ips vs va lcd panel pricelist

Because OLED TVs are newer and generally more expensive, the average buyer is looking at LED/LCD TVs right now. And although there are several features and specifications to consider while shopping—the brand name, HDR compatibility, and refresh rate, just to name a few—there’s one important hardware spec that isn’t widely advertised: LCD panel type.

LED/LCD TVs are so called because of the two things that make up their displays: an LED (Light Emitting Diode) backlight and an LCD (Liquid Crystal Display) panel for that backlight to shine through. LED backlights vary between a variety of implementations, but modern LCDs generally come in one of two panel technologies: IPS (In-Plane Switching) and VA (Vertical Alignment).

Unlike other hardware specifications (which are usually listed on the side of a TV box or on the manufacturer’s website), information about a TV’s LCD panel type is a bit more inside baseball. But panel type has a far greater impact on a TV’s performance than you might expect—it affects contrast, color, and viewing angle as well.

Individual pixels in an LCD display are made up of liquid crystals activated by voltage. How the display arranges its crystals is part of what sets IPS panels apart from VA panels.

IPS (In-Plane Switching) panels are a common display type for both the best computer monitors and TVs. Without getting too far down the rabbit hole, let’s talk a little about how IPS panels distinguish themselves from other types.

Every non-OLED TV on the market today is an LCD TV powered by LED lighting. Individual pixels in an LCD display are made up of liquid crystals activated by voltage—this is what produces color. An IPS panel aligns its crystals horizontally, parallel to the glass substrate.

IPS technology was developed in part to improve the color and wide viewing angle performance of a display. There"s also a range of variations under the IPS umbrella, including ADS, S-IPS, H-IPS, e-IPS, P-IPS, and PLS (Plane-to-Line Switching). But, while they all differ marginally from one another in operation, their core functionality (as compared to VA panels) is the same.

VA (Vertical Alignment) panels represent another common display type, used for both computer monitors and TVs, but especially for the latter where they greatly outnumber their IPS counterparts. Most LED/LCD TVs you"ll find on the market use a VA panel. While IPS panels align their liquid crystals horizontally, VA panels align them—you guessed it—vertically. They run perpendicular to the glass substrate rather than parallel to it. When met with voltage, the crystals tilt, letting light through and producing color.

This positioning changes how the liquid crystals behave. Without any voltage, the liquid crystals in a VA panel do not tilt, which is a better outcome if your goal is to block light and create image depth. Like with IPS, VA panels also come in a few varieties: PVA, S-PVA, and MVA, though again, their core functionality (as compared to IPS panels) is the same.

TN (Twisted Nematic) is an older LCD display type. They"re still relatively common display types for computer monitors—thanks to their lightning fast response times and excellent handling of motion blur. TN panels aren"t typically used in TV production anymore, though.

The cornerstone of picture quality, contrast ratio refers to the range between a display’s darkest black levels and brightest highlights. Because VA-style panels excel at producing deep, dark black levels, this is arguably their biggest strength. VA panels almost always feature deeper black levels than their IPS counterparts, and this goes a long way in creating a detail-rich picture. An IPS panel can mitigate this by serving up an exceptionally bright image to offset relatively shallow black levels.

A TV’s total viewing angle describes how much a viewer can move away from an ideal, head-on viewing position before the contrast and color of the picture begins to deteriorate. Due to the positioning of their liquid crystals, IPS panels excel in this department; they typically offer significantly more viewing flexibility than TVs with VA-style panels. In other words, IPS panels are more reliable for group viewings (or any situation where a viewer might need to sit at an off-angle).

While impressive color production is possible on both display types, IPS panels tend to offer wider colors, given the nature of their hardware. While a wider range of colors tends to spell better color accuracy, the advent of additional TV technologies like quantum-dot color have evened the playing field considerably. In other words, you’re far more likely to notice the benefits of an IPS TV’s wider viewing angle than you are to notice its tendency for wider color.

Here’s the final takeaway: IPS panels are significantly better than VA panels when it comes to viewing angle and somewhat better than VA panels when it comes to color. VA panels, however, almost always offer deeper black levels and better overall contrast. And because they block light better, TVs and monitors using VA panels tend to have better backlight uniformity regardless of LED backlight type.

Unfortunately, not only is it rare to find a TV’s panel type listed on a manufacturer’s website, but it’s increasingly rare for a brand to reveal a TV’s panel type at all—even when we contact brands directly for information. The reason for this caginess has everything to do with marketing; it’s better to keep shoppers focused on the bells, whistles, and impressive performance specs of a TV rather than its potential shortcomings.

To add to the confusion, it’s common for different sizes of the same TV series to mix and match display types; you might find that the 55-inch version of a TV features a VA-style display while the 75-inch model uses IPS.

Fortunately, it’s relatively easy to determine panel type if you have the proper equipment and you know what to look for. Certain test results and viewing characteristics act as tell-tale signs. This is why my colleagues and I make a point of discussing panel type in just about every TV review we publish, and why you should make a point of reading reviews before making a purchase.

Panel type is not the end-all-be-all for LED/LCD TVs. Many other factors, most of them related to the style and intensity of the LED backlight, can have a major impact on factors like contrast, viewing angle, and color intensity. Ultimately, you need to see a TV in person (and ideally in the space it’s going to live in) to get the best idea of how well it creates an image. But by knowing the core differences of IPS vs VA LCD panels, you can at least make some good guesses before you buy.

Unlike the best gaming monitors, IPS and VA TV panels are on an even playing field. TVs with both technologies are capable of high refresh rates of 120Hz, or occasionally 240Hz (although it usually comes at a premium).

