lcd screen size chart price

A lot goes into determining the best viewing distance, and there are several different criteria you can use. Aside from size, things like resolution and even how strong your eyesight is can affect how you see the screen. Because everyone"s eyesight is different, this is less an exact science and more of a general guide based on scientific principles of vision and resolution.
That doesn"t mean you should be sitting a foot away from your TV. Having the largest screen possible isn"t always ideal. The human visual system has a total horizontal field of view of about 200 degrees, although a portion of that is peripheral vision. While it makes some sense to get as large a TV as you can for movies, not all content is made to fill the entire field of view. This becomes very apparent if you try to watch sports from up close while fixating on a single part of the screen, which quickly starts to feel nauseating.
The Society of Motion Picture and Television Engineers recommends sitting at a distance where the screen fills up a minimum of 30° of your field of vision for a good experience.
This is generally good guidance, but people who use their TVs mostly for watching movies might benefit from sitting a bit closer to get a more theater-like experience. The SMPTE "reference" position for movie theaters and the THX recommendation is about 40°. The minimum angle of vision works well for most usages, though, and sitting at a distance where the screen fills 30° of your horizontal field of view should be comfortable for most people.
Our size and distance tool above is based on the 30° guideline that is suitable for mixed usage, but you can find distances for a variety of sizes at 40° here.Learn more about the human visual field.
For instance, sitting close to a 1080p TV can look almost like watching through a screen door because you can see the individual pixels, even if it"s playing a high-quality 1080p HD movie. Increasing your distance to the TV also increases the density of details, producing a better image. Since 4k TVs have such a large density of pixels, it"s much more difficult for this issue to arise. You need to be quite close to a fairly large TV for the pixels to be noticeably distracting.
With 8k TVs, that density increases further, making it even harder to notice flaws with the resolution unless you"re sitting extremely close. However, this also decreases the point at which the perceived difference in picture quality becomes noticeable. Because the pixels are more densely packed with an 8k resolution, you need to sit closer to actually resolve those details. For that reason—content aside—8k only really makes sense if you want a really big screen and plan on sitting close to it. Learn more about the difference between 4k and 8k.
This chart shows the point at which an upgrade in resolution becomes worth it depending on size and distance to the TV. Each line represents the optimal viewing distance for each resolution, but any TV that falls within the range of that color will be suitable to notice a difference in picture quality. So, for example, if you have a 65 inch TV, the viewing distance at which the eye can actually process the details of 4k content is about 4 feet. However, any distance between 4 and about 8.5 feet will be enough to appreciate the difference between 4k and 1080p on a 65 inch TV. Go too far, and the image will look identical to 1080p HD.
The chart suggests that at a certain point, 4k UHD may not be worth the upgrade—if you"re sitting more than 7 feet away and have a 55" TV, for instance. Really, though, this chart is just a guide, and as 4k TVs have become the standard, the question of whether it"s worth it or not is a moot point. While your eyes may not be able to tell the difference at a certain point, your next TV will more than likely be a 4k TV anyway. Knowing the optimal viewing distance for the resolution can help you determine a living room setup that takes full advantage of your TV"s resolution, but since angular resolution is almost a non-issue with UHD content, we recommend using our calculator tool at the top of the page, which is based on the optimal field of vision.
You"re probably thinking something along the lines of "My couch is 10" away from my TV, which according to the chart means I need a 75 inch TV. This is insane!" It"s true that if you want to take full advantage of higher resolutions, that"s the ideal size you should get. That said, this may not be possible for everyone, which brings us to budget.
The price of a TV is usually exponential to its size. Size isn"t the only factor though, as resolution, panel type, and features all play into it as well. Looking at 65 inch TVs, for instance, an OLED like the LG CX OLED is inevitably going to cost more than a budget LED TV like the Hisense H8G, and both of these will seem downright cheap compared to an 8k TV like the Samsung Q900TS 8k QLED. Fortunately, though, as technology improves and the availability of higher resolution TVs expands, larger TVs have become more common and therefore more affordable. Feel free to compare the prices of our picks for the best 65 inch TVs, the best 70 to 75 inch TVs, and the best 80 to 85 inch TVs to really see the difference that size makes.
