types of computer display screens factory
A computer monitor, technically termed as a visual display unit, can be plainly described as an electronic device that transmits information from the computer onto a screen, thereby acting as an interface and connecting the viewer with the computer. At present, computer monitors are available in a variety of shapes, designs, and colors. However, based on the technology used to make computer monitors, they can be broadly categorized into three types.
These monitors employ the CRT technology used most commonly in the manufacturing of television screens. In this, a stream of intense high energy electrons is used to form images on a fluorescent screen. A cathode ray tube is a basically a vacuum tube containing an electron gun at one end and a fluorescent screen at another end. From this electron gun, a process called thermionic emission generates a strong beam of electrons. These electrons travel through a narrow path within the tube with high speed using various electro-magnetic devices and finally strike the phosphor points present on the fluorescent screen, thus creating an image. There are several advantages of using CRT monitors:
These monitors are highly reliable and efficient, and are capable of generating a resolution of up to 2048 x 1536 pixels, thereby providing a clear picture quality. Also, CRT monitors that are now available are capable of producing thousands of different colors.
Unlike conventional CRT monitors, modern technological advancements have resulted in the development of flat screen CRT monitors that reduce the glare and are good for the eyes.
However, the only concern with buying CRT monitors is that they are heavy and can occupy a great deal of work space. Also, these devices get heated up very easily.
Liquid crystal display, also known as liquid crystal diode, is one of the most advanced technologies available at present. Typically, an LCD monitor consists of a layer of color or monochrome pixels arranged schematically between a couple of transparent electrodes and two polarizing filters. Optical effect is achieved by polarizing the light in varied amounts and making it pass through the liquid crystal layer. At present, there are two types of LCD technology available. These include the active matrix or TFT and a passive matrix technology. Among these, TFT technology is more secure and reliable, and generates better picture quality. On the other hand, passive matrix has a slow response time and is slowly becoming outdated.
LED monitors are the latest types of monitors in the market today. Like LCD, it is again a flat panel display making use of light-emitting diodes for back-lightning instead of Cold Cathode Fluorescent (CCFL) back-lightning used in LCDs. Primarily, the display is of LCD only but the back-lightning is done by LEDs.
LED monitors are said to use much lesser power than CRT and LCD. Thus, they are also considered environmental friendly. Other core advantages of LED monitors are:
These monitors employ CRT technology, which was used most commonly in the manufacturing of television screens. With these monitors, a stream of intense high energy electrons is used to form images on a fluorescent screen. A cathode ray tube is basically a vacuum tube containing an electron gun at one end and a fluorescent screen at another end.
While CRT monitors can still be found in some organizations, many offices have stopped using them largely because they are heavy, bulky, and costly to replace should they break. While they are still in use, it would be a good idea to phase these monitors out for cheaper, lighter, and more reliable monitors.
The LCD monitor incorporates one of the most advanced technologies available today. Typically, it consists of a layer of color or monochrome pixels arranged schematically between a couple of transparent electrodes and two polarizing filters. Optical effect is made possible by polarizing the light in varied amounts and making it pass through the liquid crystal layer. The two types of LCD technology available are the active matrix of TFT and a passive matrix technology. TFT generates better picture quality and is more secure and reliable. Passive matrix, on the other hand, has a slow response time and is slowly becoming outdated.
The advantages of LCD monitors include their compact size which makes them lightweight. They also don’t consume much electricity as CRT monitors, and can be run off of batteries which makes them ideal for laptops.
Images transmitted by these monitors don’t get geometrically distorted and have little flicker. However, this type of monitor does have disadvantages, such as its relatively high price, an image quality which is not constant when viewed from different angles, and a monitor resolution that is not always constant, meaning any alterations can result in reduced performance.
LED monitors are the latest types of monitors on the market today. These are flat panel, or slightly curved displays which make use of light-emitting diodes for back-lighting, instead of cold cathode fluorescent (CCFL) back-lighting used in LCDs. LED monitors are said to use much lesser power than CRT and LCD and are considered far more environmentally friendly.
The advantages of LED monitors are that they produce images with higher contrast, have less negative environmental impact when disposed, are more durable than CRT or LCD monitors, and features a very thin design. They also don’t produce much heat while running. The only downside is that they can be more expensive, especially for the high-end monitors like the new curved displays that are being released.
Being aware of the different types of computer monitors available should help you choose one that’s most suited to your needs. Looking to learn more about hardware in today’s world? Contact us and see how we can help.
The type of monitor that you use on a computer can affect your work space and your wallet. Some monitors can be purchased on a budget, while others are fairly expensive. Different varieties of monitor also have different energy requirements and visual qualities. By considering the pros and cons of these four common computer displays, you can find the right monitor for the job.
Cathode Ray Tube The cathode ray tube monitor is one of the oldest types of computer display device. CRT computer monitors have been in use since the 1950s, and are still used today. This type of monitor uses a beam of electrons to illuminate different areas of the screen. The beam moves back and forth rapidly, and updates the screen image many times each second.
Liquid-Crystal Display Liquid-crystal display monitors use a layer of pixels to display an image. Instead of an electron beam, LCD displays use transparent electrodes to control the array of pixels and update the picture. This allows LCD monitors to be much thinner than their CRT counterparts. An LCD display also requires less power than a traditional CRT.
LCD monitors do have some disadvantages, however. They are often more expensive than CRT displays. The image can also become faint if the monitor is viewed from an angle. Even with these drawbacks, LCD monitors have mostly replaced CRTs in recent years.
Light-Emitting Diode A light-emitting diode monitor is essentially an upgraded version of an LCD display. Both LCD and LED monitors use transparent electrodes to control different pixels. In an LED display, however, light emitting diodes are placed behind the screen and act as a backlight. This increases the definition and brightness of the monitor.
Plasma Display Panel Plasma display panel monitors use small cells of charged gases to create an image. These cells are similar to household fluorescent light bulbs. Each plasma cell creates its own illumination, which eliminates the need for a separate back light and gives PDP monitors strong contrast.
A plasma monitor is typically heavier than an LCD display. Plasma screens also draw more power than both LCD and LED monitors, and are susceptible to "burned in" images if they are left on for long periods of time.
