different lcd panel types price
Prices for all TV panel sizes fluctuated and are forecast to fluctuate between 2020 and 2022. The period from March 2020 to July 2021 saw the biggest price increases, when a 65" UHD panel cost between 171 and 288 U.S. dollars. In the fourth quarter of 2021, such prices fell and are expected to drop to an even lower amount by March 2022.Read moreLCD TV panel prices worldwide from January 2020 to March 2022, by size(in U.S. dollars)Characteristic32" HD43" FHD49"/50" UHD55" UHD65" UHD------
DSCC. (January 10, 2022). LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars) [Graph]. In Statista. Retrieved February 23, 2023, from https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC. "LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars)." Chart. January 10, 2022. Statista. Accessed February 23, 2023. https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC. (2022). LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars). Statista. Statista Inc.. Accessed: February 23, 2023. https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC. "Lcd Tv Panel Prices Worldwide from January 2020 to March 2022, by Size (in U.S. Dollars)." Statista, Statista Inc., 10 Jan 2022, https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC, LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars) Statista, https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/ (last visited February 23, 2023)
LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars) [Graph], DSCC, January 10, 2022. [Online]. Available: https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
Liquid Crystal Display (LCD) screens are a staple in the digital display marketplace and are used in display applications across every industry. With every display application presenting a unique set of requirements, the selection of specialized LCDs has grown to meet these demands.
LCD screens can be grouped into three categories: TN (twisted nematic), IPS (in-plane switching), and VA (Vertical Alignment). Each of these screen types has its own unique qualities, almost all of them having to do with how images appear across the various screen types.
This technology consists of nematic liquid crystal sandwiched between two plates of glass. When power is applied to the electrodes, the liquid crystals twist 90°. TN (Twisted Nematic) LCDs are the most common LCD screen type. They offer full-color images, and moderate viewing angles.
TN LCDs maintain a dedicated user base despite other screen types growing in popularity due to some unique key features that TN display offer. For one,
Displays with VA screens deliver wide viewing angles, high contrast, and good color reproduction. They maintain high response rates similar to TN TFTs but may not reach the same sunlight readable brightness levels as comparable TN or IPS LCDs. VA displays are generally best for applications that need to be viewed from multiple angles, like digital signage in a commercial setting.
Based on current trends, IPS and TN screen types will be expected to remain the dominant formats for some time. As human interface display technology advances and new product designs are developed, customers will likely choose IPS LCDs to replace the similarly priced TN LCDs for their new projects.
For people that aren’t the most tech-savvy, it would seem that LCD monitors are all the same. But in reality, the opposite is true. There are four major types of LCD monitor panels, all with unique benefits and drawbacks depending on your needs. So, when shopping for an LCD screen, it’s important to consider how you’ll use it, and which type of computer monitor is best suited for that goal. To learn more about LCD, LED, QLED, and other monitor technology types, check out our guide on the types of monitors.
Technically, there are 11 different types of LCD panels, but they’re usually divided into three main categories — In-Plane Switching (IPS), Twisted Nematic (TN), and Vertical Alignment (VA). IPS is considered the top choice while VA is often associated with burn-in, a condition where pixels lose brightness over time and leave image silhouettes on the screen.
IPS panels tend to offer the best color accuracy, image quality, and viewing angles. As a result, these types are the best monitors for designers who demand better image quality to complete their graphic design work. In particular, IPS panels can provide fidelity at viewing angles as wide as 178 degrees.
However, these panels tend to be more expensive because of their enhanced image quality. Likewise, they don’t score as well for refresh rates, which makes them suboptimal for gamers.
IPS panels can be further divided into seven additional versions. While they’re all somewhat similar, how the pixels are structured is different. These include:S-IPS
Super PLS, or Plane to Line Switching, is another twist on IPS panels but is proprietary to Samsung. Their patented technology promises to offer wider viewing angles and 10% more brightness than standard IPS displays.
AHVA — not to be confused with VA panels — was developed by AOU and stands for Advanced Hyper-Viewing Angle. However, it still relies on IPS technology.
And Nano IPS was created by LG Electronics and promises to create a wider color range because of its use of nanoparticles instead of traditional pixels. Additionally, Nano IPS panels tend to have faster refresh rates.
Touchscreen monitors can be any panel variation, it depends on which one you need. However, if you can’t afford one, as they are expensive, then you’ll need to learn how to convert a monitor to touchscreen.
If you’re a budget shopper looking for an LCD screen, TN panels are going to be the most widely available option. While they’re wallet-friendly, this option has fantastic response times. Some TN-based LCDs can offer response times as low as one millisecond, which makes them ideal for gaming. However, TN panels aren’t as competitive when it comes to color accuracy. These panels are only six-bit instead of eight-bit like IPS panels and therefore can’t display all 16.7 million colors found in 24-bit true-color displays.
VA panels are a median choice for people who have a little bit more to spend but aren’t ready to invest in IPS panel technology. While they provide truer color than a TN panel and wider viewing angles, their response time isn’t as competitive. Additionally, VA viewing angles aren’t as wide as an IPS panel.
Although VA panels have higher contrast ratios for better black levels, they struggle with color shifting. This means that depending on your viewing angle, the brightness can vary. And especially for watching television, this can create a lack of detail in darker scenes. However, because of its affordability, this panel is incredibly popular with manufacturers and is often used in computer monitors and televisions. If you need something with closer to 100% of the sRGB color gamut, you’ll want a different option.