If you focus on single-player gaming, or your multiplayer gaming happens online, the excellent contrast of VA is the way to go. The most gaming benefits you’ll see will come from extra features like Variable Refresh Rate (VRR), Auto Low Latency Mode (ALLM), or cloud game capabilities.

If you’re buying a large screen and intend to host movie nights with friends and family, a TV with an IPS-style panel is far more accommodating thanks to its superior viewing angle. Just be aware that certain content—particularly dark content—won’t pop as much on account of the panel’s shallower black levels.

On the other hand, if you want the best possible picture overall, we recommend investing in a TV with a VA-style panel. They’re not always ideal candidates for group viewings, but the vast majority of the best non-OLED TVs you can buy feature this display type.

ips vs va lcd panel pricelist

By far the most common types of display panels used on PC monitors are TN, IPS and VA. We"re sure you"ve heard these terms before if you"ve researched monitors to purchase, and to be clear, the type of panel is a key piece of information that reveals a lot about how the monitor will behave and perform.

TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.

VA, stands for vertical alignment. As the name suggests, this technology uses vertically aligned liquid crystals which tilt when a voltage is applied to let light pass through. This is the key difference between IPS and VA: with VA, the crystals are perpendicular to the substrates, while with IPS they are parallel. There are several VA variants, including Samsung"s SVA and AU Optronics AMVA.

IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the crystals to modify the amount of light let through, IPS crystals are essentially rotated, which has a range of benefits.

There are many IPS variants on the market, with each of the three big LCD manufacturers using a different term to describe their IPS-type technology. LG simply calls their tech "IPS" which is easy for everyone. Samsung uses the term PLS or plane-to-line switching, while AU Optronics uses the term AHVA or advanced hyper viewing angle. AHVA shouldn"t be confused with regular VA displays, it"s an annoying and confusing name in my opinion, but AHVA is an IPS-like technology. Each of LG"s IPS, Samsung"s PLS and AUO"s AHVA are slightly different but the fundamentals are rooted in IPS.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a vertical alignment and tilt. Now let"s get into some of the performance characteristics and explore how each of the technologies differ and in general, which technology is better in any given category.

By far the biggest difference between the three technologies is in viewing angles. TN panels have the weakest viewing angles, with significant shift to color and contrast in both the horizontal and especially vertical directions. Typically viewing angles are rated as 170/160 but realistically you"ll get pretty bad shifts when viewing anywhere except for dead center. Higher-end TNs tend to be somewhat better but overall this is a big weakness for TNs.

VA and IPS panels are both significantly better, with IPS being the best overall for viewing angles. 178/178 viewing angle ratings are a realistic reflection of what you can expect with an IPS, you won"t get much shift in colors or contrast from any angle. VAs are good in this regard but not as good as IPS, mostly due to contrast shifts at off-center angles. With VAs and especially TNs having some color and contrast shifts when viewing at angles, they"re not as well suited to color-critical professional work as IPS panels, which is why you see most pro-grade monitors sticking to IPS.

In terms of brightness there"s no inherent differences between the technologies because the backlight, which determines brightness, is separate to the liquid crystal panel. However there are significant differences to contrast ratios, and this an area most people look at when determining which panel type they want.

Both TN and IPS panels tend to have a contrast ratio around 1000:1, although in my testing I have noted some differences. TN panels tend to have the lowest contrast ratios when calibrated, with an entry-level panel sitting between 700:1 and 900:1 and good panels pushing up to that 1000:1 mark. IPS has a larger range, I"ve seen some as low as 700:1 like TNs, however the very best tend to push up higher than TN, with 1200:1 as the upper range for desktop monitors and some laptop-grade displays reaching as high as 1500:1.

Neither TN nor IPS get to the range of VA though. Entry-level VA panels start with a contrast ratio of 2000:1 from those that we"ve tested, with the best easily exceeding 4500:1, although 3000:1 is a typical figure for most monitors.

TVs make extensive use of VA panels and there contrast ratios can be even higher. It"s not unusual to see over 6000:1. So if you want deep blacks and high contrast ratios, you"ll need to go with something VA.

While IPS panels tend to be a middle ground for contrast they do suffer from a phenomenon called "IPS glow," which is an apparent white glow when viewing dark imagery at an angle. The best panels exhibit minimal glow but it"s still an issue across all displays of this type.

Color quality is another difference many people cite between TN displays and other display panels in particular. And this can be split into two categories: color depth or bit depth, and color gamut.

In both of these regards, TN panels tend to fall on the weaker end of the scale. Many TN displays, in particular entry-level models, are only natively 6-bit and use frame rate control, otherwise called FRC or dithering, to achieve standard 8-bit output. 6-bit panels are prone to color banding, while native 8-bit panels have smoother color gradients and therefore better color output.

Not all TN panels are 6-bit. The top-end TNs are native 8-bit, but it"s safe to say most TNs will only be native 6-bit, even today. If you are after a native 8-bit display, you"ll need to go with either IPS or VA, where many more panels come native 8-bit.

As for native true 10-bit, typically you"ll need to look for an IPS panel, which make up the majority of native 10-bit panels. Some VA panels can do it, but they are rare. Most displays you purchase that claim to be 10-bit, are actually 8-bit+FRC, with only high-end professional-grade monitors offering a native 10-bit experience.

This is another area where VA and IPS provide a superior experience. The best TN panels tend to be limited to sRGB, or in the case of the worst entry-level panels, don"t even cover the entirety of the sRGB gamut. Wide-gamut TN panels do exist, but they are rare.

