teensy tft display supplier

In order to follow the market tread, Orient Display engineers have developed several Arduino TFT LCD displays and Arduino OLED displays which are favored by hobbyists and professionals.
Although Orient Display provides many standard small size OLED, TN and IPS Arduino TFT displays, custom made solutions are provided with larger size displays or even with capacitive touch panel.

The Teensy is a breadboard-friendly development board with a large number of features in a small package. Each Teensy 3.6 comes pre-flashed with a bootloader allowing to program it through the onboard USB connection; there is no need for an external programmer.
Users can program the Teensy working with their favorite program editor using C, or they can install the Teensyduino add-on for the Arduino IDE and develop Arduino sketches.

This 3.2″ TFT LCD is a full color display with a resolution of 240 x 320 pixels or 320 x 240 pixels depending on how it is oriented. It uses the ILI9341 controller with SPI interface. It also includes a resistive touchscreen with built-in XPT2046 controller.
These full color displays are large enough for many applications even when using touch. The supplied stylus is helpful when using smaller touch targets.
Internally the display operates at 3.3V, so if using with a 5V microcontroller, be sure to include logic level shifters on the data lines to prevent possible damage.
In general, it is best to operate the display off of 5V to ensure enough power is available. Be careful of trying to operate the display from the built-in 3.3V available on Arduino and similar microcontrollers since these power sources often have limited current capability and may overheat.
These modules are breadboard friendly with a 14-pin header on the back that can be inserted into a solderless breadboard or a 14-pin female connector can be used to connect to it if the display is to be mounted. The display is mounted on a stiff PCB that provides good support, but be sure to press on the header pins or PCB when applying pressure to insert them into a breadboard and not press on the glass to avoid possible damage.
Though these displays can seem to be a bit intimidating to use at first, just follow these steps to get up and running fairly easily. The pin labeling is on the back only, so we have pictures with the pins labeled on both the front and back to make life a little easier.
Because of the 3.3V I/O requirement, I am using a Teensy 4.1 for easier hookup but any 3.3V MCU can be used. If using an Uno or other 5V MCU, be sure to include
I’m also using the Teensy 4.1 because it is currently the fastest Arduino compatible board (600MHz 32-bit vs Uno 16MHz 16-bit) and this example application of calculating Mandelbrot fractals and updating the LCD can take a long time on an Uno (77-105 seconds) and only takes about 1.25 seconds on the Teensy 4.1. If using a 3.3V Arduino like a Due, hookup will basically be the same.
Connect the SPI and control lines for the display. In our example we are using hardware SPI as it gives the best performance. The SPI pin location will depend on the MCU you are using.
If you just want to check the display functionality and speed, the ‘graphicstest’ example program installed as part of the Adafruit_ILI9341 library is a good one to run.
The program below is a modified version of the Mandelbrot example program that gets installed with the Adafruit_ILI9341 library. It was pruned down in size and basic touch added. The program just calculates the Mandelbrot set and draws it to the screen pixel-by-pixel as it is calculated. The math is fairly intense for each pixel, so it is a good judge of the power of the MCU. The display update speed is thus limited by the MCU that is doing the calculations and is not limited by the display itself.

The uLCD-24PTU-AR is an Arduino Display Module Pack, which includes a uLCD-28PTU 2.8" LCD Display with Resistive Touch, a 4D Arduino Adaptor Shield and 5 way interface cable.
The uLCD-28PTU-AR customises the uLCD-24PTU Display specifically for interfacing with the Arduino, to provide a quick and easy interface without any wiring hassles.
The Arduino Display Module Pack enables an Arduino user to quickly connect the 4D Arduino Adaptor Shield to their Arduino, connect the 5 way cable between the Adaptor and the Display Module, and be connected in seconds to start programming their new 4D Systems Display.
The uLCD-28PTU-AR has a comprehensive range of serial commands ready to be received from the Arduino, to draw primitives such as lines, rectangles, circles and text, displaying images, playing sound and logging data to uSD card.

Arduino shields are meant to extend the capabilities of the Arduino, while also making initial development of a new device much easier for the user. In this case, our NHD-FT81x-SHIELD provides seamless connectivity and direct software compatibility for the user with any of our EVE2 TFT Modules and an Arduino. This shield has built-in logic level shifting, an on-board buck switching regulator, an audio power amplifier, and a microSD card reader for expandable data storage.
Choose from a wide selection of interface options or talk to our experts to select the best one for your project. We can incorporate HDMI, USB, SPI, VGA and more into your display to achieve your design goals.
Equip your display with a custom cut cover glass to improve durability. Choose from a variety of cover glass thicknesses and get optical bonding to protect against moisture and debris.

Crystalfontz America is the leading supplier of LCD, TFT, OLED and ePaper display modules and accessories. We specialize in providing our customers the very best in display products, cables and connectors.
In addition to our large catalog of displays, we offer LCD development kits, breakout boards, cables, ZIF connectors and all of the LCD software and drivers you need to develop your product or project. We are located in the U.S. so we can get product to you fast!

CC3000 is troublesome, partly because it uses SPI_MODE1, partly because it uses the SPI port from within an interrupt. Adafruit’s CC3000 library has code to backup the AVR’s SPI registers, change them to MODE1, and then restore when it’s done, so the conflicting clock polarity isn’t (usually) an issue on AVR. But on Due, Teensy 3.1 and all other non-AVR chips, their specific SPI registers aren’t also in the code, so you can pretty easily end up with the SPI port left in the wrong mode.
Interrupts are also a huge problem. Using the CC3000 in simple blocking ways, where you fully complete all communication before you try to write to the display or read the touch screen or access the SD card tends to work. But if you use another device while the CC3000 generates an interrupt at just the wrong moment, it can run its SPI code while another device has chip select asserted, causing all sorts of terribly wrong results.
The touch controller on Adafruit’s displays comes in a couple different types, which need different SPI data modes, and some require very slow clock speeds. Again, they have AVR-only register save/restore, so usually you don’t get wrong settings into other libraries, but there’s no hardware specific code in those libs for non-AVR chips.
My recent work on SPI transactions, which will be in Teensyduino 1.20 (already in the latest release candidate and on github) and is planned for Arduino 1.5.8 (already in their github source and nightly builds) aims to solve both the settings and interrupt problems, in a hardware independent way. Adafruit has already merged my patches to their libs, at least for these most common ones, so they use the new SPI transaction stuff when compiled on those new versions.
Ms.Josey
Ms.Josey