We recommend a field of vision of about 30 degrees for mixed usage. In general, we also recommend getting a 4k TV since lower resolution TVs are becoming harder to find. To easily find out what size you should buy, you can divide your TV viewing distance (in inches) by 1.6 (or use our TV size calculator above) which roughly equals a 30-degree angle. If the best size is outside your budget, just get the biggest TV you can afford. These are guidelines, after all, and since most TVs nowadays are 4k, you can"t really go wrong with the size that works for you, especially since picture quality also depends a lot on the content and viewing conditions. Ideally, you would optimize the capacity of your TV by getting one that"s large enough for you to notice all the visual detail that 4k has to offer, but ultimately, you should watch however feels most comfortable to you, whatever the size and distance may be.

Prices for all TV panel sizes fluctuated and are forecast to fluctuate between 2020 and 2022. The period from March 2020 to July 2021 saw the biggest price increases, when a 65" UHD panel cost between 171 and 288 U.S. dollars. In the fourth quarter of 2021, such prices fell and are expected to drop to an even lower amount by March 2022.Read moreLCD TV panel prices worldwide from January 2020 to March 2022, by size(in U.S. dollars)Characteristic32" HD43" FHD49"/50" UHD55" UHD65" UHD------
DSCC. (January 10, 2022). LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars) [Graph]. In Statista. Retrieved February 16, 2023, from https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC. "LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars)." Chart. January 10, 2022. Statista. Accessed February 16, 2023. https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC. (2022). LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars). Statista. Statista Inc.. Accessed: February 16, 2023. https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC. "Lcd Tv Panel Prices Worldwide from January 2020 to March 2022, by Size (in U.S. Dollars)." Statista, Statista Inc., 10 Jan 2022, https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC, LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars) Statista, https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/ (last visited February 16, 2023)
LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars) [Graph], DSCC, January 10, 2022. [Online]. Available: https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/

The cost of TVs depends heavily on their size, with larger ones being progressively more expensive. I examine this relationship by aggregating TV price data over a range of sizes and brands. In addition, I clarify how to calculate TV screen area, height, and width. Though TV screens are universally described by the length of their diagonal, I argue that area is a more intuitive parameter for comparing their sizes.
To collect data for this investigation, I consulted The TV section of Walmart’s Canadian website. Here I found 138 TVs listed with screen diagonals ranging from 19” to 75”. I recorded the size and cost of each, summarized in the graph below.
As expected, price increases with TV size. However, size alone isn’t a tremendous predictor. For instance, there were two 32” screen TVs available which were more expensive than many of the 65” screens. We can account for this through the many features which TV models differ in, beyond size. For instance, some have curved screens, some are smart TVs, and others provide 4K ultra HD. Looking at this graph, the distribution of TV models across size is also interesting. Screen diagonals of 50”, 55”, and 65” are by far most abundant. Nevertheless, the confounding factors make it is hard to isolate the contribution of physical size to TV prices from these data. In particular, we’d require the assumption that expensive TV features are equally represented across the sizes.
To tease out the relationship between TV size and price, we must compare TVs which are identical in every way except size. Fortunately, it is possible to do this: some companies sell series of TV models which offer the same features at multiple screen sizes. Although this greatly limits the data available, it does conveniently remove the confounding factors. I selected four TV series: two by Samsung (NU6900 and Tizen Smart LED) and two by LG (UK6090 and UK6300).
Each series follows a consistent trend, but direct comparison of them is challenging since they have different intrinsic values. In the interest of fully covering the range of screen sizes, it was necessary to combine the data. I normalized the prices within each series to facilitate direct comparison. Each set contained a 50” screen, so I normalized the prices by scaling the 50” option to a value of ‘1’. For instance, The LG UK6300 series costed $448 (43”), $548 (50”), $648 (55”), and $998 (65”). I normalized these prices to 0.82, 1.00, 1.18, and 1.82, respectively. This approach was successful in making each series comparable.
Here a clear relationship emerges between cost and TV screen diagonal length. Interestingly, this relationship is not linear, note the curvature of the apparent trend. As TV screen diagonal is increased, further improvements in size become increasingly costly. We can explain this nonlinearity, to do so we must review how screen diagonal is related to its area.
The size and shape of TV screens are specified by the length of the diagonal across the screen and the aspect ratio. Despite this, I believe that screen area is a much more intuitive unit for comparing TV sizes. The screen of a TV is rectangular, so we can find its area by multiplying the length of its height (H) and width (W).