This is going to depend on how you plan on using your LCD monitor, along with your budget. Remember that the lowest price isn’t always the best, especially when considering computer monitor lifespan. You want a monitor that will last you a while. And, also consider the different monitor sizes as well. But as a general rule, the three main panel categories are most compatible in the following ways.
IPS panels are ideal for professionals who need true color accuracy for their work. Gamers who are more concerned with image quality will also do well with this pick. Likewise, serious tech aficionados with exacting standards regarding color accuracy, want to avoid color shifting and maximize viewing angles will like IPS panels. Remember that IPS panels include a wide array of subcategories, many of which are proprietary to select electronics brands.
Budget-conscious shoppers that want a decent LCD monitor that won’t break the bank can’t go wrong with a TN panel LCD. Additionally, gamers who want faster response times will also like these panels. And, anyone who isn’t obsessed with technical specs and simply wants an affordable monitor for general use will like these LCDs.
Many TVs use LCD (Liquid Crystal Display) panels that are lit by LED backlights. There are two popular types of LCD panels: In-Plane Switching (IPS) and Vertical Alignment (VA), and there are two main differences between each type. A VA panel usually has a high contrast ratio and narrow viewing angles. However, an IPS panel has low contrast and wide viewing angles. These are the main differences between each, and for the most part, panel type doesn"t affect other aspects of picture quality, like peak brightness, color gamut, or color accuracy.
For the purposes of this article, we"re going to compare two LED-backlit LCD TVs: the Sony X800H, which has an IPS panel, and the Hisense H9G, which has a VA panel. Due to their different panel types, there are three noticeable differences in picture quality: viewing angles, contrast, and black uniformity, so we"re going to look at each one.
Viewing angle refers to the angle at which you can watch the TV without seeing a noticeable drop in picture quality. IPS TVs are the clear winner here, as the image remains accurate when viewing from the side - you can see the differences in the videos above. This is their main advantage over VA panels. Most VA panel TVs have a noticeable loss in image accuracy when viewing from the side. The narrow viewing angle of VA-type TVs is also problematic when the TV is used as a PC monitor from up close since the edges of the display look washed out.
VA panels are far superior to IPS panels when it comes to this, so if you tend to watch movies in the dark, you likely want to get a TV with a VA panel. Most TVs use VA panels due to this main advantage, and high-end models may have a local dimming feature that further enhances black levels. On the other hand, IPS panels normally have low contrast, so blacks look closer to gray, but you may not notice the difference in contrast in bright environments.
Our black uniformity tests determine how well a TV displays a dark scene with a bright image in the center. Ideally, you want to see a completely black screen with the center cross being the only part that"s lit up, and this is important for people watching movies. No LED TV has perfect uniformity, and unlike viewing angles and contrast, the panel type doesn"t completely determine its black uniformity. However, most VA panels that we"ve tested have good black uniformity, while most IPS panels have sub-par black uniformity. This doesn"t mean that every VA panel TV has good uniformity, as this can change between units, and you can also improve uniformity using the local dimming feature.
LCDs function by having liquid crystals in little groups to form the pixels. These crystals react and change position when charged with electricity and, depending on their position, they allow a certain color of light to pass through.
There"s also another type of IPS panel, called Plane-to-Line Switching (PLS), which can be seen with the Sony X800H. This panel type was designed by Samsung and technically performs the same as an IPS panel. When you compare the pixels visually, IPS panels look like chevrons, VA looks like very straight rectangles, and PLS looks like round-edged capsules. You can learn more about pixels here.
The way the pixels are laid out can also affect text clarity. Many IPS panels, like the ones on the Sony X800H or the LG SK9000, use RGB sub-pixel layouts, while many VA panels have a BGR layout, like on the Hisense H9G. The sub-pixel layout doesn"t directly affect picture quality unless you"re using it as a PC monitor. Some applications may expect an RGB layout, so if you have a BGR sub-pixel layout, text may not look clear. You may need to increase the text scaling to read it properly, but this issue isn"t common with an RGB layout. You can learn more about it here.
Unlike LED TVs, OLEDs don"t use a backlight and instead have self-emitting pixels. This allows the pixels to individually turn on and off, resulting in perfect blacks. This means that they also have perfect black uniformity as there"s no blooming around bright objects like on some LED TVs. They also have wide viewing angles, sometimes even wider than some IPS panels, so OLEDs are a good choice for wide seating arrangements.
Samsung released quantum dot TVs in 2015, which they later labeled as QLED in 2017. These TVs include a quantum dot layer between the LED backlights and the LCD panel to achieve a wider color gamut. Other companies like Vizio and TCL also use this quantum dot technology on their TVs. Adding this extra quantum dot layer doesn"t change the characteristics of the panel type; the VA panel on the TCL 6 Series/S635 2020 QLED still has a high contrast ratio and narrow viewing angles. Although most QLED TVs use VA panels, you can easily use an IPS panel as well.
Manufacturers have tried different techniques to improve the viewing angles on VA panels over the years, aiming to produce a perfect LCD panel with both wide viewing angles and high contrast. While they have yet to achieve that goal, a few TVs have hit the market that try to combine the best of both panel types. The first TVs with this viewing angle technology came out in 2018, and only a few high-end models like the Samsung Q90/Q90T QLED and the Sony X950H had this technology in 2020. These TVs are a bit unique, delivering noticeably better viewing angles than their pure VA counterparts, but still worse than true IPS panels. This comes at the expense of a lower contrast ratio, as these TVs have worse native contrast than most VA panels, but they"re still better than IPS panels. Combined with their local dimming features, they still produce deep blacks.
