tft lcd driver principle in stock

LAPIS Technology"s display drivers realize uniform and fast pixel charging for 8K 120Hz, 75-inch, and larger panels with the unique technology of panel load charging.

LAPIS Technology"s display drivers use high-speed point-to-point interface technology *2 (4Gbps), which enables large amounts of display data transfer in a short time.Our products have been used in many panels with high refresh rates such as 360Hz.

tft lcd driver principle in stock

INT028ATFT and INT028ATFT-TS are embedded display driver boards based on our 2.8 inch 240 x 320 RGB resolution TFT display module. Mounted on the embedded board is the RAIO RA8872 LCD controller that offers the following features and benefits:

tft lcd driver principle in stock

The provided display driver example code is designed to work with Microchip, however it is generic enough to work with other micro-controllers. The code includes display reset sequence, initialization and example PutPixel() function.

Please see the DT028CTFT for reference designs. The schematics between the B and the C are the same with the exception that the B does not have the IPS interface.

tft lcd driver principle in stock

Since the reference voltages are connected to all channels, many DACs may use the same reference voltage. The more DACs there are connected to a single reference voltage, the larger the required C-DAC settling time. This study simulates the settling time for different numbers of connected DACs using a 0.35-μm 5-V CMOS model. Figure 11 shows the simulated results where the settling time is measured at 99.9% of its final voltage for a full swing (0.266 V ~ 4.75 V). The settling time is 5.2 μs when 200 DACs are connected to a single reference voltage. Although a column driver IC contains several hundreds or even up to a thousand DACs, these DACs are distributed to 256 (28) reference voltages. This means that not all the DACs are connected to a single reference voltage. A typical UXGA (1600×1200) display has a pixel clock frequency of 162 MHz and a horizontal scanning time of 9.877 μs [4]. Hence, the proposed column driver is suitable for UXGA displays.

Due to the limited silicon area, the proposed LCD column driver has only four channels. The 10-bit LCD column driver with R-DAC and C-DAC was fabricated using a 0.35-μm 5-V CMOS technology. Table I shows the device sizes used in the proposed column driver, where Rtop, Rmid, Rbot, and Ri are designated in Figure 7. Figure 12 is a photograph of the die. Except for the resistor string of the R-DAC, the die area is 0.2×1.26 mm2 for four channels. Each RGB digital input code is 10-bits wide.

The Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) are typically measured for a DAC. However, it is difficult to determine these two specifications for a nonlinear DAC. To demonstrate the performance of the proposed circuit, the nonlinear gamma voltages are not applied to the R-string and the resistor values of the resistor string are made equal. Since an LCD panel needs several column drivers, the uniformity of different drivers is very important. Figure 13 shows the measured transfer curves of a DAC for eight off-chip column drivers. To show the deviation between different chips, Figure 14 provides an

enlarged view of the transfer curves, where the maximum deviation is 3.5 mV from the mean. This deviation is mainly due to process variations. The approach in this study uses no error correction. Hence, the deviation can be reduced by applying an offset canceling technique to the buffer amplifier. Figures 15(a) and (b) show the DNL values for positive and negative polarities, respectively. Figures 16(a) and (b) show the INL values for positive and negative polarities, respectively. The combination of R-DACs and C-DACs creates two groups of DNL values. The maximum DNL and INL values are 3.83 and 3.84 LSB, respectively. This study uses a 1-LSB voltage of 2.44mV to calculate the INL and DNL values. The linearity, however, is less important than the deviations between off-chip drivers for LCD drivers [2].