A computer monitor is an output device that displays information in pictorial or textual form. A discrete monitor comprises a visual display, support electronics, power supply, housing, electrical connectors, and external user controls.
The display in modern monitors is typically an LCD with LED backlight, having by the 2010s replaced CCFL backlit LCDs. Before the mid-2000s,CRT. Monitors are connected to the computer via DisplayPort, HDMI, USB-C, DVI, VGA, or other proprietary connectors and signals.
Originally, computer monitors were used for data processing while television sets were used for video. From the 1980s onward, computers (and their monitors) have been used for both data processing and video, while televisions have implemented some computer functionality. In the 2000s, the typical display aspect ratio of both televisions and computer monitors has changed from 4:3 to 16:9.
Modern computer monitors are mostly interchangeable with television sets and vice versa. As most computer monitors do not include integrated speakers, TV tuners, nor remote controls, external components such as a DTA box may be needed to use a computer monitor as a TV set.
Early electronic computer front panels were fitted with an array of light bulbs where the state of each particular bulb would indicate the on/off state of a particular register bit inside the computer. This allowed the engineers operating the computer to monitor the internal state of the machine, so this panel of lights came to be known as the "monitor". As early monitors were only capable of displaying a very limited amount of information and were very transient, they were rarely considered for program output. Instead, a line printer was the primary output device, while the monitor was limited to keeping track of the program"s operation.
Multiple technologies have been used for computer monitors. Until the 21st century most used cathode-ray tubes but they have largely been superseded by LCD monitors.
The first computer monitors used cathode-ray tubes (CRTs). Prior to the advent of home computers in the late 1970s, it was common for a video display terminal (VDT) using a CRT to be physically integrated with a keyboard and other components of the workstation in a single large chassis, typically limiting them to emulation of a paper teletypewriter, thus the early epithet of "glass TTY". The display was monochromatic and far less sharp and detailed than on a modern monitor, necessitating the use of relatively large text and severely limiting the amount of information that could be displayed at one time. High-resolution CRT displays were developed for specialized military, industrial and scientific applications but they were far too costly for general use; wider commercial use became possible after the release of a slow, but affordable Tektronix 4010 terminal in 1972.
Some of the earliest home computers (such as the TRS-80 and Commodore PET) were limited to monochrome CRT displays, but color display capability was already a possible feature for a few MOS 6500 series-based machines (such as introduced in 1977 Apple II computer or Atari 2600 console), and the color output was a speciality of the more graphically sophisticated Atari 800 computer, introduced in 1979. Either computer could be connected to the antenna terminals of an ordinary color TV set or used with a purpose-made CRT color monitor for optimum resolution and color quality. Lagging several years behind, in 1981 IBM introduced the Color Graphics Adapter, which could display four colors with a resolution of 320 × 200 pixels, or it could produce 640 × 200 pixels with two colors. In 1984 IBM introduced the Enhanced Graphics Adapter which was capable of producing 16 colors and had a resolution of 640 × 350.
By the end of the 1980s color progressive scan CRT monitors were widely available and increasingly affordable, while the sharpest prosumer monitors could clearly display high-definition video, against the backdrop of efforts at HDTV standardization from the 1970s to the 1980s failing continuously, leaving consumer SDTVs to stagnate increasingly far behind the capabilities of computer CRT monitors well into the 2000s. During the following decade, maximum display resolutions gradually increased and prices continued to fall as CRT technology remained dominant in the PC monitor market into the new millennium, partly because it remained cheaper to produce.
There are multiple technologies that have been used to implement liquid-crystal displays (LCD). Throughout the 1990s, the primary use of LCD technology as computer monitors was in laptops where the lower power consumption, lighter weight, and smaller physical size of LCDs justified the higher price versus a CRT. Commonly, the same laptop would be offered with an assortment of display options at increasing price points: (active or passive) monochrome, passive color, or active matrix color (TFT). As volume and manufacturing capability have improved, the monochrome and passive color technologies were dropped from most product lines.
The first standalone LCDs appeared in the mid-1990s selling for high prices. As prices declined they became more popular, and by 1997 were competing with CRT monitors. Among the first desktop LCD computer monitors was the Eizo FlexScan L66 in the mid-1990s, the SGI 1600SW, Apple Studio Display and the ViewSonic VP140vision science remain dependent on CRTs, the best LCD monitors having achieved moderate temporal accuracy, and so can be used only if their poor spatial accuracy is unimportant.
High dynamic range (HDR)television series, motion pictures and video games transitioning to widescreen, which makes squarer monitors unsuited to display them correctly.
Organic light-emitting diode (OLED) monitors provide most of the benefits of both LCD and CRT monitors with few of their drawbacks, though much like plasma panels or very early CRTs they suffer from burn-in, and remain very expensive.
Radius of curvature (for curved monitors) - is the radius that a circle would have if it had the same curvature as the display. This value is typically given in millimeters, but expressed with the letter "R" instead of a unit (for example, a display with "3800R curvature" has a 3800mm radius of curvature.
Display resolution is the number of distinct pixels in each dimension that can be displayed natively. For a given display size, maximum resolution is limited by dot pitch or DPI.
Dot pitch represents the distance between the primary elements of the display, typically averaged across it in nonuniform displays. A related unit is pixel pitch, In LCDs, pixel pitch is the distance between the center of two adjacent pixels. In CRTs, pixel pitch is defined as the distance between subpixels of the same color. Dot pitch is the reciprocal of pixel density.
Pixel density is a measure of how densely packed the pixels on a display are. In LCDs, pixel density is the number of pixels in one linear unit along the display, typically measured in pixels per inch (px/in or ppi).
Contrast ratio is the ratio of the luminosity of the brightest color (white) to that of the darkest color (black) that the monitor is capable of producing simultaneously. For example, a ratio of 20,000∶1 means that the brightest shade (white) is 20,000 times brighter than its darkest shade (black). Dynamic contrast ratio is measured with the LCD backlight turned off. ANSI contrast is with both black and white simultaneously adjacent onscreen.
Color depth - measured in bits per primary color or bits for all colors. Those with 10bpc (bits per channel) or more can display more shades of color (approximately 1 billion shades) than traditional 8bpc monitors (approximately 16.8 million shades or colors), and can do so more precisely without having to resort to dithering.