Between IPS and VA panels, neither technology is inherently superior to the other as they both serve different purposes. In general, IPS TVs have wide viewing angles suitable for when you want to watch the big game or your favorite show in a large seating arrangement. They"re also beneficial for use as a PC monitor since the edges remain accurate if you sit up close. However, VA panels are a better choice for watching content in dark rooms, as their improved contrast allows them to display deep blacks. Choosing between the two is a series of trade-offs and qualities, so choosing the best TV for your needs depends on your usage.
Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.
There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.
Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.
Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.
Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.
Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.
LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.
VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.
Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.
There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.
OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.
As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.
In order to choose the best monitor for your needs, it is very important to distinguish what kind of LCD panel interface type is in the monitor you’re looking at. The most common panels used nowadays are;
One of the types of panels that you will find in a computer monitor is a TN Panel. This stands for Twisted Nematic, and this particular type of LCD panel is generally the cheapest. They are the cheapest to manufacture among all LCD technologies, so they are the most commonly used in budget monitors.
If you are looking to game online, you will need a monitor with a higher refresh rate like that offered by a TN panel. Refresh rates are measured in Hertz (Hz), which defines how many times per second your screen can display new images.
The typical response time for a TN panel is less than 5 ms which is much faster than the 6 or 8 ms response time that other LCD displays have, such as vertical alignment or VA.
The biggest downside with these panels is often their viewing angles. On a TN panel, the viewing angles aren"t very good, and depending on how far off-center you are, the picture can begin to lose color and contrast.
TN panels also don"t support as wide a range of resolutions as IPS. This LCD monitor panel type has a poor contrast ratio when compared with other technologies such as IPS and VA. This results in an inability to display deep blacks and bright whites at the same time.
TN panels are manufactured by Samsung, LG, AUO, Chi-Mei, Chunghwa Picture Tubes, Hannstar Display Corporation, Sharp Corporation, CMI, Innolux, J-Tech Digital Imaging Co. Ltd, AU Optronics Corporation, etc.
A TN panel is a type of liquid crystal display (LCD) used in most LCD monitors and laptops. TN panels were the workhorse of the 1990s and early 2000s, but they were eventually replaced by their more-expensive cousins, the in-plane switching (IPS) and vertical alignment (VA) panels.
TN computer panels work by using two polarized filters, vertical and horizontal, to control the light that passes through them. The filters are arranged so that when the electrical current is off, light cannot pass through. When it"s on, it hits the twisted crystals to produce colors. The active layer is twisted to allow the light to pass through it, and this twist is controlled by electrical fields applied to the liquid crystal material.
It is worth noting that A TN panel is made up of millions of pixels, each pixel being red, green, or blue in color. The light from each pixel can be either on or off, so black is created when all the pixels are off and white when all are on. When all three colors are combined, any color can be produced. This arrangement is called RGB (red-green-blue).
A TN panel uses twisted nematic liquid crystals to form images. While not as desirable as other technologies, it does have several benefits worth considering when making a purchasing decision.They are mostly found in budget LCDs, as they are cheaper to manufacture and therefore sell for less.
TN panels have excellent response rates and refresh rates, typically 1 - 2 milliseconds and 50 – 75 Hz, respectively. This makes them ideal for high-end gaming
TN is the oldest and most common type of LCD panel, and it"s also the cheapest to produce. TN panels were the first panels to be introduced to the market, but they"re no longer as popular as they used to be. This is because TN panels have several downsides:The main disadvantage of TN panels is limited viewing angles, which can be extremely limiting in some cases. If you"re sitting straight in front of the monitor, everything is fine, but if you move to the side, then all colors shift and get distorted. That can be extremely annoying for graphic designers or architectswho work with color palettes, photographers who need exact color matching, etc. (see also
TN panels typically have lower contrast ratios than IPS displays do, so they don"t look as rich in color or dark black. So TN panels are usually not suitable for professional applications such as color-critical photo editingand graphic design.
Many gamers prefer TN panels because they provide a very fast response time and higher refresh rates. You can also find some with a refresh rate of 240Hz, which is even better.The Asus VG248QE is a 24-inch LCD display with a 1920 x 1080 resolution and a 1ms response time. It uses a TN panel, so don"t expect much in terms of viewing angle or color reproduction accuracy compared to an IPS display. But if you"re looking for a good 144Hz monitor, choose this one.
ViewSonic VX2458-MHD. It has a TN panel. The refresh rate of this monitor is 72Hz, which is standard. The response time of this monitor is 1ms. It also comes with 4 USB 3.0 ports, which is great if you plan on hooking up multiple devices, which is frequently used when trading. If you have a setup like that, you will also want to look at bezel less monitors, or frameless monitors, for your needs.
Another common type of panel is a VA panel. This stands for Vertical Alignment and is a step above a TN panel in terms of quality. Its name comes from the fact that light emitted from the screen"s backlight (see also LED monitors) is aligned vertically rather than being scattered horizontally and vertically as it is with a TN display.
VA panels provide high-quality images, wide viewing angles along with excellent contrast ratio and high refresh rates. These factors make VA panel monitors preferred for graphic design, photographers, video editors, and others who often work on their PCs.
VA panels are also better when displaying fast-moving images because they offer high refresh rates hence have less motion blur. Additionally, some panels have support for even 120 Hz refresh rates for ultra-smooth movement in games and movies.
Traditional LCD displays use two polarizing filters and liquid crystals (LCs) to create all the colors and patterns that we see on computer monitors and flat-panel televisions.