Figure 17 shows the measured output waveforms of two neighboring channels under dot inversion for the RGB digital inputs of ‘1111111111.’ Here, the voltage levels for negative and positive polarities are 0.266 V and 4.75 V, respectively. A load resistor of 5 kΩ and a capacitor of 90 pF were used. Figure 18 shows a similar waveform for ‘0000000000’ inputs, where the corresponding voltage levels for negative and positive polarities are 2.425 V and 2.598 V, respectively. These two figures show that the settling time is within 3 μs, which is smaller than that of previously published work [2] and standard UXGA displays [5]. Table II summarizes the performance of the proposed column driver IC. The average area per channel is 0.063 mm2, which is smaller than the reported areas of fully R-DAC-based column drivers [5, 8]. These experimental results show that the proposed column driver is suitable for UXGA LCD-TV applications.

tft lcd driver principle in stock

A TFT LCD,  or a thin film transistor liquid crystal display, is one of the fastest growing forms of display technology today. The thin film transistor (TFT) is a type of semiconductor device used in display technology to enhance efficiency, compactness, and cost of the product. In conjunction with its semiconductor properties, the TFT LCD is an active matrix display, controlling pixels individually and actively rather than passively, furthering the benefits of this semiconductor device.

The TFT LCD is built with three key layers. Two sandwiching layers consist of glass substrates, though one includes TFTs while the other has an RGB, or red green blue, color filter. The layer between the glass layers is a liquid crystal layer.

The Architecture of a TFT Pixelbelow) from the other substrate layer of the device and control the amount of voltage applied to their respective sub-pixels. This layer also has pixel electrodes between the substrate and the liquid crystal layer. Electrodes are conductors that channel electricity into or out of something, in this case, pixels.

The outer sides of the glass substrates (closest to the surface or closest to the back) have filter layers called polarizers. These filters allow only certain beams of light to pass through if they are polarized in a specific manner, meaning that the geometric waves of the light are appropriate for the filter. If not polarized correctly, the light does not pass through the polarizer which creates an opaque LCD screen.

The twisted nematic effect is one of the cheapest options for LCD technology, and it also allows for fast pixel response time. There are still some limits, though; color reproduction quality may not be great, and viewing angles, or the direction at which the screen is looked at, are more limited.

The light that passes through the device is sourced from the backlight which can shine light from the back or the side of the display. Because the LCD does not produce its own light, it needs to use the backlight in the OLED) have come into use as well. Typically white, this light, if polarized correctly, will pass through the RGB color filter of the surface substrate layer, displaying the color signaled for by the TFT device.

Within an LCD, each pixel can be characterized by its three sub-pixels. These three sub-pixels create the RGB colorization of that overall pixel. These sub-pixels act as capacitors, or electrical storage units within a device, each with their own independent structural and functional layers as described earlier. With the three sub-pixels per pixel, colors of almost any kind can be mixed from the light passing through the filters and polarizer at different brightness based on the liquid crystal alignment.

tft lcd driver principle in stock

A liquid crystal display (LCD) has liquid crystal material sandwiched between two sheets of glass. Without any voltage applied between transparent electrodes, liquid crystal molecules are aligned in parallel with the glass surface. When voltage is applied, they change their direction and they turn vertical to the glass surface. They vary in optical characteristics, depending on their orientation. Therefore, the quantity of light transmission can be controlled by combining the motion of liquid crystal molecules and the direction of polarization of two polarizing plates attached to the both outer sides of the glass sheets. LCDs utilize these characteristics to display images.

An LCD consists of many pixels. A pixel consists of three sub-pixels (Red/Green/Blue, RGB). In the case of Full-HD resolution, which is widely used for smartphones, there are more than six million (1,080 x 1,920 x 3 = 6,220,800) sub-pixels. To activate these millions of sub-pixels a TFT is required in each sub-pixel. TFT is an abbreviation for "Thin Film Transistor". A TFT is a kind of semiconductor device. It serves as a control valve to provide an appropriate voltage onto liquid crystals for individual sub-pixels. A TFT LCD has a liquid crystal layer between a glass substrate formed with TFTs and transparent pixel electrodes and another glass substrate with a color filter (RGB) and transparent counter electrodes. In addition, polarizers are placed on the outer side of each glass substrate and a backlight source on the back side. A change in voltage applied to liquid crystals changes the transmittance of the panel including the two polarizing plates, and thus changes the quantity of light that passes from the backlight to the front surface of the display. This principle allows the TFT LCD to produce full-color images.

tft lcd driver principle in stock

The TFT LCD screen display, for the general masses, is no longer a difficult noun. And it is another after semiconductor could create a large number of emerging technology products of the business turnover, more because of its features, thin so it than using the application scope of the cathode ray tube (CRT, cathode ray tube) display made by wider. Today, I’m going to talk about how the TFT LCD Touch Screen Display Works.