Color accuracy - measured in ΔE (delta-E); the lower the ΔE, the more accurate the color representation. A ΔE of below 1 is imperceptible to the human eye. A ΔE of 2–4 is considered good and requires a sensitive eye to spot the difference.
Refresh rate is (in CRTs) the number of times in a second that the display is illuminated (the number of times a second a raster scan is completed). In LCDs it is the number of times the image can be changed per second, expressed in hertz (Hz). Determines the maximum number of frames per second (FPS) a monitor is capable of showing. Maximum refresh rate is limited by response time.
On two-dimensional display devices such as computer monitors the display size or view able image size is the actual amount of screen space that is available to display a picture, video or working space, without obstruction from the bezel or other aspects of the unit"s design. The main measurements for display devices are: width, height, total area and the diagonal.
The size of a display is usually given by manufacturers diagonally, i.e. as the distance between two opposite screen corners. This method of measurement is inherited from the method used for the first generation of CRT television, when picture tubes with circular faces were in common use. Being circular, it was the external diameter of the glass envelope that described their size. Since these circular tubes were used to display rectangular images, the diagonal measurement of the rectangular image was smaller than the diameter of the tube"s face (due to the thickness of the glass). This method continued even when cathode-ray tubes were manufactured as rounded rectangles; it had the advantage of being a single number specifying the size, and was not confusing when the aspect ratio was universally 4:3.
With the introduction of flat panel technology, the diagonal measurement became the actual diagonal of the visible display. This meant that an eighteen-inch LCD had a larger viewable area than an eighteen-inch cathode-ray tube.
Estimation of monitor size by the distance between opposite corners does not take into account the display aspect ratio, so that for example a 16:9 21-inch (53 cm) widescreen display has less area, than a 21-inch (53 cm) 4:3 screen. The 4:3 screen has dimensions of 16.8 in × 12.6 in (43 cm × 32 cm) and area 211 sq in (1,360 cm2), while the widescreen is 18.3 in × 10.3 in (46 cm × 26 cm), 188 sq in (1,210 cm2).
Until about 2003, most computer monitors had a 4:3 aspect ratio and some had 5:4. Between 2003 and 2006, monitors with 16:9 and mostly 16:10 (8:5) aspect ratios became commonly available, first in laptops and later also in standalone monitors. Reasons for this transition included productive uses (i.e. besides Field of view in video games and movie viewing) such as the word processor display of two standard letter pages side by side, as well as CAD displays of large-size drawings and application menus at the same time.LCD monitors and the same year 16:10 was the mainstream standard for laptops and notebook computers.
In 2010, the computer industry started to move over from 16:10 to 16:9 because 16:9 was chosen to be the standard high-definition television display size, and because they were cheaper to manufacture.
In 2011, non-widescreen displays with 4:3 aspect ratios were only being manufactured in small quantities. According to Samsung, this was because the "Demand for the old "Square monitors" has decreased rapidly over the last couple of years," and "I predict that by the end of 2011, production on all 4:3 or similar panels will be halted due to a lack of demand."
The resolution for computer monitors has increased over time. From 280 × 192 during the late 1970s, to 1024 × 768 during the late 1990s. Since 2009, the most commonly sold resolution for computer monitors is 1920 × 1080, shared with the 1080p of HDTV.2560 × 1600 at 30 in (76 cm), excluding niche professional monitors. By 2015 most major display manufacturers had released 3840 × 2160 (4K UHD) displays, and the first 7680 × 4320 (8K) monitors had begun shipping.
Every RGB monitor has its own color gamut, bounded in chromaticity by a color triangle. Some of these triangles are smaller than the sRGB triangle, some are larger. Colors are typically encoded by 8 bits per primary color. The RGB value [255, 0, 0] represents red, but slightly different colors in different color spaces such as Adobe RGB and sRGB. Displaying sRGB-encoded data on wide-gamut devices can give an unrealistic result.Exif metadata in the picture. As long as the monitor gamut is wider than the color space gamut, correct display is possible, if the monitor is calibrated. A picture which uses colors that are outside the sRGB color space will display on an sRGB color space monitor with limitations.Color management is needed both in electronic publishing (via the Internet for display in browsers) and in desktop publishing targeted to print.
Most modern monitors will switch to a power-saving mode if no video-input signal is received. This allows modern operating systems to turn off a monitor after a specified period of inactivity. This also extends the monitor"s service life. Some monitors will also switch themselves off after a time period on standby.
Most modern laptops provide a method of screen dimming after periods of inactivity or when the battery is in use. This extends battery life and reduces wear.
Many monitors have other accessories (or connections for them) integrated. This places standard ports within easy reach and eliminates the need for another separate hub, camera, microphone, or set of speakers. These monitors have advanced microprocessors which contain codec information, Windows interface drivers and other small software which help in proper functioning of these functions.
Monitors that feature an aspect ratio greater than 2:1 (for instance, 21:9 or 32:9, as opposed to the more common 16:9, which resolves to 1.77:1).Monitors with an aspect ratio greater than 3:1 are marketed as super ultrawide monitors. These are typically massive curved screens intended to replace a multi-monitor deployment.
These monitors use touching of the screen as an input method. Items can be selected or moved with a finger, and finger gestures may be used to convey commands. The screen will need frequent cleaning due to image degradation from fingerprints.
Some displays, especially newer flat panel monitors, replace the traditional anti-glare matte finish with a glossy one. This increases color saturation and sharpness but reflections from lights and windows are more visible. Anti-reflective coatings are sometimes applied to help reduce reflections, although this only partly mitigates the problem.
Most often using nominally flat-panel display technology such as LCD or OLED, a concave rather than convex curve is imparted, reducing geometric distortion, especially in extremely large and wide seamless desktop monitors intended for close viewing range.
Newer monitors are able to display a different image for each eye, often with the help of special glasses and polarizers, giving the perception of depth. An autostereoscopic screen can generate 3D images without headgear.
A combination of a monitor with a graphics tablet. Such devices are typically unresponsive to touch without the use of one or more special tools" pressure. Newer models however are now able to detect touch from any pressure and often have the ability to detect tool tilt and rotation as well.
The option for using the display as a reference monitor; these calibration features can give an advanced color management control for take a near-perfect image.