VA panels typically start with full sRGB coverage as a minimum, and depending on the panel can push higher. VAs that use a quantum dot film, typically from Samsung, offer higher gamuts, around the 125% sRGB or 90% DCI-P3 mark. Most of the wide gamut VA monitors we"ve tested fall between 85 and 90% DCI-P3 coverage, which is a decent result, though the best can approach 95% or higher.

With IPS panels, there is the largest variance. Entry-level IPS displays tend to offer 95% sRGB coverage or less, while the majority stick to full sRGB coverage. Then with high-end displays, usually for professionals, it"s not unusual to see full DCI-P3 and Adobe RGB coverage. Of all the wide gamut IPS displays I"ve tested, the lowest DCI-P3 coverage I"ve seen has been 93%, with over 95% a typical figure. This makes IPS the best technology for wide gamut work.

Throughout most of this discussion we"ve been talking about TN as the worst of the three technologies. So far, it has the worst color reproduction, contrast ratios and viewing angles. But it does have one key advantage, and that comes in the form of speed. TN panels have historically been the best for both refresh rates and response times, however that trend is slowly changing for the better.

Not long ago, we argued that only with a TN panel it was possible to hit 240 Hz, doing so at 1080p and later up to 1440p. Most recently, however we"ve seen IPS monitors hit the highest mark ever for a consumer-grade gaming monitor at 360Hz, and do so very convincingly. We"re sure other monitors will follow but as of writing, the Asus ROG Swift PG259QN can deliver both the fastest response times and an accurate color experience using an IPS panel.

More mainstream monitors using IPS panels tend to range from the regular 60Hz for productivity, up to 165 Hz and 240 Hz depending on the market they"re aimed at. VA panels top out at around 240 Hz at the moment.

Most IPS displays, especially high-grade options for professionals, as well as entry-level office monitors, are either 60 or 75 Hz. Meanwhile, a significantly larger number of VA panels across a wider range of sizes and resolutions are high-refresh, while the big selling point of TN is its super high refresh capabilities.

Another major consideration is response times, which govern the level of ghosting, smearing and overall clarity of a panel. Early IPS and VA panels were very slow, however this has improved a lot with modern panels, so the differences between the three technologies aren"t as pronounced as they once were. TN still holds an advantage here.

Most TN panels have a rated transition time of 1ms, or even lower with some recent releases. Actual grey to grey averages we"ve measured for TN panels tend to be in the 2-3 ms range when overdrive is factored in, which makes TN the fastest technology.

IPS panels are next in terms of speed, though as tends to be the case with IPS, there is a wide variance between the best and worst of this type. High-end IPS monitors, typically those with high refresh rates, can have a transition time as fast as 3ms. Compared to the best TN panels, this still makes IPS slower. However entry-level IPS panels or those without overdrive sit closer to the 10ms range, while mid-tier options tend to occupy the 5 to 7 ms bracket.

VA panels are consistently the slowest of the three types, but again, high-end gaming monitors have been pushing this further on every generation. The absolute fastest VA panel we"ve measured so far has a 4ms response time which is very impressive, though more typical numbers are between 8 and 10 ms for gaming monitors. VA panels also tend to be less consistent with their transitions; some individual transitions can be fast, while others very slow, whereas IPS panels tend to hover more around their overall grey to grey average.

While a lot of people are unlikely to spot the difference between an 8ms VA panel and a 5ms IPS, TN panels overall tend to be noticeably clearer in motion, but that gap is closing with every generation. The slowness of VA panels also limits their real world refresh rate: a 144 Hz panel that only manages a 9ms response time, is actually delivering an image most equivalent to a 110 Hz panel. Whereas most 144 Hz IPS panels can transition faster than the 6.94ms refresh window, leading to a true 144 Hz experience. So that"s something to consider.

As a quick summary, TN panels are the fastest and have the highest refresh rates, however they have the worst viewing angles by far, as well as weak color performance and typically the lowest contrast ratios. TNs are typically used for ultra-fast gaming displays, as well as budget class displays, for both desktop monitors and laptops.

IPS is a middle-ground technology. They typically have the best color performance and viewing angles, mid-tier response times and refresh rates, along with mid-tier black levels and contrast ratios. Due to its top-end color output, IPS panels are the go-to choice for professionals, but you"ll also find them in entry-level displays, office monitors, most laptops and a handful of gaming monitors.

VA panels are the slowest of the three, but have the best contrast ratio and black levels by far. Color performance isn"t quite at the level of IPS, but they still offer a significantly better experience than TN in this regard.

With response times for the best modern VAs approaching the level of a typical IPS, along with broad support for high refresh rates, VA monitors are commonly used for gaming monitors. Entry-level VAs also tend to be superior to entry-level TN and IPS panels, though you won"t find VA used in laptops.

There"s no right answer to which monitor technology is best, because all have their strengths and weaknesses which is why all three coexist on the market today. However if you want our recommendation, we tend to gravitate towards VA panels for most buyers, especially gamers and those after something entry-level. Creative professionals should be looking exclusively at IPS monitors, while those after something dirt cheap or ultra high refresh for competitive gaming should opt for TN, although superior latest-gen IPS and VA offerings are finally matching or even beating the best of TN in some regards.

ips vs va lcd panel pricelist

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.

There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.

Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.

Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.

Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.

Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.

LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.

VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.

Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.

There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.

OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.

As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

ips vs va lcd panel pricelist

If you"re in the market for a new gaming monitor, you"re going to brush up against three distinct types of displays that all come with their own pros and cons. We"re here to break down exactly what you need to know about TN, IPS, and VA panels and help you make the right choice for your exact gaming needs.

