diy custom lcd display in stock
If you have ever wondered what it took to make your own custom graphic LCD from scratch, this video from [Applied Science] is worth a watch. It’s concise and to the point, while still telling you what you need to know should you be interested in rolling your own. There is also a related video which goes into much more detail about experimenting with LCD technology.
[Applied Science] used microscope slides and parts purchased online to make an LCD that displays a custom graphic when activated. The only step that home experimenters might have trouble following is coating the glass slides with a clear conductive layer, which in the video is done via a process called sputtering to deposit a thin film. You don’t need to do this yourself, though. Pre-coated glass is readily available online. (Search for Indium-Tin Oxide or ‘ITO’ coated glass.)
The LCD consists of a layer of liquid crystal suspended between two layers of conductive glass. An electrical field is used to change the orientation of crystals in the suspension, which modulate the light passing through them. Polarizing filters result in a sharp contrast and therefore a visible image. To show a particular shape, some of the conductive coating is removed from one of the layers in the shape of the desired image. The process [Applied Science] uses to do this is nearly identical to etching a custom PCB.
Parts of LCD technology can be quite hackable. Neither of these videos are brand-new, either. Have any of you taken on the challenge of DIY LCD displays? We’ve seen experiments with electrochromatic glass using old LCD displays, as well as experiments in playing with polarized light to hide secret messages on LCD screens.
The process to take your LCD idea from a concept to having prototype samples in hand is simple and requires just the few steps listed below. (Download PDF)
In many cases, FocusLCDs’ lead time for custom LCD samples is as little as 6-7 weeks after you approve our counter drawings and data sheet. This lead time increases by 4-6 weeks between November to early February due to Chinese New year. Standard production orders for custom displays have a lead time of 10-12 weeks, which can increase by 2-4 weeks during Chinese New year.
Focus Display Solutions offers several LCD technologies. The majority of these displays can be customized to fit your need. Below is a short introduction to each type of LCD.
Ultra-Wide Viewing Display (UWVD) is a new technology that is named after one of its most notable characteristics – it is viewable from all angles. In addition to the viewing angle, this technology provides a better contrast than other options and can allow for multiple colors. Call one of our design specialists today to see if UWVD is the right technology for you.
Thin-Film-Transistor Liquid Crystal Displays (TFTs) are perhaps the most encountered display technology we see daily. Often seen in cell phones, tablets, cameras and countless other devices, this technology offers several hundreds of thousands of colors with a high pixel count to offer supreme visual clarity. In addition, all TFTs are available off the shelf with resistive and capacitive touch panel options.
Character LCDs have been around since the 1950s and are still very common. These displays offer 256 selectable characters and are available with several different font tables to show a variety of languages. They are most commonly known for their ease of programming wide variety of sizes, character arrays and colors.
Liquid Crystal Displays or more commonly known as LCDs are one of the most common electronic components which help us interact with an equipment or a device. Most personal portable equipment and even gigantic industrial equipment utilize a custom segment display to display data. For many portable consumer electronics, a segment LCD display is one of the biggest contributors to the overall cost of the device, hence designing a custom segment display can drive the cost down while also utilizing the display area in the most optimum manner. These displays have the lowest cost per piece, low power requirements, and a low tooling fee too.
At first thought, designing a custom segment LCD might look like a Herculean task, but trust me that it is easier than it seems. In this article, we have summarised and compared the display types and available technologies which are required to construct a custom segment LCD. We have also provided a flowchart that can act as a step-by-step guide while you design your own custom LCD. We have also provided the process we followed, a require gathering sheet we used for communicating our needs to the manufacturer, and a few other data and the quotation we received from the manufacturer.
Icons: A silhouette of any shape can be placed on the glass which enhances the ability to display data. For example, a symbol of a heart can be made to denote heart rate or an icon for a low battery to show that the battery needs to be charged. Icons are counted as a single pixel or segment and can give a lot more details than similar-sized text.
LCD Bias– It denotes the number of different voltage levels used in driving the segments, static drives (explained later in this article) only have 2 voltage levels or 2 bias voltage while multiplex drives have multiple voltage levels. For example, 1/3 will have 4 bias voltages.