A desktop monitor is typically provided with a stand from the manufacturer which lifts the monitor up to a more ergonomic viewing height. The stand may be attached to the monitor using a proprietary method or may use, or be adaptable to, a VESA mount. A VESA standard mount allows the monitor to be used with more after-market stands if the original stand is removed. Stands may be fixed or offer a variety of features such as height adjustment, horizontal swivel, and landscape or portrait screen orientation.
The Flat Display Mounting Interface (FDMI), also known as VESA Mounting Interface Standard (MIS) or colloquially as a VESA mount, is a family of standards defined by the Video Electronics Standards Association for mounting flat panel displays to stands or wall mounts.
A fixed rack mount monitor is mounted directly to the rack with the flat-panel or CRT visible at all times. The height of the unit is measured in rack units (RU) and 8U or 9U are most common to fit 17-inch or 19-inch screens. The front sides of the unit are provided with flanges to mount to the rack, providing appropriately spaced holes or slots for the rack mounting screws. A 19-inch diagonal screen is the largest size that will fit within the rails of a 19-inch rack. Larger flat-panels may be accommodated but are "mount-on-rack" and extend forward of the rack. There are smaller display units, typically used in broadcast environments, which fit multiple smaller screens side by side into one rack mount.
A stowable rack mount monitor is 1U, 2U or 3U high and is mounted on rack slides allowing the display to be folded down and the unit slid into the rack for storage as a drawer. The flat display is visible only when pulled out of the rack and deployed. These units may include only a display or may be equipped with a keyboard creating a KVM (Keyboard Video Monitor). Most common are systems with a single LCD but there are systems providing two or three displays in a single rack mount system.
A panel mount computer monitor is intended for mounting into a flat surface with the front of the display unit protruding just slightly. They may also be mounted to the rear of the panel. A flange is provided around the screen, sides, top and bottom, to allow mounting. This contrasts with a rack mount display where the flanges are only on the sides. The flanges will be provided with holes for thru-bolts or may have studs welded to the rear surface to secure the unit in the hole in the panel. Often a gasket is provided to provide a water-tight seal to the panel and the front of the screen will be sealed to the back of the front panel to prevent water and dirt contamination.
An open frame monitor provides the display and enough supporting structure to hold associated electronics and to minimally support the display. Provision will be made for attaching the unit to some external structure for support and protection. Open frame monitors are intended to be built into some other piece of equipment providing its own case. An arcade video game would be a good example with the display mounted inside the cabinet. There is usually an open frame display inside all end-use displays with the end-use display simply providing an attractive protective enclosure. Some rack mount monitor manufacturers will purchase desktop displays, take them apart, and discard the outer plastic parts, keeping the inner open-frame display for inclusion into their product.
According to an NSA document leaked to Der Spiegel, the NSA sometimes swaps the monitor cables on targeted computers with a bugged monitor cable in order to allow the NSA to remotely see what is being displayed on the targeted computer monitor.
Van Eck phreaking is the process of remotely displaying the contents of a CRT or LCD by detecting its electromagnetic emissions. It is named after Dutch computer researcher Wim van Eck, who in 1985 published the first paper on it, including proof of concept. Phreaking more generally is the process of exploiting telephone networks.
Masoud Ghodrati, Adam P. Morris, and Nicholas Seow Chiang Price (2015) The (un)suitability of modern liquid crystal displays (LCDs) for vision research. Frontiers in Psychology, 6:303.
Koren, Norman. "Gamut mapping". Archived from the original on 2011-12-21. Retrieved 2018-12-10. The rendering intent determines how colors are handled that are present in the source but out of gamut in the destination
Definition of terms clarified and discussed in Aaron Schwabach, Internet and the Law: Technology, Society, and Compromises, 2nd Edition (Santa Barbara CA: ABC-CLIO, 2014), 192-3. ISBN 9781610693509
Information on two types of flat-panel display at the Zürich Hauptbahnhof railway station: an orange LED display (top right) and a LCD screen (bottom)
A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.
Flat-panel displays are thin, lightweight, provide better linearity and are capable of higher resolution than typical consumer-grade TVs from earlier eras. They are usually less than 10 centimetres (3.9 in) thick. While the highest resolution for consumer-grade CRT televisions was 1080i, many flat-panel displays in the 2020s are capable of 1080p and 4K resolution.
In the 2010s, portable consumer electronics such as laptops, mobile phones, and portable cameras have used flat-panel displays since they consume less power and are lightweight. As of 2016, flat-panel displays have almost completely replaced CRT displays.
Most 2010s-era flat-panel displays use LCD or light-emitting diode (LED) technologies, sometimes combined. Most LCD screens are back-lit with color filters used to display colors. In many cases, flat-panel displays are combined with touch screen technology, which allows the user to interact with the display in a natural manner. For example, modern smartphone displays often use OLED panels, with capacitive touch screens.
Flat-panel displays can be divided into two display device categories: volatile and static. The former requires that pixels be periodically electronically refreshed to retain their state (e.g. liquid-crystal displays (LCD)), and can only show an image when it has power. On the other hand, static flat-panel displays rely on materials whose color states are bistable, such as displays that make use of e-ink technology, and as such retain content even when power is removed.
The first engineering proposal for a flat-panel TV was by General Electric in 1954 as a result of its work on radar monitors. The publication of their findings gave all the basics of future flat-panel TVs and monitors. But GE did not continue with the R&D required and never built a working flat panel at that time.Aiken tube, developed in the early 1950s and produced in limited numbers in 1958. This saw some use in military systems as a heads up display and as an oscilloscope monitor, but conventional technologies overtook its development. Attempts to commercialize the system for home television use ran into continued problems and the system was never released commercially.
The Philco Predicta featured a relatively flat (for its day) cathode ray tube setup and would be the first commercially released "flat panel" upon its launch in 1958; the Predicta was a commercial failure. The plasma display panel was invented in 1964 at the University of Illinois, according to The History of Plasma Display Panels.
The MOSFET (metal–oxide–semiconductor field-effect transistor, or MOS transistor) was invented by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959,Paul K. Weimer at RCA developed the thin-film transistor (TFT) in 1962.Bernard J. Lechner of RCA Laboratories in 1968.dynamic scattering LCD that used standard discrete MOSFETs.