There are three display panel types that cover most gaming monitors (cutting-edge technology like mini-LED and OLED are coming, but we won"t cover that here). TN (twisted nematic), IPS (in-plane switching), and VA (vertical alignment) all use the same technology at their core--molecules that react according to different voltages to move and produce an image--but their differences and evolutions have made each one good for specific use cases.

TN panels have the worst viewing angles of the three, with colors able to drastically shift from even slight angles off the center of the display. TN also has the worst color coverage, with the inability to show a high color depth and producing noticeable banding due to interpolation. Contrast ratios are also poor, with the overall image looking washed out compared to IPS and VA.

So, if TN is this poor, why is it still on the market? For one, TN panels are incredibly cheap, which is why you"ll often find them in budget gaming monitors that can still deliver a good, if not great, image. TN is also still the fastest panel type on the market, with pixel response times (the time it takes for a pixel to change color) as fast as 1ms. While IPS and VA panels have managed to get there, they often make use of methods that lead to other issues (such as smearing or inverted ghosting), which keeps TN panels relevant for speed.

For that reason, TN panels are ideal for competitive gaming, especially in the realm of esports where response time is much more important than image quality. If you"re primarily playing Counter-Strike: Global Offensive, Fortnite, or Call of Duty: Warzone, you"ll probably benefit the most from a TN monitor if all you care about is securing those wins. Plus, you"ll save a bunch of money in the process.

On the other end of the spectrum is IPS, or in-plane switching. Although many manufacturers use IPS displays now, the term was initially coined by LG and used exclusively by the company. Nowadays, though, it"s not uncommon to see the likes of Dell, Asus, and AOC producing IPS displays.

In the past, one of the biggest compromises you had to make with IPS displays was pixel response time and refresh rate, but as the technology has evolved it has managed to shake these off. You can now find IPS displays with refresh rates well into the 240Hz range, with response times matching that of the 1ms on TN. You"ll pay a premium for that, with most high-end displays on the market featuring these specs, but it"s also possible to enjoy some of the benefits with cheaper IPS products. You might get a response time closer to 4ms and maybe a limited refresh rate ranging from 60-144Hz, but if you care about what your games look like then it"s a massive step up from TN.

One big disadvantage across the board with IPS panels are their poor contrast ratios, making them worse options for dark rooms than VA. It can make dark areas in games look more milky grey than black, made worse by the uneven backlighting that can be viewed at different angles (also known as IPS glow). The color reproduction is still the best it can be on an IPS display, but if you mostly play games at night or in a dim room, you might want to consider a VA panel.

Speaking of VA (vertical alignment) panels, there"s a reason the majority of LCD TVs use this panel type. It"s the jack-of-all-trades panel, with better color reproduction than TN panels as well as a much better contrast ratio compared to IPS. VA panels, depending on the overall display specs, can also be cheaper than IPS panels in most cases, occupying a good middle ground between performance and price that is difficult to argue against.

One area where VA truly excels is contrast. It"s a night-and-day difference compared to IPS, with VA panels able to produce far inkier blacks and really accentuate dark areas in games, especially when you"re playing in a dim environment. This is one of the strongest reasons for owning a VA panel, especially if the "IPS glow" really bothers you. You do, however, lose out on the wider viewing angles that IPS offers.

One issue with VA is its response times, like IPS. It can reach 1ms in very specific cases, but this often leads to a lot of smearing or inverse ghosting (where ghost trails behind shifting pixels have colors inverted), which make the gains moot. On average, a VA panel will have worse smearing at the same pixel response times when compared to an IPS panel, primarily down to how the vertical alignment of the molecules in the display function. It"s something you might notice when playing at very high refresh rates and in fast-paced games, but it"s also something that a lot of people don"t have an issue with at all.

If getting the fastest response times and highest frame rates possible is crucial to your gaming, there"s no question that a TN panel is still your best option. Competitive gamers who benefit from the fractions of a second that a pixel can take to update will find no corners cut on any TN panel out there, and they"ll benefit from the high refresh rates most offer.

Similarly, if you"re on a very tight budget and you"re looking for the right monitor to accompany a machine built for games like League of Legends, Dota 2, or Fortnite, then choosing a TN panel could help you put more money toward the hardware that powers your games instead. You"ll be missing out on the better color reproduction that TN lacks, but if you"re just planning to play games casually and not take in their sights, then you can save yourself a lot of money.

If single-player games are mostly what you use your PC for and you"re strictly keeping it for recreational use, then it"s difficult to argue against a VA panel. It"s a considerable step up from TN and will let you enjoy your games with visuals as their designers intended. The deep blacks will let you immerse yourself in moody atmospheres, while the cheaper prices could afford you the ability to get a bigger monitor with a decently high refresh rate.

VA panels also give you a lot of range to stretch your budget, whether you"re just looking for a slightly-above-average display or one to really bring out the best in your hardware. From 1080p to 4K, it"s easy to find a great VA-equipped display that won"t break the bank or go ultra-premium with one of Samsung"s top-of-the-line products. The company"s latest G7 (or Odyssey G9, if you have the space and the money for it) feature outstanding HDR support, incredible contrast, and great color, if you"re willing to invest in their high price points.

If you"re looking for a monitor that can do it all, there"s nothing beating out an IPS panel. Many new monitors feature the more advanced fast IPS panels, which remove many of the compromises you used to have to make with regards to pixel response times and high refresh rates.