LCDs utilizes the light modulating properties of liquid crystals which can be observed by using polarizing filters. Polarizing filters are special materials that have their molecules aligned in the same direction. If the light waves passing through polarisers have the same orientation as the filter, then the molecules of lights are absorbed by the filter, hence reducing the intensity of light passing through it, making it visible.
A custom LCD is important for maximizing the efficiency of the display area by adding custom symbols and characters. It also helps in reducing the cost and improving energy efficiency of the product. A higher number of custom symbols and specified placement of numerical and alphanumerical characters make the display more informative and readable for the user. This makes it look better than the plain old boring displays we get in the market. Furthermore, we can specify the viewing angle, contrast, and other specifications which can increase durability or give a better value for money for our intended usage. A typical Custom Segment display is shown below, we will also show you how to design and fabricate the same further in the article.
The LCD display doesn’t emit any light of its own, therefore it requires an external source of illumination or reflector to be readable in dark environments.
While designing a custom segment LCD display, we have the leverage of choosing a lot of parameters that affect the final product. From the color of the display to the illumination technique and color of illumination as well as the type of input pins. Some important considerations we need to take while designing a custom 7 segment display are - the type of display, i.e. positive or negative, illumination method, driving technique, polarising type, and connection method. All these design criteria are explained below:
Positive and negative displays can be easily distinguished by the colour of the background and characters. Some common differences between the positive and negative displays are:
So, which one should you choose? When the displays are to be used in areas with higher ambient light, we should select positive segment LCD display as it has better visibility than negative segment LCD displays without using a backlight.
As we know that LED displays don’t emit any light, hence to illuminate it and make it visible in a dark environment, we can use different methods of illumination. The most common LCD Illumination methods are compared below:
For displays that need to be used for budget-friendly devices that should be small and rugged, LED lights are preferred for the displays due to the high durability and low cost of operations. For high brightness, CCFL and Incandescent lights can be used.
A polarizer film is the most important component of an LCD display, which makes it possible to display characters by controlling the light. There are 3 types of polarizers that can be used in the LCD display, the properties and difference are given below:
Displays can be categorized into two types, passive displays, and active display, passive displays are simpler to construct as they have 2 connections at each segment, the conductors comprise of an Indium Tin Oxide to create an image, whereas the active displays use thin-film transistors (TFT) arranged in a grid. The name is due to its ability to control each pixel individually.
If your displays have fewer segments, then static LCD drive is preferred as it is easier to control and cheaper to construct, and has a better contrast ratio. But let’s say that if the number of segments in the display are more than 30-40 then a multiplex LCD drive should be preferred as it has multiple common pins, hence reducing the total number of pins required to drive the display.
Choosing a connector type!!! For the prototyping phase or if you need to connect your LCD display on a Microcontroller directly, a pin type connector is the best and most economical option you have. If you need to connect your LCD display in a final product with a high volume of production which also requires to be extremely durable, but at the same time should not take up a lot of space, a Flex type LCD Connector will work best for you
LCDs have limited viewing angles and when seen from an angle they lose contrast and are difficult to be observed. The viewing angle is defined by the angles perpendicular to the center of the display towards its right, left, up, and down which are denoted by the notations 3:00, 9:00, 12:00, and 6:00 respectively. The viewing angle of LCD can be defined as the angle w.r.t. to the bias angle at which the contrast of segments is legible.
To improve the viewing angle in an LCD, a Bias is incorporated in the design which shifts the nominal viewing angle with an offset. Another technique is to increase the Voltage, it affects the bias angle, making the display crisper when viewed from a direction.
For example, the viewing angle of a TN type TFT LCD is 45-65 degrees. Extra-wide polarising film (EWP) can increase the viewing angle by 10 degrees, using an O film polariser can make the viewing angles 75 degrees but these come at a cost of reduced contrast.
LCD Control chip or LCD driver chips can be mounted on the flex cable, display, or externally on a PCB. The placement of LCD control chip can affect the cost and size of the display. The 2 most common methods of chip placement are-Chip of Board (COB)and Chip on Glass(COG) which are described below:
We planned to design an air quality monitoring system for which we needed a custom segment LCD panel for an air quality monitoring device. Our product needs to display the following data: 2.5-micron and 10-micron particulate matter (PM) suspended in the air; the units should be in parts per million (PPM). CO2 in the air in PPM along with total volatile organic compounds present in the air in parts per billion (PPB). To make the product more usable, we included time in 24-hour format, Temperature in ºC, Battery status, loudspeaker status, Bluetooth status, and Wi-Fi status. And for some personal touch, we also added how good the air quality in the room is by using 3 different smileys.