What are the Benefits of VA Panels?Image quality of VA technology is considered better than TN technology; text appears crisper, and images appear sharper and richer in contrast and color.
The big downside of TN panels is their response time. Most TN panels have a response time of 5-8 MS, which is fine for most people. However, if you"re mostly into competitive gaming or fast-paced action games like me that require quick reflexes, then this could be a problem.
We did some research and came up with a list of the best monitors with VA panels, and they are;ViewSonic VX2457-MHD. It is a24-inch monitor with a 1920 x 1080 resolution and covers 100% of the sRGB spectrum. It also has plenty of picture-enhancing features, including adjustable color settings and support for AMD"s FreeSync technology (see also affordable G Sync monitors).
This is the best LCD panel type. IPS stands for In-Plane Switching, and the biggest advantage over the other panels listed above is its wide viewing angles.
These screens are more expensive than TN panels but offer a greater contrast ratio, higher resolutions than their TN counterparts. They also support higher refresh rates, lower response time which makes them ideal for monitors larger than 24 inches.
These panels offer much more consistent colors, which makes them ideal for graphic designers or anyone who does any kind of color-critical work on their monitor.
IPS panels offer wider viewing angles than VA panels do, making them better suited for use in public spaces such as retail stores or airports where you can expect people will be walking by your TV from both sides.
They also have a high refresh rate. Newer models are now available with 120Hz or even 240Hz refresh rates. These are found chiefly on gaming monitors but will likely become more common in other types of monitors in the future.
The contrast ratio of an IPS panel is higher than that of TN panels. The contrast ratio of a display refers to the difference between the darkest black and the brightest white that the display is capable of producing. This can be an important factor in overall display quality, depending on how you use your laptop or desktop monitor.
Some manufacturers that specialize in IPS panel interphases include Samsung, LG, and even Mac Apple. Also, almost all Dell monitors use IPS panels. However, there are plenty of other high-quality manufacturers that also offer IPS panels for you to choose from.
In a liquid crystal display (LCD), light passes through a pair of polarizers. Each polarizer is made of a long chain of molecules, each oriented in a different direction; one vertical, the other horizontal.
In an IPS LCD panel, liquid crystals are aligned so that both polarizers face the same way—horizontal. Light from behind the panel passes through one polarizer and then bounces off onto a second polarizer before reaching your eyes. This design makes IPS LCDs nearly as bright as VA panels and much brighter than TN panels without sacrificing contrast ratio or color accuracy.
If you"re looking for a new monitor, IPS panels may be the right ones for you. Here are some of their most important benefits:It allows for wider viewing angles. This is very useful for monitors used at work that involve customer service, where the monitor may be viewed from many different angles.
The IPS LCD displays are also characterized by their high degree of brightness and contrast, which makes them ideal for outdoor use, among many other features.
The typical lifespan of an IPS panel is around 100,000 hours, which is more than enough for even heavy users to get their money"s worth from their monitor.
They have great color reproduction. Many people who are serious about a photo or video editing are drawn to IPS panels because they offer superior color reproduction possibilities when compared with TN panels.
The main disadvantage of IPS panels is that they are more expensive than TN panels. The cost of an IPS panel will typically be $10-$20 higher than a comparable TN panel.
Today, the majority of flat-panel monitors use in-plane switching (IPS) technology. Best monitors that have IPS panels include;Samsung U28E590D 28-Inch 4K UHD Monitor. If you love gaming, then this is the product for you; it comes with AMD FreeSync, which proved successful in eliminating screen tearing since being introduced as VSync, as this post explained.
Also, bear in mind that if it is a flat panel display with a 1080p resolution or higher, you can refurbish it and resell it after using it. Older monitors with lower resolutions may not be worth much.
It offers a much higher resolution than conventional LCD and can be used to manufacture large panels. It"s an innovative display technology that has the potential to change the face of consumer electronics.
There are 3 main types of LCDs; VA (Vertical Alignment), TN (Twisted Nematic), and IPS (In-Plane Switching). All these technologies have been used for over 10 years and have their own pros and cons. However, they have reached their upper limits in terms of resolution and other features, and it"s nearly impossible to increase them any further. That"s where Super PLS-Plane to Line Switching comes in.
Super PLS-Plane to Line Switching offers resolutions as high as 8K, has wider viewing angles, and is brighter. The image quality presented by this technology is said to be much better than traditional LCDs, and it could potentially disrupt the current.
The Nano IPS panel technology adds a layer of nano-particles to the backlight in order to transmit the screen"s picture more efficiently and reduce the chances of image retention.
Advanced Hyper-Viewing Angle (AHVA) computer display was developed by AU Optronics Corp. It is a type of LCD that can be seen clearly even from the most acute angles. Through the process of strengthening the polarizing plate, it can help minimize the reflection ratio to less than 1%. The viewing angle is about 178 degrees.
Most LCDs (liquid crystal display) monitors are now manufactured with an anti-glare coating to reduce the effect of ambient light reflecting off the screen. Anti-glare coatings can reduce reflections by 25 to 70%.
VA panel is better thank IPS. Although IPS panels have a contrast ratio of 700:1 to 1500:1, they are still inferior to VA panels. The majority of VA monitor panels have contrast ratios above 2500:1, and some even reach 5000:1 or 6000:1. Even local dimming is used by more recent monitors to obtain even greater contrast ratios.
Yes, IPS is better than OLED. The main benefit of IPS panels is their increased brightness, particularly when combined with a tiny LED backlight. OLED displays are often limited to brightness levels of roughly 1,000 nits, while mini LED displays can reach peak brightness levels of around 2,000 nits.