The first active-matrix addressed electroluminescent display (ELD) was made using TFTs by T. Peter Brody"s Thin-Film Devices department at Westinghouse Electric Corporation in 1968.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using TFTs in 1974.
By 1982, pocket LCD TVs based on LCD technology were developed in Japan.Epson ET-10Epson Elf was the first color LCD pocket TV, released in 1984.Sharp research team led by engineer T. Nagayasu demonstrated a 14-inch full-color LCD display,electronics industry that LCD would eventually replace CRTs as the standard television display technology.high-resolution and high-quality electronic visual display devices use TFT-based active-matrix displays.
The first usable LED display was developed by Hewlett-Packard (HP) and introduced in 1968.research and development (R&D) on practical LED technology between 1962 and 1968, by a research team under Howard C. Borden, Gerald P. Pighini, and Mohamed M. Atalla, at HP Associates and HP Labs. In February 1969, they introduced the HP Model 5082-7000 Numeric Indicator.digital display technology, replacing the Nixie tube for numeric displays and becoming the basis for later LED displays.
Ching W. Tang and Steven Van Slyke at Eastman Kodak built the first practical organic LED (OLED) device in 1987.Hynix produced an organic EL driver capable of lighting in 4,096 colors.Sony Qualia 005 was the first LED-backlit LCD display.Sony XEL-1, released in 2007, was the first OLED television.
Field-effect LCDs are lightweight, compact, portable, cheap, more reliable, and easier on the eyes than CRT screens. LCD screens use a thin layer of liquid crystal, a liquid that exhibits crystalline properties. It is sandwiched between two glass plates carrying transparent electrodes. Two polarizing films are placed at each side of the LCD. By generating a controlled electric field between electrodes, various segments or pixels of the liquid crystal can be activated, causing changes in their polarizing properties. These polarizing properties depend on the alignment of the liquid-crystal layer and the specific field-effect used, being either Twisted Nematic (TN), In-Plane Switching (IPS) or Vertical Alignment (VA). Color is produced by applying appropriate color filters (red, green and blue) to the individual subpixels. LCD displays are used in various electronics like watches, calculators, mobile phones, TVs, computer monitors and laptops screens etc.
Most earlier large LCD screens were back-lit using a number of CCFL (cold-cathode fluorescent lamps). However, small pocket size devices almost always used LEDs as their illumination source. With the improvement of LEDs, almost all new displays are now equipped with LED backlight technology. The image is still generated by the LCD layer.
A plasma display consists of two glass plates separated by a thin gap filled with a gas such as neon. Each of these plates has several parallel electrodes running across it. The electrodes on the two plates are at right angles to each other. A voltage applied between the two electrodes one on each plate causes a small segment of gas at the two electrodes to glow. The glow of gas segments is maintained by a lower voltage that is continuously applied to all electrodes. By 2010, consumer plasma displays had been discontinued by numerous manufacturers.
An OLED (organic light-emitting diode) is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound which emits light in response to an electric current. This layer of organic semiconductor is situated between two electrodes; typically, at least one of these electrodes is transparent. OLEDs are used to create digital displays in devices such as television screens, computer monitors, portable systems such as mobile phones, handheld game consoles and PDAs.
QLED or quantum dot LED is a flat panel display technology introduced by Samsung under this trademark. Other television set manufacturers such as Sony have used the same technology to enhance the backlighting of LCD TVs already in 2013.wavelength such as blue LEDs. This type of LED TV enhances the colour gamut of LCD panels, where the image is still generated by the LCD. In the view of Samsung, quantum dot displays for large-screen TVs are expected to become more popular than the OLED displays in the coming years; Firms like Nanoco and Nanosys compete to provide the QD materials. In the meantime, Samsung Galaxy devices such as smartphones are still equipped with OLED displays manufactured by Samsung as well. Samsung explains on their website that the QLED TV they produce can determine what part of the display needs more or less contrast. Samsung also announced a partnership with Microsoft that will promote the new Samsung QLED TV.
Volatile displays require that pixels be periodically refreshed to retain their state, even for a static image. As such, a volatile screen needs electrical power, either from mains electricity (being plugged into a wall socket) or a battery to maintain an image on the display or change the image. This refresh typically occurs many times a second. If this is not done, for example, if there is a power outage, the pixels will gradually lose their coherent state, and the image will "fade" from the screen.
Amazon"s Kindle Keyboard e-reader displaying a page of an e-book. The Kindle"s image of the book"s text will remain onscreen even if the battery runs out, as it is a static screen technology. Without power, however, the user cannot change to a new page.
Static flat-panel displays rely on materials whose color states are bistable. This means that the image they hold requires no energy to maintain, but instead requires energy to change. This results in a much more energy-efficient display, but with a tendency toward slow refresh rates which are undesirable in an interactive display. Bistable flat-panel displays are beginning deployment in limited applications (cholesteric liquid-crystal displays, manufactured by Magink, in outdoor advertising; electrophoretic displays in e-book reader devices from Sony and iRex; anlabels; interferometric modulator displays in a smartwatch).
William Ross Aiken, "History of the Kaiser-Aiken, thin cathode ray tube", IEEE Transactions on Electron Devices, Volume 31 Issue 11 (November 1984), pp. 1605–1608.
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
Castellano, Joseph A. (2005). Liquid gold: the story of liquid crystal displays and the creation of an industry ([Online-Ausg.] ed.). New Jersey [u.a.]: World Scientific. pp. 176–7. ISBN 981-238-956-3.
Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.
Morozumi, Shinji; Oguchi, Kouichi (12 October 1982). "Current Status of LCD-TV Development in Japan". Molecular Crystals and Liquid Crystals. 94 (1–2): 43–59. doi:10.1080/00268948308084246. ISSN 0026-8941.
Nagayasu, T.; Oketani, T.; Hirobe, T.; Kato, H.; Mizushima, S.; Take, H.; Yano, K.; Hijikigawa, M.; Washizuka, I. (October 1988). "A 14-in.-diagonal full-color a-Si TFT LCD". Conference Record of the 1988 International Display Research Conference: 56–58. doi:10.1109/DISPL.1988.11274. S2CID 20817375.
