistan, Tanzania, Togo, Tonga, Tunisia, Turkmenistan, Tuvalu, Uganda, Ukraine, United Arab Emirates, Uzbekistan, Vanuatu, Vatican City State, Venezuela, Vietnam, Wallis and Futuna, Western Sahara, Western Samoa, Yemen, Zambia, Zimbabwe