The viewing angles, the color reproduction, and the overall experience of an IPS panel just can"t be beat right now, making it the perfect accompaniment to a high-powered gaming PC, console, or workstation. They"re accurate enough for some professional work, whether you"re color-correcting photos or videos, and fast enough to keep up with your favorite competitive games or engrossing single-player adventures.

IPS panels are also ideal for local multiplayer gaming with their wide viewing angles, but these come at the cost of good contrast ratios and potential backlight bleeding. If you"re only planning to play games in a dark environment, a VA might be better suited to your needs. But if you"re looking for a panel with the fewest compromises, it"s hard to argue against IPS.

We"ve highlighted some of our favorite monitors with each display panel type above, but if you"re looking for more options for well-priced displays, check out our guide to the best cheap gaming monitors on the market right now as well as the best monitors for PS5 and Xbox Series X. If monitors are just too small, we also have recommendations for the best 4K TVs for PS5 and Xbox Series X, some of which can also work well for PC gaming. If you’re looking for some more information on the types of monitors out there, we’ve got a list of the differences between LCD and LED Monitors. Let us know what your favorite displays are in the comments below.

ips vs va lcd panel pricelist

Choosing a monitor never gets easier. Every year that passes by, new technology redefines the limits of previous technology. It used to be that every monitor on the market was a TN panel. Then, along came IPS with a significantly improved picture quality with a much wider range of color and wider viewing angles. These two competing technologies still dominate the market today. However, there is a third. Vertical alignment, or VA, panels were developed to bridge the gap between TN and IPS in the early days.

VA panels are capable of better viewing angles than TN panels, but not as good IPS. They are also more consistently available in higher refresh rates like 120Hz or 144Hz. In the modern market, the 144Hz refresh rate is not rare or exclusive to panel technology. IPS still tends to shine as a better technology than both TN and VA panels with the best range of color and viewing angles available. However, IPS displays are typically the most expensive of the three.

It used to be that VA panels were easier to get a faster response time on than IPS panels. That has also changed. IPS panels can come with 4 ms response times and 280Hz refresh rates without losing color contrast, gamut, or viewing angles. VA panels can come to similar performance, but with a much slower response time. This makes IPS panels a better option for gaming, while VA may be a better option for office use due to its cheaper price.

It is worth noting that when discussing prices of modern monitors with VA, TN, or IPS panel technology that cost has significantly been reduced. 20” monitors with any panel technology run from as cheap as $50 to around $200. The price is dictated by more than just the panel technology, of course.

Vertical alignment, or VA, panels are a type of liquid crystal display, LCD, technology that uses vertically aligned crystals. This means that the nematic liquid crystals are vertically aligned with respect to the glass substrate. When power is applied, the crystal molecules will tend to organize perpendicular to the electric field and therefore parallel to the substrate surfaces. When the panel is unpowered, the axis of the LC molecules is positioned vertically to the substrate which prevents light from reaching through the screen like window shades.

VA was created after IPS in an attempt to create a mixture of the two technologies. It creates a better contrast ratio and includes the wide viewing angles of IPS LCD display panels. The idea for vertical alignment panels was born in 1971, but the final product wasn’t released until shortly after IPS technology. VA panels are most known for their ability to reach high refresh rates without incurring a heavier cost which is fantastic for budget gamers.

Vertical alignment panels have a bad habit of ghosting images. When a VA panel TV or a monitor is left active for too long on an unchanging image, the image can be burned into the screen. Some users may be familiar with this as movie DVD menus may have accidentally been left on overnight causing a burnt image. This is what’s known as image “ghosting”. Unfortunately, there isn’t a way to prevent this other than ensuring the panel is powered down when not in use.

In-Plane Switching, or IPS, is one of the display technologies for TFT-LCDs, which stands for Thin Film Transistor Liquid Crystal Displays. It was created to provide an alternate solution to twisted nematic display panels. IPS was first developed by Hitachi. They had found a way to change the physical behavior of the liquid crystal layer by moving the liquid crystal molecules in parallel with the thin film transistors. This created much wider viewing angles when compared to traditional TN panel technology.

Since then, LG has developed IPS into the next level with S-IPS, super in-plane switching, and AH-IPS, advanced high-performance in-plane switching. The first version of IPS already offered a much wider color gamut compared to TN display panels, but the extra enhancements from decades of development have brought IPS to the point where TN only outperforms IPS displays when it comes to response time. IPS panels are typically measured at 4 ms response time. TN panels still boast a consistent 1 ms response time. For office work, school projects, home management, and organizational uses, the difference in response time will mean nothing. A user who enjoys PC gaming will notice the difference in racing or competitive Shooters rather quickly.

IPS displays are also much better for entertainment purposes. The wide viewing angle is well-suited for TV use and watching movies with a wide seating arrangement. The viewing angle stops image quality loss when viewers aren’t directly in front of the screen, so even guests sitting at the furthest ends of the group will still be able to see the movies or TV shows clearly.

IPS has wider viewing angles with no shift in color between horizontal and vertical directions. VA panels have poor viewing angles that show picture degradation.

ips vs va lcd panel pricelist

When you’re looking into buying a VA panel vs IPS TV, there are many things to consider. Narrow viewing angles, color performance, refresh rates, and more all come into play. Your budget will also be a huge determining factor. You should take all this into consideration when purchasing the best TV.

The VA panel is a much better choice if you’re viewing at an extreme angle, you like to watch your favorite TV in a dark room, or you just want something with fantastic color quality.

Pitting a VA panel vs. IPS TV against one another means looking into how they measure up in a few categories. The type of LCD panel that is right for you will be determined by both lifestyle and budget. Those are the most important factors to most consumers.