There’s a variety of display panel out there and even more on the way. But looking at all the different types of panels can be baffling. They come in various acronyms, and many of those acronyms are confusingly similar. How do LCD, LED and OLED compare? What about the different types of LCD panels? And how do these different technologies impact your viewing experience for things like gaming? To help, we’ve created this guide so you can gain a firm understanding of today’s display panel technology and which features really matter.
The first type of panels we’ll cover are LCD (liquid crystal display) panels. The main thing to understand about LCD panels is that they all use a white backlight (or sidelight, etc.). They work by shining a bright white light into your eyes, while the rest of the panel is for changing this backlight into individual pixels.
LED stands for light-emitting diode. You’ll often see LCD panels that are LED, but that doesn’t necessarily mean much when choosing an LCD. LED is just a different type of backlight compared to the old cold cathode backlights. While you could congratulate yourself on not using mercury, which is found in cathodes, at this point all LCDs use LED backlights anyway.
The second thing to understand is that LCDs take advantage of a phenomena known as polarization. Polarization is the direction in which the light wave is oscillating, or swinging back and forth at the same speed. Light comes out of the backlight unpolarized. It then passes through one polarizer, which makes all the light oscillate the same way.
Now you have an on and off (and between) switch for light. To produce color all that’s needed is three color filters, red, green and blue, that block all light other than that color from coming through. The difference between different types of LCD panels is mostly in how this in-between liquid crystal part works.
This design allows for fast response times (the time between the panel getting the frame it’s supposed to display and actually displaying it). It also allows for fast refresh rates. Consequently, TN panels are the only 240 hertz (Hz) gaming monitors available right now.
TN panels are cheap but suffer from poor viewing angles due to the “twist” only being aligned in one direction for viewing the panel straight on. They can also have poor color and contrast due to this twist mechanism not being the most precise or accurate.
VA stands for vertical alignment, again referring to the crystal alignment. These came about in the 1990s. Instead of using liquid crystals to twist a light’s polarization, a VA panel’s liquid crystals are aligned either perpendicular (vertical to) or parallel (horizontal to) the two polarizers. In the off state, the crystals are perpendicular to the two opposing polarizers. In the on state, the crystals begin to align horizontally, changing the polarization to match the second polarizer and allowing the light to go through the crystals.
This structure produces deeper blacks and better colors than TN panels. And multiple crystal alignments (shifted a bit off axis from each other) can allow for better viewing angles compared to TN panels.
However, VA panels come with a tradeoff, as they are often more expensive than TN panels and tend to have lower refresh rates and slower response times than TN panels. Consequently, you won’t see quite as many VA panel gaming monitors.
IPS stands for in-plane switching. These panels debuted after TN panels in the mid-1990s. The crystals are always horizontal to the two polarizers and twist 90° horizontally to go from off to on. Part of this design requires the two electrodes (which apply current to the liquid crystal to change its state) to be on the same glass substrate, instead of aligned with each other on the sandwiching glass substrates above and below the crystal (as in other types of LCDs). This, in turn, blocks a bit more light than both TN and VA panels.
IPS panels have the best viewing angles and colors of any LCD monitor type, thanks to its crystal alignment always lining up with the viewer. And while they don’t offer as fast a response time or refresh rate as TN panels, clever engineering has still gotten them to 144hz, and with nice viewing angles you’re not necessarily going wrong with an IPS gaming panel.
How do LCD panels go about reaching HDR brightness when incorrect polarization and color filters block so much light?The answer is quantum dots. These clever little things are molecules that absorb light and then re-emit that light in the color you engineered them to.
Today’s quantum dot layers usually go between a blue backlight and the polarization step, and are often used to produce red and green that more closely matches the color filters, so more light passes through them. This allows more of the backlight to come through instead of being blocked by the color filters, it can also reduce crosstalk, or colors slipping through the wrong subpixel, ensuring better colors of LCDs.
Other uses of quantum dots are being tried, however. One promising one is using QD molecules to replace the color filters entirely, allowing even more light through. Because LCD backlights produce more light than OLED panels (more on those below), this would allow LCDs to become the brightest displays around.
Motion blur/ghosting can be a result of how long an image takes to switch from one to another and how long an image is displayed on screen (persistence). But both of these phenomena differ greatly between individual LCD panels regardless of underlying LCD tech. And both are often better controlled by higher refresh rates, rather than clever panel engineering, at least for LCD displays.
Choosing an LCD panel based on underlying LCD tech should be more about cost vs desired contrast, viewing angles and color reproduction than expected blur, or other gaming attributes. Maximum refresh rate and response time should be listed in any respectable panel’s specs. Other gaming tech, such as strobe, which flashes the backlight on and off quickly to reduce persistence, may not be listed at all and is not part of the underlying type of LCD used. For that kind of info you’ll have to check the detailed reviews here on our site.
OLED, or organic light emitting diode, panels, are different from LCDs. There are no polarization tricks here. Instead, each pixel (or subpixel of red, green, or blue) lights itself up as a voltage is applied to a giant complex molecule called, yep, an organic light emitting diode. The color emitted is dependent on the molecule in question, and brightness is dependent on the voltage applied. OLEDs can reach HDR brightness because their molecules put out the right colors to begin with without being blocked.
Due to its approach to color and brightness, OLEDs have great contrast ratios. There’s no need to block a backlight, so there’s no worries about light bleeding through. Blacks are very black, and colors look great. OLEDs can also strobe, or flash off and on quickly to lower persistence. They can also use a trick called rolling scan.This turns blocks of the screen on and off one at a time, from top to bottom in a roll. This is all done as the image is sent to the screen, which cuts down on persistence blur a lot. This is why every major VR headset that can afford it uses OLED panels today.