Our industrial display touch screen monitors can help your factory personnel and workshops handle complex industrial tasks on intuitive factory grade touch screens. Our wide range of rugged LCD displays with multi-touch and various touch technologies such as resisitive, SAW, optical imaging, projected capacitive and infrared are tough and suitable for virtually any industrial applications. We can help you choose the best touch screen technology and solution that fits best with your needs, and close the gap between your vision and implementation of the digital factory.
Viewsonic"s Touch Screen Solutions helped us simplify the hassle of operating complex machinery in our factory. It really helped us improve our factory line operations and reduced labor input.”
You interact with a touch screen monitor constantly throughout your daily life. You will see them in cell phones, ATM’s, kiosks, ticket vending machines, manufacturing plants and more. All of these use touch panels to enable the user to interact with a computer or device without the use of a keyboard or mouse. But did you know there are several uniquely different types of Touch Screens? The five most common types of touch screen are: 5-Wire Resistive, Surface Capacitive touch, Projected Capacitive (P-Cap), SAW (Surface Acoustic Wave), and IR (Infrared).
We are often asked “How does a touch screen monitor work?” A touch screen basically replaces the functionality of a keyboard and mouse. Below is a basic description of 5 types of touch screen monitor technology. The advantages and disadvantages of type of touch screen will help you decide which type touchscreen is most appropriate for your needs:
5-Wire Resistive Touch is the most widely touch technology in use today. A resistive touch screen monitor is composed of a glass panel and a film screen, each covered with a thin metallic layer, separated by a narrow gap. For instance, when a user touches the screen, the two metallic layers make contact, resulting in electrical flow. The point of contact is detected by this change in voltage.
Surface Capacitive touch screen is the second most popular type of touch screens on the market. In a surface capacitive touch screen monitor, a transparent electrode layer is placed on top of a glass panel. This is then covered by a protective cover. When an exposed finger touches the monitor screen, it reacts to the static electrical capacity of the human body. Consequently, some of the electrical charge transfers from the screen to the user. This decrease in capacitance is detected by sensors located at the four corners of the screen, allowing the controller to determine the touch point. Surface capacitive touch screens can only be activated by the touch of human skin or a stylus holding an electrical charge.
Projected Capacitive (P-Cap) is similar to Surface Capacitive, but it offers two primary advantages. First, in addition to a bare finger, it can also be activated with surgical gloves or thin cotton gloves. Secondly, P-Cap enables multi-touch activation (simultaneous input from two or more fingers). A projected capacitive touch screen is composed of a sheet of glass with embedded transparent electrode films and an IC chip. This creates a three dimensional electrostatic field. Therefore, when a finger comes into contact with the screen, the ratios of the electrical currents change and the computer is able to detect the touch points. All our P-Cap touch screens feature a Zero-Bezel enclosure.
SAW (Surface Acoustic Wave) touch screen monitors utilize a series of piezoelectric transducers and receivers. These are positioned along the sides of the monitor’s glass plate to create an invisible grid of ultrasonic waves on the surface. When the panel is touched, a portion of the wave is absorbed. This allows the receiving transducer to locate the touch point and send this data to the computer. SAW monitors can be activated by a finger, gloved hand, or soft-tip stylus. SAW monitors offer easy use and high visibility.
IR (Infrared) type touch screen monitors do not overlay the display with an additional screen or screen sandwich. Instead, infrared monitors use IR emitters and receivers to create an invisible grid of light beams across the screen. This ensures the best possible image quality. When an object interrupts the invisible infrared light beam, the sensors are able to locate the touch point. The X and Y coordinates are then sent to the controller.
We hope you found these touch screen basics useful. TRU-Vu provides industrial touch screen monitors in a wide range of sizes and configurations. This includes UL60601-1 Medical touch screens, Sunlight Readable touch screens,Open Frame touch screens, Waterproof touch screens and many custom touch screen designs. You can learn more by viewing TRU-Vu Touchscreens or call us at 847-259-2344. To address safety and hygiene concerns, see our article on “Touch Screen Cleaning and Disinfecting“.
A monitor is an electronic output device that is also known as a video display terminal (VDT) or a video display unit (VDU). It is used to display images, text, video, and graphics information generated by a connected computer via a computer"s video card. Although it is almost like a TV, its resolution is much higher than a TV. The first computer monitor was introduced on 1 March 1973, which was part of the Xerox Alto computer system.
Older monitors were built by using a fluorescent screen and Cathode Ray Tube (CRT), which made them heavy and large in size and thus causing them to cover more space on the desk. Nowadays, all monitors are made up by using flat-panel display technology, commonly backlit with LEDs. These modern monitors take less space on the desk as compared to older CRT displays.
On 1 March 1973, Xerox Alto computer was introduced, which had the first computer monitor. This monitor included a monochrome display and used CRT technology.
In 1976, the Apple I and Sol-20 computer systems were introduced. These systems had a built-in video port that allowed them to run a video screen on computer monitor.
Later in 2003, CRT monitors outsell for the first time by LCD monitors. Till 2007, CRT monitors consistently outsell by LCD monitors, so they become more popular computer monitor.
It is a technology used in early monitors. It uses a beam of electrons to create an image on the screen. It comprises the guns that fire a beam of electrons inside the screen. The electron beams repeatedly hit the surface of the screen. These guns are responsible for generating RGB (Red, Green, Blue) colors, and more other colors can be generated with the help of combining these three colors. Today"s Flat Panel Monitors replace the CRT monitors.
These types of monitors are lightweight and take less space. They consume less power as compared to CRT monitors. These monitors are more effective as they do not provide harmful radiation. These monitors are more expensive than CRTs. The flat-panel monitors are used in PDA, notebook computers, and cellular phones. These monitors are available in various sizes like 15", 17", 18" & 19" and more. The display of a flat-panel monitor is made with the help of two plates of glass. These plates contain a substance, which is activated in many ways.
Liquid Crystal Display: LCD (Liquid crystal display) screen contains a substance known as liquid crystal. The particles of this substance are aligned in a way that the light located backside on the screens, which allow to generate an image or block. Liquid crystal display offers a clear picture as compared to CRT display and emits less radiation. Furthermore, it consumes less power and takes less space than a CRT display.