There are a few differences between a VA panel and an IPS panel. We’ll go over what sets them apart so you can better understand the display technology behind them.

A few different factors go into deciding your viewing experience after installing your TV. One of them is the viewing angle, which refers to how much of an angle you can watch TV at before there’s a drop in picture quality. A VA panel will give you much wider viewing angles than an IPS will. This isn’t a dealbreaker, but the limited viewing angles offered by IPS panels should be kept in mind while shopping. The wide viewing angles make the VA panel a clear winner in this category. Remember to keep viewing angles in mind when you are shopping for the top curved TVs as well.

Having an impressive contrast ratio makes a world of difference to your viewing experience. Color accuracy refers to how well panel TVs can reflect the true color on their screens. A superior contrast ratio means that you’ll be able to see details far better, and white will show through far better. TVs with the lowest contrast ratio will show white as light shades of gray. The excellent contrast ratio of a VA panel makes it a superior choice. This can be a key factor when deciding between an outdoor TV vs indoor Tv as well.

Essentially, we’re talking about the ability to display perfect blacks even in a dark room. Black colors can be complex for LCD screens to express adequately when in dim lighting. Having screen uniformity means displaying the same deep blacks across the entire display. A VA panel is the clear winner here, with superior blacks that hold up even in low lighting. An IPS panel just can’t give the same black uniformity, going either blue or gray towards the center of the screen. Additionally, you can learn more about the differences between TV backlight vs brightness.

The most significant difference is price, which means that your budget will determine which is better. VA panels have an easier time with black uniformity, which refers to their ability to display deeper blacks even in dim lighting. They also have better viewing angles. However, they’re also much pricier. On the other hand, an IPS isn’t a wrong choice and will still give a quality viewing experience. When shopping for aUHD or SUHD TV, knowing the key differences between the two panels will help you make a better choice. While there may not be the best TV brand for every type of screen, knowing the differences between the types can help make sure you understand the benefits of what you are paying for. Additionally, if you are energy conscious, you can check out the best low-wattage TVs.

Your priority should be your budget. Figuring out how much money you can spend on a new television will put you on the right path to finding the best panel type for you.

ips vs va lcd panel pricelist

When most people go shopping for a gaming monitor, their primary concerns are resolution and refresh rate. Those are certainly important considerations, but if you’ve ever had to put up with dull colors, murky blacks or terrible viewing angles, you’ll understand that panel types are important too.

TN, or Twisted Nematic panels, are the oldest variety of LCD panels, but they’re still quite common even today. They’re cheap to produce, and they have very low input lag, which makes them appealing for gamers. They also support refresh rates of up to 240Hz, another plus for fast-paced environments.

The problem with TN panels is that they have very poor color reproduction. While modern TN panels are far better than earlier models, it’s still relatively rare to find a TN panel with close to full sRGB reproduction. Even if they do have good color reproduction when you’re looking at them straight on, their viewing angles are limited, and they look washed out when viewed from the sides.

If you’re on a budget, enjoy playing competitive shooters or strategy games where reaction times matter, a TN panel could be fine for you. But if you want something that doubles as a media player, the average TN monitor might disappoint.

Fortunately, our GFT27CXB monitor is far from “average.” We engineered our TN panel to do what most TN panels simply cannot: deliver stunningly accurate colors. And with its 99% sRGB gamut, colors are rich and vibrant. And it’s fully customizable, with space to store up to 3 unique user profiles. So you get amazing color. But you also get full HD resolution with lightning-fast speeds up to 240hz refresh rate and 1ms response times.

IPS, or In-Plane Switching, monitors are almost the exact opposite of TN panels. They offer much wider viewing angles than TN panels as well as better black reproduction. The trade-off is that they’re more expensive. They have a history of slower refresh rates, too, although that has been changing lately. Today’s IPS panels can reach max. refresh rates as high as 200-240Hz.

There are some IPS monitors with very good refresh rates and response times, but they’re on the pricier side. You can expect to pay more than $500 for an IPS monitor with a 1ms response time. If you’re looking for a more budget-friendly IPS monitor, then you’ll have to settle for response times of 4ms or slower. IPS panels are also prone to backlight issues. Color reproduction is better than on TN panels, even at extreme angles, but the backlight can sometimes be seen.

Our REAPER series monitor—starting with the RFI25CBA—has been designed to overcome this particular issue. It’s been engineered to reduce the amount of backlight bleed-through on its IPS panel. The monitor also features an MRPT Mode to produce extremely clear moving pictures with excellent color while significantly reducing backlight issues.

VA, or Vertical Alignment, panels are somewhere in between TN and IPS, offering the best of both worlds. This type of panel is common in TVs but is relatively uncommon for gaming monitors. TN panels offer very good contrast ratios, so you can expect vibrant colors and good color reproduction. They also offer good viewing angles, and while brightness may vary depending on the angle you’re looking at the screen from, they’re not susceptible to the backlight issues of IPS panels.

The downside of VA panels is that they have slower response times. As with IPS panels, newer models do have high refresh rates, but the slow response time means you may see ghosting or motion blur in fast-paced, competitive games. Fortunately, all VIOTEK monitors come with AdaptiveSync, which works with AMD® FreeSync® and NVIDIA® G-Sync™ technologies. AdaptiveSync eliminates image distortion (e.g., tearing, stuttering, ghosting and judder) and other glitches that can happen if the monitor’s refresh rate doesn’t match the frame rate of the computer’s GPU. The result is smoother action with clearer images.