Unfortunately, that’s where the advantages of OLED end. Refresh rates of OLED panels have never surpassed about 90Hz. And they’re quite expensive. A large part of that $1,000 iPhone X price is due to its OLED display. The current molecules used in OLEDs also degrade relatively quickly over time, especially those used for the color blue(opens in new tab), making the screen less and less bright.
OLEDs were also supposed to use less power than LCDs, but newer, giant OLED molecules that take less voltage to turn on have yet to appear. And while molecules covering the colors of the P3 HDR gamut are out today, those covering the larger BT.2020 gamut have yet to be found commercially. So OLEDs, while once promising and seemingly the future, have yet to live up to that promise.
A relevant question: If our fastest gaming displays are 240Hz TN panels now, just how fast do we need to go anyway? Well, a 2015 study places maximum human perception at 500Hz. So from that perspective, we’re halfway there. But that’s halfway there with today’s HDR, and not in lightfield 3D, or other possible advancements. And mobile devices could always use displays that take up less power.
In other words, in order to get fancy 3D effects, or much higher brightness, or any other desirable features, a different, new type of panel may be required. MicroLED tech is one such technology; think of it as OLED without the organic part and with the potential to improve contrast, response times and energy usage over standard LED panels. If you want to know more you can go here, but the real takeaway is that MicroLEDs work almost exactly like OLEDs.
So, why would anyone ever buy a TN panel? For starters, they’re cheap. They don’t cost a lot to produce, so they’re often used in the most budget-friendly options. If you don’t value color reproduction or need excellent viewing angles, a TN panel might be fine for your office or study.
TN panels also have the lowest input lag—typically around one millisecond. They can also handle high refresh rates of up to 240 Hz. This makes them an attractive option for competitive multiplayer games—especially eSports, where every split-second counts.
IPS technology was developed to improve upon the limitations of TN panels—most notably, the poor color reproduction and limited viewing angles. As a result, IPS panels are much better than TNs in both of these areas.
In particular, IPS panels have vastly superior viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you’ll notice very little shift in color when you view one from a less-than-ideal perspective.
IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you’ll find on VAs.
While high refresh rates were typically reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the 27-inch 1080p ASUS VG279QM uses an IPS panel and supports 280 Hz.
Previously, TNs exhibited less input lag than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.
Despite the gap being closed, you’ll still pay more for an IPS panel with such a low response time than you would for a TN with similar specs. If you’re on a budget, expect a response time of around four milliseconds for a good IPS monitor.
One last thing to be aware of with IPS panels is a phenomenon called “IPS glow.” It’s when you see the display’s backlight shining through it at more extreme viewing angles. It’s not a huge problem unless you view the panel from the side, but it’s something to keep in mind.
VA panels are something of a compromise between TN and IPS. They offer the best contrast ratios, which is why TV manufacturers use them extensively. While an IPS monitor typically has a contrast ratio of 1000:1, it’s not unusual to see 3000:1 or 6000:1 in a comparable VA panel.
In terms of viewing angles, VAs can’t quite match the performance of IPS panels. Screen brightness, in particular, can vary based on the angle from which you’re viewing, but you won’t get the “IPS glow.”
VAs have slower response times than TNs and the newer Nano IPS panels with their one-millisecond response rates. You can find VA monitors with high refresh rates (240 Hz), but the latency can result in more ghosting and motion blur. For this reason, competitive gamers should avoid VA.
Compared to TNs, VA panels do offer much better color reproduction and typically hit the full sRGB spectrum, even on lower-end models. If you’re willing to spend a bit more, Samsung’s Quantum Dot SVA panels can hit 125 percent sRGB coverage.
For these reasons, VA panels are seen as the jack of all trades. They’re ideal for general use, but they either match or fall short in most other areas except contrast ratio. VAs are good for gamers who enjoy single-player or casual experiences.
When compared to CRT monitors, all LCD panels suffer from some form of latency issue. This was a real problem when TN panels first appeared, and it’s plagued IPS and VA monitors for years. But technology has moved on, and while many of these issues have been improved, they haven’t been eliminated entirely.
Uneven backlighting is another issue you’ll find on all panel types. Often this comes down to overall build quality—cheaper models slack on quality control to save on production costs. So, if you’re looking for a cheap monitor, be prepared for some uneven backlighting. However, you’ll mostly only notice it on solid or very dark backgrounds.
LCD panels are also susceptible to dead or stuck pixels. Different manufacturers and jurisdictions have different policies and consumer laws covering dead pixels. If you’re a perfectionist, check the manufacturer’s dead-pixel policy before you buy. Some will replace a monitor with a single dead pixel for free, while others require a minimum number.
Office or study use: Your budget should be your primary concern here. VA is the do-it-all panel, with superior viewing angles to TN, but either would do the trick. You can save some money because you don’t need high refresh rates or ultra-low latency. They’re still nice, though. You’ll see a noticeable difference in smoothness just when moving the Windows cursor on a monitor with a 144 versus 60 Hz refresh rate.
Photo and video editors/Digital artists: IPS panels are still generally favored for their ability to display a wide gamut of colors. It’s not unusual to find VA panels that also cover a wide gamut (125 percent sRGB, and over 90 percent DCI-P3), but they tend to exhibit more motion blur during fast-paced action than IPS panels. If you’re serious about color accuracy, you’ll need to properly calibrate your monitor.