Importantly, this equation reveals that screen area (A) increases with the square of screen diagonal (D). The area is also modified by aspect ratio, with maximum area at a 1:1 ratio. Since most modern TVs have an aspect ratio of 16:9, we can alternatively write:
The relationship between screen area and diagonal length helps account for the nonlinearity between diagonal length and cost. The quantity of materials required for manufacturing scales with area rather than diagonal length, so it is sensible that screen area and cost may be proportional. This turns out to be an accurate assumption, as seen by replotting the normalized Samsung and LG series data against screen area.
There is a strong linear correlation between cost and screen area (R^2=0.97). For comparison, correlating cost with screen diagonal gave an inferior fit (R^2=0.88). A notable exception to this trend is the outlier at 75” diagonal length (red data point). The deviation at this large size is likely due to current manufacturing limitations, driving up the cost. According to the vice president of TV product marketing at Samsung, there are very few fabrication plants currently operating that are optimized for producing LCD panels of this size.
Having established the relationship between TV screen area and cost using controlled data, we can return to the total data set to gain more insights about TV prices. There was a large range of prices at each TV size, mostly due to the presence or absence of various features in the different models. If the availability of such features is fairly equal across TV sizes, averaging the prices at each size may largely cancel out this variability. I tried this, and it afforded a surprisingly strong linear correlation with screen area.
Given that these data are from averaging all of the TVs sold by Walmart, this is an impressive fit (R^2=0.89). Conversely, these data were less strongly correlated with screen diagonal (R^2=0.79). There are several implications of this. Firstly, it suggests my earlier observation that TV price is proportional to screen area is broadly applicable. In addition, it implies that expensive TV features are near equally represented across the range of sizes. Lastly, the 75” TVs are an outlier from this trend (red data point), reinforcing that this size of TV is disproportionally expensive in the current market.
Overall, the cost of TVs is proportional to screen area. TV prices are therefore “fair,” you pay the same cost per square centimeter of screen you get. The only exception to this is the largest screens (75” and above). These are disproportionately expensive, probably due to limitations of the current manufacturing practices. It is also interesting to consider pixels in light of this. For instance, a smaller 4K TV has the same pixel count as a larger one. Here the cost per pixel is higher for the larger TV, an understandable consequence of each pixel having to be made bigger.
The fairness of these prices may come as a surprise to many consumers, since each additional increase in diagonal length appears progressively more expensive. I have shown that this is merely a consequence of the relationship between diagonal length and area. Though geometrically straightforward, some consumers may not have considered this point. It is unfortunate that screen area is not widely used for comparing TV sizes. In addition to being more intuitive, it also simplifies comparing TVs of different aspect ratios. Though most modern TVs have a 16:9 aspect ratio, older TVs usually had a 4:3 ratio. In such cases comparison of diagonal lengths is particularly misleading.
![]()
LCD display doesn’t operate the same way as CRT displays , which fires electrons at a glass screen, a LCD display has individual pixels arranged in a rectangular grid. Each pixel has RGB(Red, Green, Blue) sub-pixel that can be turned on or off. When all of a pixel’s sub-pixels are turned off, it appears black. When all the sub-pixels are turned on 100%, it appears white. By adjusting the individual levels of red, green, and blue light, millions of color combinations are possible
The pixels of the LCD screen were made by circuitry and electrodes of the backplane. Each sub-pixel contains a TFT (Thin Film Transistor) element. These structures are formed by depositing various materials (metals and silicon) on to the glass substrate that will become one part of the complete display “stack,” and then making them through photolithography. For more information about TFT LCDs, please refer to “
The etched pixels by photolith process are the Native Resolution. Actually, all the flat panel displays, LCD, OLED, Plasma etc.) have native resolution which are different from CRT monitors
Although we can define a LCD display with resolution, a Full HD resolution on screen size of a 15” monitor or a 27” monitor will show different. The screen “fineness” is very important for some application, like medical, or even our cell phone. If the display “fineness” is not enough, the display will look “pixelized” which is unable to show details.
PPI stands for number of pixels per inch. It is kind of pixel density. PPI describes the resolution of a digital image, not a print. PPI is used to resize images in preparation for printing
But you see other lower resolution available, that is because video cards are doing the trick. A video card can display a lower LCD screen resolution than the LCD’s built-in native resolution. The video cards can combine the pixels and turn a higher resolution into lower resolution, or just use part of the full screen. But video cards can’t do the magic to exceed the native resolution.
Aspect Ratio: You might hear 4:3 which is full screen, 16:9 is for widescreen; 21:9 is for ultrawide computer monitors and televisions, as well as cinematic widescreen projectors. Some ultrawide monitors are trying to replace dual monitor.