We realized that it was impossible to provide all these data in a generic LCD available in the market, thus decided to build a custom LCD for our project.
A step-by-step flowchart is shown below to walk you through each and every step of selecting components and getting your custom segment LCD manufactured.
We started by listing down our requirements and drew a mock-up of the display on paper. After finalizing the placement of all the segments and icons on the prototype sketch of the display, we then decided which all icons and segments have to be kept on for the whole time and which needs to be driven. Realizing that there are too many segments, characters and icons, hence we selected a multiplex drive with 8 common pins which helped us bring down the total pins from an estimated 180 pins to less than 40 pins.
Since the device was meant to be used inside houses and offices, which are more often than not well lit and protected from environmental conditions, we opted for a positive mode display. For superior contrast ratio and better viewing angle, we chose a Film Super Twisted Nematic Display (FSTN) with a drive condition of 1/8 Duty and bias of 1/4.
Usually, the displays are mounted at a height of 4.5 feet from the ground, thus the viewing direction was selected to be 12"O clock with an operating frequency of 64Hz. We selected a Transmissive polarizer for the front glass and a reflective polarizer for the rear glass so that the natural light can pass through the front panel and the display can achieve the maximum contrast without the need for backlighting and we opted for the pin type connectors as they are easy for prototyping and are suitable for harsh environment with a lot of vibrations and shocks which best suited our purpose.
In the above image of a custom display design, we sent to the manufacturer, the red lines over multiple characters indicate that all these are considered as a single segment. For the sake of simplicity, we added test like T, S, U, B to denote Text, Symbols, Units, and Battery respectively. These characters were followed by numbers to simplify communication between us and the manufacturer. For example, if we needed any particular text or symbol to remain on, we can easily specify that to the manufacturer by using the corresponding text for that segment.
We mailed our requirements to multiple LCD manufacturers, (you will find a lot of LCD manufacturers on the Internet). Most LCD manufacturers have competitive pricing, and reply within a week. A sample requirement sheet is shown above which a customer needs to fill to specify all the details to the manufacturer.
This is a sample Custom Segment LCD quotation we got from one of the manufacturers. As you can see, the cost is based on the quantity. Higher the quantity, lower the cost. Apart from the cost per quantity, there is one more component called tooling fees. Tooling fee is a one-time fee charged by the manufacturer. It is for the technical design, support, and customization of the product. Customization of PCB or tooling of LCD can drive the tooling price higher or lower.
A custom segment LCD can help you personalize your product while also saving the overall cost of your product. The whole process will take you around 2-3 months, which will include the designing phase, prototyping phase, and getting your custom segment LCDs delivered to your doorstep. Higher ordering quantity will reduce the cost per piece of each unit, thus driving down the cost of your final product.
Orient Display is a company that specializes in manufacturing LCD displays, touch panels, OLED displays with competitive prices. The company was founded in 1996 by specializing in fields of production, R&D, quality controls. Thanks for the management and employee’s continuous hardworking and enormous effort and shareholder continuous investment over years, Orient Display factory is now the world’s leading custom LCD manufacturer in flat panel industry and is listed as a public company in China stock market. Now, Orient Display factory has 2 production lines that can produce PMOLED and AMOLED custom display modules. Factories have complete quality and environment management system, ISO9001, ISO/IATF16949, ISO14001, IECQ QC080000. Orient Display takes around 18% market share in global automotive market and is No.1 in automotive capacitive touch screen.
Orient Display has supported customers with custom LCD displays for tens of thousands of types and models for automotive, appliances, medical, smart homes, point of sales, industrial advices, etc. Whether your design requires a small custom LCD display glass, or a fully customized LCD module, or custom monitors and displays equipped with complicated embedded control board with touch panels, our experienced engineers in North America, Europe or in China factory will assist you in designing your customized displays.
Orient Display customer service sends quotation to you (might come with technical suggestions according to your targeted applications). The time will depend on the complexity of the project and the time to source components, normally, it takes 1-3 days for custom LCD glass panels, 2-5 days for custom LCD display modules or touch panels.