There are benefits and downsides to each panel type, and there’s no one correct answer to the question of “which is best.” It depends on your budget, the type of games you enjoy playing, whether you prize response times over other features, and what else you do with the monitor.

If you’re a competitive gamer who wants the absolute best response time on a budget, TN panels will get the job done, but they may disappoint when you’re playing a heavily modded game of Skyrim and want to stop and enjoy the scenery. IPS panels can deliver a similar experience if you’re willing to spend a lot of money. But if you’re like most of us, you’d rather put that extra cash towards a slightly better GPU.

VA monitors are a great “Jack of all trades.” The NBV24CB2, for example, is a highly affordable 1080P monitor that offers a 75Hz refresh rate and AdaptiveSync technology—along with some other nice extras. Those extras include GAMEPLUS targeting crosshairs and FPS/RTS display modes to help give you the advantage while playing first-person shooter games. This monitor is ideal for gamers with mid-range systems. If you’re playing marathon sessions, the NBV24CB2 has a blue-light filter to help reduce eye strain. And there’s great color reproduction for watching videos.

Looking for something with a little more power? The GNV32CBO or GFV24CB are two 1080p monitors. These offer super-fast 165Hz refresh rates for pro-motion with reduced input lag. They’re also VA panels, delivering great color reproduction, AMD FreeSync to reduce image ghosting, and other game-friendly features.

ips vs va lcd panel pricelist

IPS panels offer the best color accuracy and the best viewing angles; TN panels provide the best prices; and VA panels have the best contrast and offer a good balance between visuals and performance, but their response times tend to be higher.

In this guide, we will offer brief explanations regarding the three dominant panel types mentioned in the title and discuss the pros and cons of each one.

IPS stands for “in-plane switching,” and is a very popular type of panel used by a wide range of devices, be it monitors, TVs, smartphones, or others. Its primary benefits are superb visuals, excellent color reproduction and great viewing angles.

In this regard, they are a much better choice than TN panels, although VA panels tend to have a better contrast ratio. Moreover, most IPS panels come with response times of 4ms or more, although there are now models out there that can manage response times as low as 1ms.

As for the downsides, IPS panels usually have somebacklight bleed issues, such as the infamous “IPS glow.” If you’re after an IPS monitor with a high refresh rate, you’d have to spend a little bit extra, as 144Hz monitors start a bit higher than their TN and VA counterparts.

Moreover, while they are no longer the only panel that can achieve 1ms response times, they are still the most affordable choice for those who primarily look for performance in a gaming monitor.

But as mentioned above, TN panels don’t exactly offer the best visuals. Colors tend to look washed out, and the viewing angles are rather weak, so they won’t be appealing for users who prioritize visuals over performance.

On top of that, it should also be noted that very few TN panels support HDR, and those that do rarely have the kind of contrast necessary to make full use of it.

And finally, VA (vertical alignment) panels are something of a middle ground between IPS and TN panels. The color reproduction and the viewing angles offered by VA panels are generally close to what IPS panels can achieve. Still, VA panels also have superior contrast on top of that.

However, these panels are usually the slowest of the three, as they tend to have higher response times and can suffer from ghosting issues, something that can be particularly distracting in dark scenes or fast-paced games.

Apart from that, some VA panels can also have issues with clouding and backlight bleed, but again, all of this depends on the quality of the panel itself.

When it comes to picking the right type of panel, the first thing you should consider is what’s more relevant to you: visuals or performance? And secondly, there’s always the matter of pricing.

If you’re looking for the best possible performance, potentially at a lower price, TN would be the way to go, since they are the fastest and cheapest type of panel currently available.

IPS is the go-to solution for anyone who prioritizes visuals over performance. However, as mentioned in the article, you can always get the best of both worlds with a 144 Hz IPS monitor, provided that you’re willing to spend a little more.

And finally, VA panels will be most appealing to those who want both visuals and performance at a more approachable price point. However, keep in mind that a jack of all trades is a master of none, so a VA panel will not quite match an IPS panel in terms of color reproduction nor will it be as responsive as a TN one.

ips vs va lcd panel pricelist

In this article we give you an insight into the different panel types which are used in the screens of the current televisions. We explain what is behind the abbreviations LCD, VA, IPS, FALD and OLED.

Most TVs available today feature LED-LCD panels. This means that the backlight is created by LEDs and an LCD layer creates colors on the screen. Televisions almost exclusively use VA or IPS LCD displays. Terms such as “QLED” or “NanoCell” refer to additional layers on the screen for more accurate colors.

Normally, each individual pixel consists of three subpixels in the colors red, green and blue. If you mix these three light colors, you get white. In order to create a color other than white, the crystals of the corresponding subpixel must be charged by an electric voltage and change their orientation so that they no longer let the light of their color through. This is where the term LCD (Liquid Crystal Display) comes from.

VA stands for “Vertical Allignment“, which means that the crystals do not transmit light in the vertical orientation. As soon as they are electrically charged, their orientation changes to the horizontal and they let the light of their color through.

In their name-giving vertical orientation, VA panels can very well block the light from the backlight, creating deep blacks. This usually results in a contrast ratio of over 4000:1.

The disadvantage of VA panels is that the picture quality decreases rapidly as the viewing angle increases. If viewed at an angle, the contrast drops considerably and the image looks washed-out quickly.

IPS stands for “In Plane Switching“, which means “changing in the plane”. If the crystals are not to let light through, they lie horizontally, parallel to the screen (plane). If they are to let light through, they rotate along the horizontal axis and thus remain parallel to the plane (-> In Plane).