Gas Plasma Display: This display uses gas plasma technology, which uses a layer of gas between 2 plates of glass. When voltage is applied, the gas releases ultraviolet light. By this ultraviolet light, the pixels on the screen glow and form an image. These displays are available in different sizes of up to 150 inches. Although it offers effective colors as compared to the LCD monitor, it is more expensive. That"s why it is less used.
These monitors are also known as an input device. It enables users to interact with the computer by using a finger or stylus instead of using a mouse or keyboard. When users touch the screen by their finger, it occurs an event and forward it to the controller for processing. These types of screens include pictures or words that help users to interact with the computer. It takes input from the users by touching menus or icons presented on the screen.
Resistive Touch Screen: Generally, this screen includes a thin electrically conductive and resistive layer of metal. When the touch is pressed, a change in the electrical current occurs that is sent to the controller. Nowadays, these screens are widely in use. These monitors are more reliable as they cannot be affected by liquids or dust.
Surface Wave Touch Screens: These monitors process the input through ultrasonic waves. When a user touches the screen, the wave is processed and absorbed by the computer. It is less reliable as they can be damaged by water or dust.
It is a flat screen computer monitor, which stands for light-emitting diode display. It is lightweight in terms of weight and has a short depth. As the source of light, it uses a panel of LEDs. Nowadays, a wide number of electronic devices, both large and small devices such as laptop screens, mobile phones, TVs, computer monitors, tablets, and more, use LED displays.
It is believed that James P. Mitchell invented the first LED display. On 18 March 1978, the first prototype of an LED display was published to the market at the SEF (Science and Engineering Fair) in Iowa. On 8 May 1978, it was shown again in Anaheim California, at the SEF. This prototype received awards from NASA and General Motors.
It is a new flat light-emitting display technology, which is more efficient, brighter, thinner, and better refresh rates feature and contrast as compared to the LCD display. It is made up of locating a series of organic thin films between two conductors. These displays do not need a backlight as they are emissive displays. Furthermore, it provides better image quality ever and used in tablets and high-end smartphones.
Nowadays, it is widely used in laptops, TVs, mobile phones, digital cameras, tablets, VR headsets. The demand for mobile phone vendors, more than 500 million AMOLED screens were produced in 2018. The Samsung display is the main producer of the AMOLED screen. For example, Apple is using AMOLED OLED panel made by SDC in its 2018 iPhone XS - a 5.8" 1125x2436. Additionally, iPhone X is also using the same AMOLED display.
DLP stands for Digital Light Processing, developed by Texas Instruments. It is a technology, which is used for presentations by projecting images from a monitor onto a big screen. Before developing the DLP, most of the computer projection systems produced faded and blurry images as they were based on LCD technology. DLP technology utilizes a digital micromirror device, which is a tiny mirror housed on a special kind of microchip. Furthermore, it offers better quality pictures that can also be visible in a lit room normally.
It is a type of LCD flat panel display, which stands for a thin-film transistor. In TFT monitors, all pixels are controlled with the help of one to four transistors. The high-quality flat-panel LCDs use these transistors. Although the TFT-based monitors provide better resolution of all the flat-panel techniques, these are highly expensive. The LCDs, which use thin-film transistor (TFT) technology, are known as active-matrix displays. The active-matrix displays offer higher quality as compared to older passive-matrix displays.
A plasma screen is a thin, flat-panel, and capable of hanging on a wall like LCD and LED televisions. It is a brighter screen as compared to LCD displays and thinner than CRT displays. It can be used to either display modes of digital computer input or analog video signals, and sometimes, it is marketed as "thin-panel" displays. Plasma displays have wide viewing angles, high contrast ratios, and high refresh rates, which is used to reduce a blur video. Additionally, it provides better quality pictures as it supports high resolutions of up to 1920 x 1080.
The plasma screen also includes some disadvantages such as the chance of screen burn-in, consumes more power, loss of brightness with time, can be heavier in weight.
VGA: It is a popular display standard, stands for Video Graphics Array or Video Graphics Adapter. It was introduced in 1987 after being developed by IBM. It is used to connect a computer with a projector, monitor, or TV. It offers a 640 x 480 resolution color display, including 16 colors display and a refresh rate of 60 Hz at a time. If the resolution is less than 320 x 200, it displays 256 colors. It is only able to show lower quality, and lower resolutions display on the screens as it uses analog signals. The VGA connector and cable are less found with today"s projectors, monitors, computers, and TVs. These connectors are being replaced by HDMI and DVI cable and connectors.
Thunderbolt: It is a hardware interface, which was marketed under the name Light Peak and developed by Intel in collaboration with Apple. On 24 February 2011, it was first sold as part of a consumer product. It is used for connecting peripheral devices such as a mouse, keyboard, printer, scanner, and more to a computer. It is capable of carrying DC power and has the ability to transfer the data on long-distance over cheaper cables. The first two versions of Thunderbolt are capable of transferring the data at a rate of up to 20 Gb in a second. The 3rd iteration is capable to use a USB Type-C connector and can transfer data at a rate of up to 40 Gb per second.
The two types of Thunderbolt cables are available where one uses optical wiring, and another uses copper wiring. Although Thunderbolt cables were designed to use as fiber optic cables, those versions were released in fewer numbers. Copper wiring allows the cables to supply power, and it is less expensive, that"s why it was widely used. Afterall, intel intends to use the power of copper wiring to provide faster bandwidth speeds of optical by combining both optical and coper wiring.
HDMI: It is a cable and connector developed by several companies, including Toshiba, Sony, Hitachi, and Philips. It stands for High Definition Multimedia Interface. It has the ability to transmit the high-bandwidth and high-quality streams of audio and video between devices. It is used with Projector, HDTV, Blu-ray player, or DVD player.
A single HDMI cable provides an easier way to connect two devices together for transmitting audio and video signals by replacing the three-composite audio/video cables. Furthermore, it is able to transmit up to 8-channels of digital audio signals, including enhanced, standard, and high-definition video signals. The HDMI cable is available in various length of up to 50 feet. Although, it is not recommended to purchase a cable of length more than 25 feet because it may occur a problem of signal loss or degradation.
USB-C: It is a plug and play interface, stands for Universal Serial Bus. It allows the computer to communicate with peripheral and other devices. It is also able to send power to certain devices like tablets and smartphones, including charging their batteries. In January 1996, the first version of the Universal Serial Bus was released. Then, this technology was followed by Compaq, Intel, Microsoft, and other companies.