Orient Display engineers provide custom LCD display counter-drawings for you to approve with your signature on the drawing. The drawings might be modified several times until the designs are fully achieved your technical requirements. There can be a lot of technical discussions at this stage. The time our engineers take to arrange drawings also depend on the complexity of the project. Normally, it takes 1-3 days for custom LCD glass panels, 2-5 days for custom LCD display modules or touch panels.
After your drawing approval, Orient Display will start to make samples or prototypes for you to test. The lead time also varies depending on the production complexity and component/material sourcing. Normally, it takes 4-6 weeks for custom LCD glass panels, 8-10 weeks for custom LCD display modules or touch panels.
After your sample / prototype approval, Orient Display is ready for production. Orient Display welcomes trial production between the prototypes to large scale production so that you have the opportunity to fully test the custom LCD display or touch panel to run well in your designed products.
Congratulations! You have accomplished the journey of the idea, design, prototype and production in the market. The journey can take from 3 months to 3 years. Whatever the voyage, Orient Display’s engineers, customer services are proud to be part of your design. Our happiness is based on your success.
Dimensions (Specification / Drawing / Sketch of the LCD, if available). If it is a drop-in replacement, it is great to provide files in dwg. or dxf. format.
LCD Mode Preference if you have an idea or let us to decide (TN Positive/Negative, STN Positive YG, STN Negative Blue, STN Positive Gray, FSTN Positive, FSTN Negative, FFSTN Negative);
Dimensions (Specification / Drawing / Sketch of the LCD module, if available). If it is a drop-in replacement, it is great to provide files in dwg. or dxf. format.
LCD Mode Preference if you have an idea or let us to decide (TN Positive/Negative, STN Positive YG, STN Negative Blue, STN Positive Gray, FSTN Positive, FSTN Negative, FFSTN Negative);
Fully custom made TFT LCD display module can be very expensive, the NRE ranges from $80,000 to $1M depending on the size and the resolution of the LCD display and the generation of the production line the LCD display to be produced. For over 99% of our projects, we are talking about the modifications of the standard TFT LCD display. There are a lot of standard color TFT displays available in the market. You are highly likely to find one matching your requirement. If you can’t find a suitable one on our website, please check with our engineers, we have a database in factory with much more types.
Dimensions (Specification / Drawing / Sketch of the LCD module, if available). If it is a drop replacement, it is great to provide files in dwg. or dxf. format.
The above information can be overwhelming. Actually, we design a lot of touch panel and LCD custom display projects without being provided detailed information. Our engineers and customer service can quickly decide the parameters based on the customer’s application. Please feel free to contact our engineers for details.
Mimo Monitors can create a custom-size LCD monitor to almost any specification. Whether it is a minor modification to an existing design, or by utilizing our extensive experience in the industry, we can almost always build what you need.
What we are going to deliver is an industrial open frame monitor, in other words a “bare bones” display sans housing or bezel. These types of displays are meant for integration into kiosks, equipment, or other enclosures. The major advantage to an open frame monitor is that the external design will not change for some time. Therefore, the enclosure it is built into will not need to change for many years.
Aspect ratio - The ratio of the width of the display to the height. Current televisions are 16:9, Old televisions are 4:3 – 16:9, 16:10 and 4:3 are the most popular. Every other aspect ratio is less popular, but any aspect ratio can be created by resizing a panel.
Resolution - The number of pixels in the display – This will depend somewhat on the aspect ratio chosen. Higher resolution is better, but remember the pixel size on a 65” 1080p HDTV is actually 15x worse than on a 800x480 7” display. In other words, resolution doesn’t matter as much as sizes get smaller. Common resolutions are 800x480, 1024x600, 1280x800, 1366x768 1920x1080
Viewing Angle - This will depend on the technology of the LCD panel. TN vs. VA vs. IPS. More here (http://www.tnpanel.com/tn-vs-ips-va/) . In general, the better the viewing angle, the more expensive the resulting display. Typical are 150x140, 170x170 and 179x179. Or more commonly wide viewing angle or standard viewing angle.