Programmers who mount monitors vertically: You might think TN panels are great for programmers, but that’s not necessarily the case. TN panels have particularly bad viewing angles on the vertical axis. If you mount your monitor in portrait mode (as many programmers and mobile developers do), you’ll get the worst possible viewing angles from a TN panel. For the best possible viewing angles in this scenario, invest in an IPS display.
Competitive online gamers: There’s no question TN panels are still favored in the eSports world. Even the cheapest models have fast response times and support for high refresh rates. For 1080p gaming, a 24-inch will do just fine, or you could opt for a 1440p, 27-inch model without breaking the bank. You might want to go for an IPS panel as more low-latency models hit the market, but expect to pay more.
Non-competitive, high-end PC gamers: For a rich, immersive image that pops, a VA panel will provide a higher contrast ratio than IPS or TN. For deep blacks and a sharp, contrasting image, VA is the winner. If you’re okay with sacrificing some contrast, you can go the IPS route. However, we’d recommend avoiding TN altogether unless you play competitively.
Best all-rounder: VA is the winner here, but IPS is better in all areas except contrast ratio. If you can sacrifice contrast, an IPS panel will provide fairly low latency, decent blacks, and satisfactory color coverage.
So, why is this important? A monitor’s panel technology is important because it affects what the monitor can do and for which uses it is best suited. Each of the monitor panel types listed above offer their own distinctive benefits and drawbacks.
Choosing which type of monitor panel type to buy will depend largely on your intended usage and personal preference. After all, gamers, graphic designers, and office workers all have different requirements. Specific types of displays are best suited for different usage scenarios.
The reason for this is because none of the different monitor panel types as they are today can be classified as “outstanding” for all of the attributes mentioned above.
Below we’ll take a look at how IPS, TN, and VA monitors affect screen performance and do some handy summaries of strengths, weaknesses, and best-case uses for each type of panel technology.
IPS monitors or “In-Plane Switching” monitors, leverage liquid crystals aligned in parallel to produce rich colors. IPS panels are defined by the shifting patterns of their liquid crystals. These monitors were designed to overcome the limitations of TN panels. The liquid crystal’s ability to shift horizontally creates better viewing angles.
IPS monitors continue to be the display technology of choice for users that want color accuracy and consistency. IPS monitors are really great when it comes to color performance and super-wide viewing angles. The expansive viewing angles provided by IPS monitors help to deliver outstanding color when being viewed from different angles. One major differentiator between IPS monitors and TN monitors is that colors on an IPS monitor won’t shift when being viewed at an angle as drastically as they do on a TN monitor.
IPS monitor variations include S-IPS, H-IPS, e-IPS and P-IPS, and PLS (Plane-to-Line Switching), the latter being the latest iteration. Since these variations are all quite similar, they are all collectively referred to as “IPS-type” panels. They all claim to deliver the major benefits associated with IPS monitors – great color and ultra-wide viewing angles.
With regard to gaming, some criticisms IPS monitors include more visible motion blur coming as a result of slower response times, however the impact of motion blur will vary from user to user. In fact, mixed opinions about the “drawbacks” of IPS monitor for gaming can be found all across the web. Take this excerpt from one gaming technology writer for example: “As for pixel response, opinions vary. I personally think IPS panels are quick enough for almost all gaming. If your gaming life is absolutely and exclusively about hair-trigger shooters, OK, you’ll want the fastest response, lowest latency LCD monitor. And that means TN. For the rest of us, and certainly for those who place even a modicum of importance on the visual spectacle of games, I reckon IPS is clearly the best panel technology.” Read the full article here.
IPS monitors deliver ultra-wide 178-degree vertical and horizontal viewing angles. Graphic designers, CAD engineers, pro photographers, and video editors will benefit from using an IPS monitor. Many value the color benefits of IPS monitors and tech advances have improved IPS panel speed, contrast, and resolution. IPS monitors are more attractive than ever for general desktop work as well as many types of gaming. They’re even versatile enough to be used in different monitor styles, so if you’ve ever compared an ultrawide vs. dual monitor setup or considered the benefits of curved vs. flat monitors, chances are you’ve already come into contact with an IPS panel.
TN monitors, or “Twisted Nematic” monitors, are the oldest LCD panel types around. TN panels cost less than their IPS and VA counterparts and are a popular mainstream display technology for desktop and laptop displays.
Despite their lower perceived value, TN-based displays are the panel type preferred by competitive gamers. The reason for this is because TN panels can achieve a rapid response time and the fastest refresh rates on the market (like this 240Hz eSports monitor). To this effect, TN monitors are able to reduce blurring and screen tearing in fast-paced games when compared to an IPS or VA panel.
On the flip side, however, TN panel technology tends to be ill-suited for applications that benefit from wider viewing angles, higher contrast ratios, and better color accuracy. That being said, LED technology has helped shift the perspective and today’s LED-backlit TN models offer higher brightness along with better blacks and higher contrast ratios.
The greatest constraint of TN panel technology, however, is a narrower viewing angle as TN monitors experience more color shifting than other types of panels when being viewed at an angle.
Today’s maximum possible viewing angles are 178 degrees both horizontally and vertically (178º/178º), yet TN panels are limited to viewing angles of approximately 170 degrees horizontal and 160 degrees vertical (170º /160º).
TN monitors are the least expensive panel technology, making them ideal for cost-conscious businesses and consumers. In addition, TN monitors enjoy unmatched popularity with competitive gamers and other users who seek rapid graphics display.