Nowadays, there are several USB devices that can be connected to a computer such as Digital Camera, Keyboard, Microphone, Mouse, Printer, Scanner, and more. Furthermore, USB connectors are available in different shapes and sizes. The length of a USB cable used for high-speed devices is 16 feet 5 inches (its maximum length), and 9 feet 10 inches is used for low-speed devices.
DVI: It is a video display interface, stands for Digital Visual Interface. It is used to transmit Digital Visual Interface and display devices at high 2560 x 1600 resolutions. Computer monitors and projectors are the common devices that use the DVI connection. It can also be used by some TVs; however, HDMI is most common because only some DVI cables have the ability to transmit audio signals.
The DVI connector supports one of three names on the basis of the signals: DVI-D (support the only digital), DVI-A (support the only analog), or DVI-I (support both analog and digital). If your GPU and monitor have the capability to support both VGA and DVI, it is suggested to use DVI cable. The DVI cable always provides picture quality at least equal to VGA and better if possible.
DisplayPort: It is a digital audio and video interface that connects to a projector, monitor, or TV cable. It is created by VESA. There are two types of connections in DisplayPort one is standard, and the second is the Mini DisplayPort. They have different size, but both connections types are able to transmit identical signals. Nowadays, VGI, HDMI, and DVI are the most common types of display ports.
Industrial Display Systems provide a wide range of reliable displays from 5.7" to 55" including LCD displays, touch screen panels, outdoor displays and digital signage displays, and a series of industrial monitors including open frame monitors and panel mount monitors, which work perfectly with embedded boards and systems to fulfill various application needs.
LCD ScreensLCD is short for liquid crystal display.Due to the amount of space an LCD screen can save, it has become one of the leading options for computer monitors.This space is saved because LCD"s use two sheets of polarizing material with a liquid crystal solution between them rather than bulky vacuum tubes. In order to create the pictures you view on a computer monitor, an electric current is passed through the liquid crystals, which causes each of the crystals to align so that light cannot pass through them. These "shutters" can be controlled to create vivid images.
A CRT, or cathode-ray tube, is another type of screen. It works by moving an electron beam across the back of the computer monitor screen. As the beam moves along the screen, it lights up the thousands of phosphor dots that are inside of the glass tube, thus illuminating portions of the screen. By creating many lines across the back of the screen, it creates an entire screen filled with colorful pictures. However, these screens are larger and heavier than LCD"s. They are also a larger threat to the environment. CRTs can contain cadmium, a toxic substance, in its phosphors. The back part of the CRT can contain leaded glass, another dangerous substance.
The circuit board is located inside the plastic casing of the computer monitor and controls all of the computer monitor"s functions.It is made from many mined materials such as gold, copper, lead, nickel, zinc, beryllium, tantalum, coltan, silver, and other materials that conduct electricity.Manufacturing of circuit boards requires the use of crude oil to make the plastic and sand and limestone to create fiberglass.Tantalum is often used as one of the materials in circuit boards as it conducts electricity well.Many of the materials used in circuitboards are non-renewable and can remain in theenvironment for a large amount of time.
The plastic casing of a monitor is intended to protect all of the electrical, internal parts. All plastic is created by combining natural gases and crude oil. Both are non-renewable sources that take millions of years to form again.
Innocent deaths, environmental damage, and the current use of coltan can all be reduced; and you can make a difference. All you need to do is recycle your old electronics such as computer monitors, cell phones, gameconsoles, TVs, cameras, etc. Click here to get more information about recycling centers near you.
In addition to energy performance, there are many other important operating and convenience features to consider when shopping for a computer monitor.
Widescreen displays (16:9)are now the norm and. Some standard/square screens offer good value and may be preferred if horizontal space is limited, but are now more common on laptop computers.
A monitor"s resolution refers to the number of picture elements, or pixels, that make up an image. For productivity, higher resolution means easier multitasking and more words in the same space. For movies and photos, higher resolution means sharper appearance.
The most common resolution is 1920 x 1080, also known as 1080p. 1080p is an ideal resolution for monitors 21- to 24-inches. Higher resolutions may be preferred for larger screens.
Refresh rate:A measure of how many times a display can update the picture in a second, measured in hertz (Hz). Standard monitors refresh at 60Hz. A monitor with a faster refresh time results in smoother movements to make things like scrolling look more fluid.
Contrast ratio:This is a measure of the difference between the brightest white and the deepest black. A higher contrast ratio can produce images that are more vivid and dynamic. However, because the way manufacturers measure contrast ratio is not uniform, advertised figures are not reliable.
Viewing angle:A measure of the angles a monitor can effectively be viewed at, expressed in degrees. This is not a major concern for the average seated computer user, but if you plan to share your screen with others -for example, to watch a video - look for something above 170 degrees.
Brightness:A bright screen is important if you"re working in a brightly lit room. A measure of how much light a monitor can emit, expressed in candelas per square meter (cd/m2). Besides simply looking better, a brighter monitor is much easier to see in brightly lit surroundings. Ratings of 250 to 300 cd/m2 are common for many affordable monitors.
LED backlighting:LED monitors are simply LCD monitors that use an LED backlight. LEDs allow manufacturers to make monitors slimmer, brighter, and without the warm-up time of traditional compact fluorescent (CFL) backlights.
Gloss or matte: Depending on the lighting of the room, screen coatings can be an important factor for overall viewing experience. Glossy screen coatings tend to enhance contrast for a more vibrant look, but also reflect their surroundings more readily when powered down or displaying dark images. Matte monitor displays tend to look more dull, but work better under challenging lighting conditions, like across from large windows.
Check for ample and relevant connections, like USB or HDMI ports. Make sure that the input connections on the monitor match the output connections on your computer. Some monitors with USB-C or Thunderbolt ports may be able to charge your computer and display content through a single connection.
Monitors originally qualified for the ENERGY STAR label in 1992. The Version 8.0 ENERGY STAR Displays specification covers computer monitors and signage displays, including all products with touch screen functionality. ENERGY STAR certified computer monitors must meet a total energy consumption (TEC) requirement that takes in their power draw in On Mode and Sleep Mode and varies dependi