As I mentioned earlier, liquid-crystal displays (LCDs) refer to a bunch produced by using the TFT screen LCD display. Now for LCD displays the name is directed mostly used in notebook computers, or desktop computer applications display. Is the thin film transistor TFT LCD display. Abbreviation of TFT LCD. This kind of display form has two main characteristics, one is a thin film transistor, the other is TFT LCD itself. Let’s talk about the TFT screen itself.

This type of TFT LCD screen was first discovered, had been spent more than one hundred years ago. In 1888 AD, the Austrian botanist Friedrich Reinitzer, found in the observation from the plant refined out of benzoic acid cholesterol (cholesteryl benzoate) found that when the melting behavior of the compound heated to 145.5 ℃, Solid can melt, presents a kind of solid phase and liquid phase between the half gonorrhea melt flow of the liquid. This situation will always maintain ℃ temperature rise to 178.5 degrees, to form a clear isotropic liquid (isotropic liquid).

The next year, in 1889, the study of thermodynamic equilibrium and the phase transfer German physicist O.L Ehmann, compounds for a more detailed analysis of this. He found that under the polarizing microscope, half of the viscous liquid gonorrhea liquid compounds with different parts peculiar to the crystal birefringence (birefringence) of the optical properties, namely, optical interphase (optically anisotropic). It will be a name to this as the liquid crystal. Since then, scientists will be the nature of this new discovery, known as the fourth state material – LCD (liquid crystal). It at a specific temperature range can have the characteristics of the liquid and solid at the same time.

Its structure is composed of TFT LCD molecules stick together, forming a layer structure. It’s every layer of the molecular long axis direction parallel to each other. And the long axis direction for each layer plane is vertical or a tilt Angle. Due to its structure is very similar to crystals, so they are called phase. The order parameter S (the order parameter) tend to be 1. Type in layered crystal layer and interlayer bonding can fracture because of temperature, so the layer and interlayer sliding more easily. But each layer within the molecular bonding is stronger, so it is not easy to be interrupted. Therefore in the context of the monolayer, Its arranged orderly and viscosity is bigger. If we use the macroscopic phenomenon to describe the physical properties of liquid crystal, we can make a group of regional average points as the liquid crystal molecules are pointing in the direction of the arrow (director), which is the direction of a group of liquid crystal molecules regional average. And with lamellar liquid crystal, because of its structure, the TFT LCD molecules will cambium-like so can point to a vector of different classification of the different lamellar liquid crystal again. When the long axis of the liquid crystal molecules are vertical stand, Call it “Sematic A phase.” if stand long axis direction of the TFT LCD molecules have some Angle of tilt (tilt), call it “Sematic C phase”. In A, C and other letters to name, which was discovered in accordance with the order to address, and so on, there should be A “Semantic phase B is.” but later found A deformation phase B is C phase, And the liquid crystal molecules in the structure layer by layer, in addition to each layer of TFT LCD molecules have tilt Angle, the tilt Angle between layer by layer will form a helical structure.

Nematic is a Greek word, the word mean in the thread is the same as in English. Mainly because with the naked eye to observe the liquid crystal, it looks like a silk pattern. The LCD screen molecules on the space of the regular arrangement of one dimension, all rod long axis of the liquid crystal molecules will choose a particular direction (that is, pointing vector) as the main shaft and arranged parallel to each other. And don’t like lamellar liquid crystal has a layered structure. Compared with the layer column type liquid crystal alignment is no order, That is to say, its order parameter S is smaller than the lamellar liquid crystal, and its viscosity is smaller, so it is easier to flow (its flow mainly comes from the free movement of molecules in the long axis direction). Linear liquid crystal is the common TFT LCD display screen TN(Twisted nematic) type liquid crystal.