Vertical alignment (VA) panel technology was developed to improve upon the drawbacks of TN. Current VA-based monitors offer muchhigher contrast, better color reproduction, and wider viewing angles than TN panels. Variations you may see include P-MVA, S-MVA, and AMVA (Advanced MVA).
These high-end VA-type monitors rival IPS monitors as the best panel technology for professional-level color-critical applications. One of the standout features of VA technology is that it is particularly good at blocking light from the backlight when it’s not needed. This enables VA panels to display deeper blacks and static contrast ratios of up to several times higher than the other LCD technologies. The benefit of this is that VA monitors with high contrast ratios can deliver intense blacks and richer colors.
MVA and other recent VA technologies offer the highest static contrast ratios of any panel technology. This allows for an outstanding visual experience for movie enthusiasts and other users seeking depth of detail. Higher-end, feature-rich MVA displays offer the consistent, authentic color representation needed by graphic designers and other pro users.
There is another type of panel technology that differs from the monitor types discussed above and that is OLED or “Organic Light Emitting Diode” technology. OLEDs differ from LCDs because they use positively/negatively charged ions to light up every pixel individually, while LCDs use a backlight, which can create an unwanted glow. OLEDs avoid screen glow (and create darker blacks) by not using a backlight. One of the drawbacks of OLED technology is that it is usually pricier than any of the other types of technology explained.
When it comes to choosing the right LCD panel technology, there is no single right answer. Each of the three primary technologies offers distinct strengths and weaknesses. Looking at different features and specs helps you identify which monitor best fits your needs.
LCD or “Liquid Crystal Display” is a type of monitor panel that embraces thin layers of liquid crystals sandwiched between two layers of filters and electrodes.
While CRT monitors used to fire electrons against glass surfaces, LCD monitors operate using backlights and liquid crystals. The LCD panel is a flat sheet of material that contains layers of filters, glass, electrodes, liquid crystals, and a backlight. Polarized light (meaning only half of it shines through) is directed towards a rectangular grid of liquid crystals and beamed through.
Note: When searching for monitors you can be sure to come across the term “LED Panel” at some point or another. An LED panel is an LCD screen with an LED – (Light Emitting Diode) – backlight. LEDs provide a brighter light source while using much less energy. They also have the ability to produce white color, in addition to traditional RGB color, and are the panel type used in HDR monitors.
Early LCD panels used passive-matrix technology and were criticized for blurry imagery. The reason for this is because quick image changes require liquid crystals to change phase quickly and passive matrix technology was limited in terms of how quickly liquid crystals could change phase.
Thanks to active-matrix technology, LCD monitor panels were able to change images very quickly and the technology began being used by newer LCD panels.
Ultimately, budget and feature preferences will determine the best fit for each user. Among the available monitors of each panel type there will also be a range of price points and feature sets. Additionally, overall quality may vary among manufacturers due to factors related to a display’s components, manufacturing, and design.
Alternatively, if you’re into gaming and are in the market for TN panel these gaming monitor options may be along the lines of what you’re looking for.
First, to be clear, there is no “best” panel type out of these, as all have their respective advantages and disadvantages over the others. The information here pertains to general characteristics, as even panels of the same panel type will have some variance in characteristics (power consumption, backlight bleed, etc.) depending on the luck of the draw. Manufacturer tuning can also impact display output, affording some differentiating leverage to manufacturers sourcing from panel suppliers (which is effectively all of them).
Nostalgia or riddance aside, there are still some valid reasons to use a CRT monitor. When compared to LCD panels, CRT monitors can have higher contrast ratio, very low response time (which leads to non-blurred pictures even with fast movement on screen), and very little input lag, although LCD input lag can be largely negated. The downsides of CRTs are apparent, though: they’re large, heavy, consume more power, produce flicker, can produce audible, high frequency noise (although age plays into whether one can hear them or not), produce slightly distorted images, and produce harmful electromagnetic waves (in the form of x-rays), which requires that toxic materials such as lead and barium must be used as shielding to prevent detrimental health effects. CRT monitors are also notoriously hazardous to repair, given their large, active electrical coils that can measure upwards of 50,000 volts of electricity.
CRT displays are sometimes still used in medical, simulation, military, and government fields that have embedded the displays into control panels and machinery.
CRT monitors have largely gone out of production, and are rarely sold new (finding a used CRT is fairly easy), but their advantages temporarily lent themselves to some special uses. In regards to gaming, CRT monitors have historically been advantageous to use when gaming competitively due to very little motion blur and very little input lag. That being said, these advantages have faded with the progressive march of TN panels.
TN panels now have low motion blur (especially with lightboost or a similar technology), offer high refresh rates, low response times (1ms GTG in many cases), and are more than adequate even in the world’s most competitive games.
Ultimately, for the vast majority of users, the disadvantages of CRTs aren’t worth their limited gains, especially when TN panels meant for gaming more than adequately satisfy the needs of even competitive gamers.
TN panels have many benefits over the previously popular CRT monitors: lower weight, lower cost to produce, lower power consumption, they’re much thinner, offer clearer pictures, have no realistically achievable resolution limits, offer flexibility in size and shape, and the ability to eliminate flicker.
That being said, TN panels weren"t and still aren’t perfect, and compared to the previously popular CRT monitors, they’ve suffered from limited viewing angles, uneven backlighting, worse motion blur, higher input lag, dead/stuck pixels, and poor display in sunlight.
To be clear, many of these issues have been improved upon, but due to the underlying science of LCD TN panels, cannot be completely resolved.