So IPS-LCD TVs don’t have such deep blacks and typically only a contrast of about 1000:1.The advantage of an IPS panel is that the picture quality remains fairly consistent if viewed at an angle.

The contrast and color intensity as well as the authenticity of the colors are largely retained. IPS panels are somewhat cheaper in production than VA panels, which is why they are used in the majority of entry-level devices.

As mentioned at the beginning, they are actually LED-LCD televisions. Because every LCD TV needs a backlight and this is nowadays generated by LEDs. The LEDs either sit at the edge (usually the lower edge) of the screen (= Edge Lit) or directly behind the screen (= Direct LED).

Full Array Local Dimming divides the backlight LEDs into different zones, which can then be dimmed separately. How well the Full Array Local Dimming influences contrast ratio and picture quality depends on several factors, namely the number of zones, the dimming algorithm and of course the type of panel. Too few zones or a bad dimming algorithm can lead to unwanted issues such as clouding or blooming. With IPS panels, the problems are generally greater because of the lower native contrast ratio.

One of the cheapest current TVs with local dimming would be the LG NANO85, which has a very poor Edge Lit Local Dimming feature. TheSony X90J, for example, has a solid Full Array Local Dimming, with 24 dimming zones and a good algorithm delivers a really high-contrast picture. The best Full Array Local Dimming currently available (under 10.000$) can be found in the Samsung Q90B. For example, the 65-inch variant has 720 individual dimming zones and a very good algorithm.

OLED panels are a completely different technology than LCDs, because OLED panels do not require backlighting. OLED stands for “organic light emitting diode“, which means that all subpixels emit light themselves or not.

This, however, makes it difficult for the display to display bright, popping (= saturated) colors. In large bright scenes, all pixels must be dimmed down to avoid damage to the panel (ABL: Automatic Brightness Limiter).

OLED televisions are available from more and more manufacturers. That’s why there is now a healthy competition. You get OLED TVs of course from LG, but also from Sony, Hisense or Metz Blue and many more. Even Samsung, who have actually retired from the OLED sector, want to start producing OLED TVs again under the name QD-OLED.

Finally, it should be mentioned that OLED displays are not only extremely thin, but can also be flexible and it is even possible to develop transparent OLED TVs.

ips vs va lcd panel pricelist

With their vibrant colors and relatively constant picture appearance from multiple angles, IPS displays are suitable if your focus is on accuracy. When you can"t afford the pricey nature of these monitors, LEDs present a budget solution.

IPS gaming monitors provide a number of advantages over other technologies, such as TN and VA panels, including superior image colors, despite the fact that LED panels are ideal for competitive gaming.

The benefits of using LED TVs are minimal energy consumption, a long-lasting backlight with pictures being bright. IPS displays offer more image accuracy and have better color reproduction in small viewing angles. In short, when it comes to LED vs IPS, former are cheaper, though the advantage of an IPS screen is better picture quality. Having said that, Samsung"s Quantum Dot technology could boast of dramatically enhanced color compared to IPS panels.

Although LED panels are excellent in competitive gaming, IPS gaming monitors have various tricks, like better image colors than other technologies, including TN and VA panels (see VA panel vs IPS). If you want to play while getting the most accurate color depiction, choose IPS and make sure to go over our review of the best 32-inch gaming monitors, including this affordable Dell gaming monitor.

LED and IPS monitors (see also QLED) have excellent attributes with disadvantages as well. Before looking at the differences of screens featuring the two technologies, here is a look at the LCD (Liquid Crystal Display) technologies and also a LED vs LCD comparison.

LED (Light Emitting Diode) is a type of backlight technology in which the pixels light up. Many people confuse the difference between LED and LCD displays.

An LED monitor is a type of LCD monitor, and while both utilize liquid crystals for picture formation, the difference lies in LEDs featuring a backlight.

Notably, some IPS displays incorporate LED technology. Some reasons why some brands produce IPS displays infused with LEDs are the resultant sleekness and compactness.

The benefit of using LED panel technology is how bright the LED displays are while still maintaining an efficient energy consumption lower than other screen technologies.

If you need LCD monitors with a quick response time, consider an LED display panel using either VA or TN technology. Such an LCD screen typically offers a 1ms response time. However, remember that these monitors tend to have smaller viewing angles and inferior image quality than an IPS monitor. Regardless, you can still get a considerably good performance when planning quick-action games provided you sit directly in front of the screen. In that case, vertical monitors may prove a viable option.

Below are some combinations of these two technologies:LCD monitors incorporating IPS panels and LED backlightLED-backlit with IPS panel or TN panel featuresIPS display featuring LCD or LED backlight technology

Another big difference between IPS displays and LED monitors lies in the energy uptake. An IPS monitor provides better visual quality than an LED monitor, leading to more power consumption to maintain excellent on-screen performance.

Although LED monitors provide brighter screens, their power consumption is much less than IPS panel technology. That explains why they are a favorite Liquid Crystals Display technology amongst those looking for affordable electronics.

Because IPS monitors take up much power, they release more heat than their LED alternatives. Despite LED display monitors providing bright pictures, they produce relatively less heat than monitors with IPS display technology.

The cost of a monitor using IPS screen technology is approximately $100 or more, depending on whether the panel infuses other technologies like a TN panel or another type of LCD.

Notably, mid-range IPS monitors usually go for more than high-end LED monitors. When it comes to LED monitor prices, you can get an excellent monitor under $200, $100 and even $50, depending on your model and the included attributes.

While both offer superb monitor selections, the differences between IPS and LEDs make one a better option for you than the other. Apart from these two, there are other display types to choose from so it can be hard to decide which suits