If you ask TV and theatrical industry groups, they"ll tell you to measure your seating distance to determine the ideal screen size. The farther away you sit, obviously, the smaller your TV appears. The ideal is to have a screen that fills a certain amount of your field of view, though how much is "ideal" is up for debate.
To see all the detail available in a 4K or 8K resolution image you either need to sit very close, or have a very large TV. In fact, if you"re sitting nine feet away, even "big" TVs are still too small for you to see all the resolution for which they"re capable. Or to put it another way, the resolution of your next TV is going to be plenty unless you"re sitting very close, or are getting an exceptionally large TV (over 100 inches). So yeah, Sony offers the following chart.Sony"s recommended seating distance
The other major factor to consider is something I"ll call "room domination." How big does a TV have to be before that looming black rectangular slab seems to be the only thing in the room? This factor is definitely subjective. As someone who"s had a 12-foot-wide projection screen in his house for over a decade, and has also reviewed large TVs, I"ll take the big projection screen over a TV any day (not least because when the "TV" is off, a projector"s screen is white or gray, a TV is glossy black). An 80-plus inch TV can easily just dominate a space. Wall mounting can help a bit, but your TV room risks becoming the TV"s room.
I"ll be honest, I don"t subscribe to any of the established "rules" for viewing distance and screen size. I think the SMPTE and the lesser THX numbers are too TV-biased. I think they vastly underestimate what"s easily possible with modern technology, for those who want more.
I sit nine feet from a 102-inch screen. That"s just the 16x9 portion. The full screen is 2.35:1 and 128 inches diagonal. I can just barely make out pixels when I expand a 1080p projector to the full width of the screen, but in standard 16x9 viewing, I can"t. 4K looks amazing.
Do you want to go that big? Well, that"s a different question. I find larger screen sizes easier on the eyes, as more of your field of view is taken up with the roughly uniform brightness of the screen. In an otherwise dark room, your pupils are more naturally closed to the amount of light thanks to the big screen.
Conversely, I find watching a small screen in a dark room more fatiguing, as your pupils are more open (because of the dark room) with this one annoying pinprick of bright light (the TV). Many people complain about headaches when they watch TV in a dark room. One possible cause is the
The ultimate decision is one of personal preference. My goal here was to point out a rough idea of what"s possible or recommended. For me, I would always err on the side of "too big." An old boss of mine used to say that no one regretted buying a TV they thought might be "too big." My opinion is that a 50-inch TV is too small for most rooms. That"s not to say I think everyone should get a 102-inch screen, but the reality is a 50-inch flat panel is really not that much larger than the 36-inch CRTs of the old days. Since 65- and even 75-inch TVs
![]()
How big is big enough? When it comes to computer monitors, you want something that can fit comfortably on your desk while giving you plenty of screen real estate. While in the past sub-20-inch monitors were commonplace, today, unless you’re really constrained for space, there’s no real need to buy anything under 22 inches. For most, 24 inches is going to be a baseline, as you can pick up a number of screens at that size for around $100, and they look fantastic at 1080p.
For those who want more than that, though, there are plenty of sizes to choose from. Monitors that stretch 27 inches diagonally are increasingly popular, and there are plenty of options beyond 30 inches that are affordable. If you want to go extreme, we’ve even tried some great computer monitors that get close to 50 inches, like Samsung’s CHG90.
While you’ll need to sit well back from those, there’s no denying that they look amazing. They give you the same screen as multiple smaller monitors without a bezel dividing them down the middle. They tend to be rather expensive, though, and if you go really wide, you’ll struggle to find media that can display at close to its native resolution, leaving the picture to either look stretched or surrounded by black.
Anywhere between 24 and 30 inches is going to be perfectly fine for most users. They let you make the most of modern resolutions and color clarity, and they also fit a couple of different web pages open at the same time without needing to use two monitors, which is handy for many professionals. They don’t tend to be too expensive at that size, either, unless you opt for the top-end models.
Today, all the best screens are still LCD monitors that use LED technology for a slim product that saves energy while providing ideal backlighting. We’ve been waiting years for OLED technology to make the transition to PC monitors, it isfinally beginning thanks to brands like LG, but the technology is still relatively rare.
One aspect of PC monitors that you do need to consider, though, is resolution. While 1080p was once the gold standard, today, it’s just the baseline. If you’re happy to spend a little more, there are a few other options worth considering, especially if you want to improve screen space or gaming visuals. Resolution isn’t the be-all and end-all of monitor features, though. In fact, too much resolution on too small of a screen can often be annoying because it shrinks all images down and forces you to enlarge everything to easily read it.