Brightness or Luminance - It is the level of light emitted by an LCD display monitor. Luminance is reported in nits or cd/m2. They are actually the same thing. This matters for indoor and outdoor viewing and also if you want to draw people toward the display for advertising. Typical indoor brightness is 150 nits, indoor advertising is 300, bright indoor advertising is 700 and outdoor panels are 1000+
Interface to computer - How the video and optionally touch information is transmitted. Typical options are DVI (digital video), VGA (analog video), HDMI (digital video with audio), DisplayPort (newest digital format) and DisplayLink. Touch is almost exclusively USB at this time. This chooses the number of cables in the solution
Single Cable –DisplayLink has an advantage that video information, touch information, and power are transmitted over a single USB connection. Read 5 Reasons to Choose a USB Powered Monitor to learn how they can meet your needs.
Touch panel - Optional human interface for interactivity. Typical choices are Display Only, Resistive (4 or 5 wire), and Capacitive touch options. Our blog discusses the advantages and disadvantages of capacitive touchscreens. SAW is another touch technology that is becoming less and less common.
28” Custom LCD Panel for your digital marquee needs. A great solution for most full-sized multicade cabinets. This screen carries a 1920x360 resolution and high definition pixel density for quality images. Also includes 12v power supply and 8gb USB thumbstick containing 4100 arcade marquee art assets and 6700 home system art assets. Pair with your favorite frontend and load up some marquees! Raw LCD only, mounting not included due to DIY cabinet variables. We recommend using VHB tape to secure the LCD to clear plexi that fits your cabinet. Specs below.
EarthLCD is a leading “Assembled In The U.S.A.” manufacturer of Industrial ezLCD “Smart” Touch Serial LCD’s for Embedded Systems, LCD Touch Monitors, Industrial Grade LCD Kits, LCD Touch Screen Kits, Industrial NTSC Monitors & Kits, Open Frame Monitors, Smart LCD Screens, Touch Screen Monitors, Industrial LCD Touch Screen Monitors, All in one Monitors, Custom OEM solutions, Integrated Solutions for OEM, LCD Touch Screen Modules, Custom LCD Display and LCD Controller Cards.
EarthLCD is a division of Earth Computer Technologies, Inc. originally founded in 1984. A full line of products plus custom engineered solutions are available. We source LCD displays direct from major manufacturers world wide allowing for a cost advantage over our competitors. EarthLCD offer’s the world’s widest variety of LCD’s in fully integrated solutions for OEM supply chain requirements.
EarthLCD targets industries such as Point Of Sale, Industrial Automation, Security, Hospitality, Kiosks, Home Automation, OEM, Gaming, Banking, Service, Test Equipment and Monitoring, Embedded Systems, Automotive, and many other applications.
We come across Liquid Crystal Display (LCD) displays everywhere around us. Computers, calculators, television sets, mobile phones, and digital watches use some kind of display to display the time.
An LCD screen is an electronic display module that uses liquid crystal to produce a visible image. The 16×2 LCD display is a very basic module commonly used in DIYs and circuits. The 16×2 translates a display of 16 characters per line in 2 such lines. In this LCD, each character is displayed in a 5×7 pixel matrix.
Contrast adjustment; the best way is to use a variable resistor such as a potentiometer. The output of the potentiometer is connected to this pin. Rotate the potentiometer knob forward and backward to adjust the LCD contrast.
A 16X2 LCD has two registers, namely, command and data. The register select is used to switch from one register to other. RS=0 for the command register, whereas RS=1 for the data register.
Command Register: The command register stores the command instructions given to the LCD. A command is an instruction given to an LCD to do a predefined task. Examples like:
Data Register: The data register stores the data to be displayed on the LCD. The data is the ASCII value of the character to be displayed on the LCD. When we send data to LCD, it goes to the data register and is processed there. When RS=1, the data register is selected.
Generating custom characters on LCD is not very hard. It requires knowledge about the custom-generated random access memory (CG-RAM) of the LCD and the LCD chip controller. Most LCDs contain a Hitachi HD4478 controller.
CG-RAM is the main component in making custom characters. It stores the custom characters once declared in the code. CG-RAM size is 64 bytes providing the option of creating eight characters at a time. Each character is eight bytes in size.
CG-RAM address starts from 0x40 (Hexadecimal) or 64 in decimal. We can generate custom characters at these addresses. Once we generate our characters at these addresses, we can print them by just sending commands to the LCD. Character addresses and printing commands are below.
LCD modules are very important in many Arduino-based embedded system designs to improve the user interface of the system. Interfacing with Arduino gives the programmer more freedom to customize the code easily. Any cost-effective Arduino board, a 16X2 character LCD display, jumper wires, and a breadboard are sufficient enough to build the circuit. The interfacing of Arduino to LCD display is below.