Most of the sources of the name, because are generated by the derivative of the cholesterol. But some without cholesterol structure of LCD screen with this liquid crystal phase. This kind of liquid crystal as shown in figure 5, if it is a layer of a layer to separate, would very much like a linear LCD screen. But look at the Z-axis, may find it pointing in the direction of the arrow will with layers and layers of different distribution, like a spiraling when the pointing vector rotate 360 degrees for molecular layer thickness is called a pitch. Because of its every layer like linear LCD, so also known as Chiral nematic phase. In terms of cholesterol crystal, and pointing in the direction vector of the vertical distribution of LCD screen molecules, due to the different point to vector, will have the different optical or electrical differences, thus has produced different features.

If we are according to the molecular weight of high and low points can be divided into liquid crystal polymer (polymer liquid crystal, the polymer in many of the liquid crystal molecules) and low molecular liquid crystal. This kind of classification of TFT LCD belongs to the application of the low molecular liquid crystal. If the reasons for the formation of liquid crystal state, because it can be divided into type temperature formation of liquid crystal state to a liquid crystal (thermotropic), and because of the concentration and the formation of a liquid crystal state type lyotropic liquid crystal (lyotropic).

The solution so types lyotropic TFT screen molecules in the appropriate solvents reaches a certain critical concentration, the formation of liquid crystal state. Type lyotropic liquid crystal is one of the best examples that is soap. When soap bubbles in the water will not be at once into a liquid, and the bubble in the water for a long time, after the formation of white matter, is its liquid crystal state.

Our dielectric coefficient can be separated into two directions respectively is epsilon / / (and point to parallel component) and epsilon coming (a component perpendicular to the pointing vector). When the epsilon / / > epsilon coming then called the dielectric coefficient of different parts of LCD, can be used in parallel coordination. And epsilon / / < epsilon is called the dielectric coefficient of the different part coming negative type of TFT screen, only can be used in vertical coordination will need the photoelectric effect. When the applied electric field, the liquid crystal molecules will vary with dielectric coefficient is positive or negative, To determine whether the orientation of the liquid crystal molecules is parallel or perpendicular to the electric field, to determine whether the light penetrates. Now on most commonly used type TN LCD TFT LCD that belongs to the dielectric coefficient are type liquid crystal. When the dielectric coefficient of square difference Δ epsilon (= epsilon / / – epsilon) comes, the greater the LCD of the critical voltage (threshold voltage) will be smaller. So the LCD can be in the low voltage operation.

In accordance with the described above, the lamellar liquid crystal, linear liquid crystal, and LCD screen for cholesterol levels, because of its long liquid crystal molecules like a stick, so point to the direction of the vector and the molecular long axis parallel. To be defined with reference to the refraction coefficient of a single optical axis crystal, it will have two refractive indexes, respectively is perpendicular to the direction of the long axis of the liquid crystal n coming (= ne) and parallel to the long axis of the liquid crystal direction n / / (= no), so when the incident light liquid crystal, will be affected by two refractive indexes, cause in the vertical long axis of the liquid crystal and LCD long axis parallel to the direction of the speed of light will be different.

If with the molecular long axis parallel to the direction of light speed, when less than perpendicular to the speed of the molecular long axis direction, which means that parallel the molecular long axis direction of refractive index is greater than the vertical direction of the refractive index (because the refractive index is inversely proportional to the speed of light), is the one – no > 0. So the birefringence Δ n > 0, we think that it is called optics is a type of LCD, and lamellar liquid crystal and LCD are all belong to the optical is almost linear LCD. If the light of the parallel to the direction of the long axis was faster, On behalf of the flat to the governor of the axis of the refractive index is less than the vertical direction, so the birefringence Δ n < 0. We call it is the optical negative type of LCD. The cholesterol liquid crystal optical negative type of LCD.