Aspect ratio: The aspect the screen shows images in (length compared to height). A common standard, and your best bet, is 16:9. It works with plenty of content, and it’s great for movies or games. Some fancy monitors like to stretch things out with ratios like 21:9, but that is more suitable for unusual work situations or hardcore gaming. Another common format, 16:10, provides slightly more vertical space for viewing multiple open documents or images. 3:2 is becoming more commonplace in laptops for better web viewing, but that’s rare on stand-alone displays.
Contrast ratio: Contrast ratios tell you the difference between how white and how black a monitor screen can get. Higher contrast ratios are a good sign because that means colors will be more differentiated. However, multiple measurements for contrast ratios exist, and stated specs aren’t very reliable, so take it all with a grain of salt.
Refresh rate: Rated in hertz (Hz), a monitor’s refresh rate is how often it updates the image on your screen. While most support up to 60Hz, some displays now offer much higher refresh rates. That can result in smoother movements on your desktop and support for higher frame rates in games, which can make a big difference in high-paced titles by reducing your input lag. 120Hz to 144Hz is a great range to target, but you could opt for the fastest screens out there with up to 240Hz support. Just make sure you have a high-powered graphics card to back it up.
Response time: Response time indicates how quickly the monitor shows image transitions. A low response time is good for fast-paced action video, twitchy gameplay, and similar activities. Response times are measured in milliseconds, with the best screens able to switch pixels at only a couple of milliseconds, but not everyone needs such fast reactions.
Viewing angle: Viewing angle isn’t as important for a monitor as it is for a TV screen, but if you like to watch shows on your computer with groups of friends, aim for a larger viewing angle so people at the sides can see easily. Anything above 170 degrees is good news here.
There are also curved monitors to consider. They don’t have different resolutions than their flat counterparts, but present a concave curved screen, which can make a difference to the experience and tasks they’re best suited for.
A curved screen can provide a more immersive experience, especially when it comes to certain games (racing games are a favorite for curved ultrawides). This largely benefits single-player games where a user will be comfortable sitting at the center of the screen.

As we previously noted, one of the most exciting recent TV developments is high dynamic range, or HDR. When done right, HDR boosts a TV’s brightness, contrast, and color, making the pictures on the screen look more like real life.
![]()
I’ve reviewed monitors and laptop displays for over a decade. While different monitors suit different owners, I believe the idealhome office monitor has a 27-inch screen and 4K resolution. It uses an IPS panel, reaches a brightness of at least 250 nits, and can display 99 percent of the sRGB color gamut. Around back you’ll find a USB-C port that can deliver enough power to charge a laptop, along with HDMI and DisplayPort, plus an ergonomic stand that can adjust for height and attaches to a VESA mount.
Most standard-width monitors come in one of three sizes: 24-inch, 27-inch, and 32-inch. Bigger is not necessarily better. A large display may look more impressive, but I find it uncomfortable when placed close to my eyes. There are also practical considerations like perceived pixel density. A big monitor will look fuzzier than a smaller monitor of the same resolution unless you move it further away — which isn’t always an option.
You can be creative with size if you mount a VESA-compatible monitor to an arm, as this will let you move it to your preference (including the proper ergonomic height). If you’re just doing it to move a large monitor farther away, though, give it a second thought. Why spend more for a larger monitor, and a monitor arm to position it farther away, instead of buying a smaller display to start?
If you’re looking to stretch more screen across your field of view for multitasking, you might consider an ultrawide monitor instead. There, I think the choice is clear: go for a 34-incher.
Smaller models lack vertical space. A 29-inch ultrawide has less vertical display space than a 24-inch widescreen. Larger models generally have the opposite problem. Many are too big for a typical home office desk, not only because of their screen size, but because of the large stands used to stabilize them (some are several feet wide). You might need to rearrange your desk around a 38-inch or 43-inch monitor or add a top-tier monitor arm to make it work.
Resolution is key. A higher resolution means more pixels, and more pixels means a sharper, crisper image. More pixels also adds flexibility. You can use scaling features in Windows and MacOS to increase content size for readability, or crank it down to show more content at once.
Twenty-four-inch monitors are a different story; 4K is rare, and 1440p is often the premium option. In fact, most monitors of this size are 1080p. It’s not ideal but it’s acceptable, as decreasing size increases pixel density. A 24-inch 1080p monitor is noticeably sharper than a 27-inch 1080p monitor.