The combination of an LCD and Arduino yields several projects, the most simple one being LCD to display the LED brightness. All we need for this circuit is an LCD, Arduino, breadboard, a resistor, potentiometer, LED, and some jumper cables. The circuit connections are below.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.
First of all, don’t be afraid of the word “custom” in front of LCD display. The idea of getting exactly what you need is very exciting, but your enthusiasm could be quickly deflated by all of the misconceptions of this process and not being able to meet your budget or schedule. At Phoenix Display International, we don’t want this to happen to you. In fact, our mission is to never let our customers go line-down. In other words, we want your display to be the one thing you don’t have to worry about.
To be clear, we may be a little different than others. We are a build to order company. Meaning that we only build a product when our customers’ order it. We do this because there are so many variations of each display possible, and the waste associated with high inventory and excess inventory add to the cost of every single display. So, we skip that. The down side is that we are not for everybody and we are unable to support the smaller projects. The upside is that we are building specifically for each customer, so each configuration is customizable and at the lowest possible true cost.
Again, we may be a little different. We actually ship our products into the US via ocean instead of air. It takes more planning, but the result is roughly a 3% reduction in freight costs which are passed on to our customers. This change in ship methods add 4 weeks to our overall lead-time but can easily be expedited when needed by shipping traditional air at any time.
Mass production manufacturing lead times are typically 8 weeks. The long lead-time component is typically the LCD glass at 6 weeks with 2 weeks available to manufacture the components into the complete LCD module. So, 8 weeks manufacturing with 4 weeks shipping, gives the standard and most economical 12-week lead time. With a simple expedited shipping this can easily be sped up to 8 weeks.
So with shipping accounted for, we’ll usually estimate eight to 12 weeks for your production LCD displays in total. An eight-week time frame if we’ll be shipping your display via air, and more of a 12-week time frame if it’ll be going by ocean.
For a new product there are two paths, standard or custom. Often for a standard product, meaning the configuration already exists in this exact format that you need, the lead-time is 0-2 weeks. Either there are samples available, or the components are available, and they just need to be manufactured into your sample.
For a custom display, the process is a bit longer. I’ve seen this done in as quick as 2 weeks, and on long side it can become dependent on the customer’s design iteration process and I’ve seen this take years. But the typical experience for a full custom display is 2 weeks for the design and iteration process, and 4-5 weeks for tooling and assembly, resulting in 6-7 weeks for the first samples.
As all Phoenix Display products are customized to the needs of each customer, so can the delivery. There are options of accelerating the supply chain and manufacturing to shorten this schedule when possible, as well as carrying stock of some of the longer lead-time components to shorten this lead-time as well. All, done on a case by case basis.
As mentioned before, we aim to never let our customers go line-down, so we regularly do whatever we can to expedite our processes and meet your timeframe.
We stay focused on keepingmid-volume customers, so we have more agility and availability to work quickly on your behalf and give you more of our attention.
Alternately, we canorder components or full displays based on forecasts, which allows our customers to order releases and get them the next day. One example of this would be TFT glass panels, which sometimes have as much as a 26-week lead time. By keeping an inventory of these, we greatly expedite the whole manufacturing process.
Occasionally, we need to work even more quickly for a customer. In these scenarios, we’ll sometimes go with an approach that’s a bit controversial. Let’s say a customer needs to test five parts in five weeks, but then two weeks later needs 200 parts. Since typical production lead times are eight weeks (for manufacturing), that just doesn’t work.
If it’s a project like this, and we’ve fully assessed the risks, we can go in and build all the necessary parts at once. Or, we’ll build it up to a point. But we have to be very careful with this approach. When we do this, we don’t have time to make a prototype, and skipping this is risky in and of itself. But if it’s a simple, low-cost display, it can be worth it to just go for the build. If it doesn’t work, we can scrap them and lose the $1K-$2K it cost to make them, but if it does work, we’ve shaved off a ton of time. It’s a gamble, for sure, but one we take when necessary.
So, there you have it. If you’re interested in a custom or standard LCD displays, we hope you’ll consider Phoenix Display International. We’ll turn around the highest quality product to you, and we’ll make sure we meet your timing and never leave you line down.