Want a 34-inch ultrawide? Look for 3,440 x 1,440 resolution. This leads to a pixel density nearly identical to a 27-inch 1440p monitor (about 109 pixels per inch). A handful of super-budget ultrawides use 2,560 x 1,080 resolution which, like 1080p on a large monitor, isn’t pleasant. LG’s 5K Ultrawide line is the sole option if you want 4K-equivalent pixel density in a 34-inch ultrawide, but you’ll typically pay $1,500 or more. LG’s well-reviewed 38-inch with 3,840 x 1,600 resolution costs even more at $1,600 and, though it might offer more screen, is equal in pixel density to a 3,440 x 1,440 ultrawide.
USB-C monitors are also expensive. The benefits often add several hundred dollars to the price when compared to an otherwise similar monitor that lacks USB-C. It’s worth the money, though: in 2019, I purchased a Viewsonic VG2455-2K for a sweet one-cable connection to USB-C capable laptops, and find it ideal for swiftly connecting my laptop to a larger screen.
If you are looking for an HDR monitor, DisplayHDR certification labels could help, but know that “peak luminance” means “a tiny region on screen can get that bright,” and DisplayHDR 400 is barely HDR at all. Screenshot by Sean Hollister / The Verge
Nearly all monitors sold today use an LCD panel based on one of three technologies: twisted nematic (TN), in-plane switching (IPS), and vertical alignment (VA).
If you demand the very best from a monitor, however, I recommend Mini LED. OLED’s burn-in worries are legitimate on the PC which, compared to a television, will display static images more frequently. Mini LED can’t match OLED’s contrast, but it’s still a major upgrade over a backlit LCD screen. There’s also the emerging category of quantum dot OLED (QD-OLED) screens, but manufacturers haven’t announced prices for those yet.

The table below shows dimensions for common TV sizes, including diagonal, width, and height dimensions, in inches. This is useful for finding the dimensions of a 16:9 TV screen when you know the diagonal measurement.

Contrast ratio is a measure to compare the darkest black with the whitest white. Plasma TVs score well on this parameter with a contrast ratio of up to 3000:1. LCD TVs have a contrast ratio of up to 1000:1; however, this metric is calculated differently for LCDs so it"s not an apples-to-apples comparison. Plasma TVs, in general, offer a better contrast than LCDs.
Older models of Plasma TVs can suffer from burn-in produced by static images. After extended periods, stationary images "burn in" the screen and produce an after-image ghost which remains permanently on the screen. This no longer affects new Plasma displays, as they continually shift the image around to prevent the image from being stationary.
LCD TVs do not suffer from burn-in. However, it is possible for individual pixels on an LCD screen to burn out. This causes small, visible, black or white dots to appear on the screen.
In comparison, the nature of LCD technology – where a backlight shines through the LCD layer – makes it hard for it to achieve true blacks, i.e. true absence of light. There is always some light leakage from adjacent picture elements in an LCD panel.
LCD TV displays reproduce colours by manipulating light waves and subtracting colours from white light. This makes it more difficult for maintaining colour accuracy and vibrancy. But, LCD TVs have colour information benefits from the higher-than-average number of pixels per square inch found in their displays.
In plasma TVs, each pixel contains red, green, and blue elements, which work in conjunction to create 16.77 million colours. Colour information is more accurately reproduced with plasma TV technology than it is with any other display technology, including LCD TVs.
Plasma TV displays refresh and handle rapid movements in video about as well as normal CRT TVs. LCD TVs were originally designed for computer data displays, and not video. Refresh rates are therefore not as good, but LCD TVs are fast catching up.
LCD TVs life span is typically 50,000-60,000 hours, which equates to about 6 years of 24/7 use. However, LCD TVs will actually last as long as its backlight does, and those bulbs can be replaced - so in essence there"s nothing which can wear out.
Plasma TVs do not use Mercury while LCD TVs do in their CCFL backlight. However, this issue is a red herring. Most common high-efficieny phosphorescent lamps use mercury and it is not a big deal. The amount of mercury used in LCD TVs is very small and besides, the user never comes in contact with it.
Most electronics retailers carry both LCD and Plasma TVs, including Best Buy, Amazon.com, Wal-Mart, Dell, Target, P.C. Richard & Son, Sears, Costco and hhgregg.com.
Ms.Josey
Ms.Josey