For example, the elastic constant (kappa 11, kappa 22, kappa 33) contains the three most important constants: kappa 11 is the elastic constant at splay, kappa 22 is the elastic constant at the twist. Kappa 33 refers to predominating the elastic constants of bending (bend). The other as the coefficient of viscosity (viscosity coefficients and eta), will affect the rotational speed of the liquid crystal molecules with reaction time (response time), its value as small as possible. But this feature is affected by temperature is the largest. In addition to magnetic susceptibility (magnetic susceptibility), but also because of liquid crystals of different sex, Divided into c / / c coming. And the difference of magnetic susceptibility is defined as Δ c = c / / – c coming. In addition to the conductance coefficient (conductivity), and so on the photoelectric properties. Liquid crystal properties of the most important are the dielectric coefficient and refractive index of liquid crystal. The dielectric coefficient is determined liquid crystal under the influence of the electric field to the characteristics of the liquid crystal molecules, while the refractive index is liquid crystal in the light of its important parameters influencing the light path. The LCD is in using the liquid crystal itself of these features, the appropriate use of voltage, to control the rotation of the TFT LCD molecules, in turn, affect the direction of the light, to form different grayscale, a tool for displaying images. Of course, LCD itself is not alone as the monitor, also need other materials to help, Below, we will introduce the composition of various materials and operating principle of TFT LCD display.

The upper and lower two layers of glass are mainly to grip the LCD with. Below the glass layer with Thin film transistor (thin film transistor, TFT screen), while the layer above the glass with a Color filter (Color filter). If you notice (see figure 3), these two pieces of glass are in contact with the side of the LCD screen, not smooth, but with jagged grooves. The main purpose of the groove with the hope of a long rod, liquid crystal molecules will line up along the grooves. In this way, Liquid crystal molecules are arranged neatly. Because if it is smooth and flat, the arrangement of the liquid crystal molecules will not neat, causing light scattering, forming a light-leaking phenomenon. In fact, this is just a theory that told us to put the glass and LCD interface, complete processing so that the arrangement of liquid crystal has a certain order. But in the actual manufacturing process, and can not be with such a groove, the distribution of glass is made usually in glass coating on the surface layer of the PI (polyimide), and then a cloth to do the action of friction (rubbing), In order to make the surface molecules of PI no longer be scattered and arranged in a fixed and uniform direction, this layer of PI is called the coordination membrane, and its function is just like the grooves in the glass in FIG. 3, which provides the interface conditions for the uniform arrangement of liquid crystal molecules and allows the liquid crystals to be arranged in a predetermined order.

We can know from figure 10, when there is no applied voltage between the upper and lower two pieces of glass, the arrangement of LCD will be in accordance with the match to the membrane of the upper and lower two pieces of glass. For TN type of LCD, and match to the film’s point of view of the poor to 90 degrees. (see figure 9) so the liquid crystal molecules are arranged by the up and down automatically rotate 90 degrees when the incident light passes through the upper polarizing film, the polarization of light waves will only order direction. Through the liquid crystal molecules, the liquid crystal molecules rotate for 90 degrees, so when the waves reach the lower polarizing film, the polarization direction of the light just turned 90 degrees. The polarizing film of the lower and upper polarizing film, 90 – degree Angle is just the differences. (see figure 9) so can smoothly through the light, but if we applied voltage between the upper and lower two pieces of glass, because the type TN LCD for the dielectric coefficient of different sex more positive type of LCD (epsilon / / > epsilon coming, represent the parallel direction of the dielectric coefficient is larger than the dielectric coefficient of the vertical direction, so when the liquid crystal molecules are influenced by an electric field, will tend to be parallel to the orientation of the electric field direction.), so we can see from figure 10, At this time, the polarized light wave passing through the upper polarizer will not change the polarization direction when passing through the liquid crystal molecule, so it cannot pass through the lower polarizer.

The so-called NW (Normally white), is to point to when we don’t apply voltage on the LCD screen panel, we can see the panel is pervious to light, also is bright, so-called Normally white. But on the other hand, when we don’t apply voltage on the LCD panel if the panel is not pervious to light, the look is black, it’s called NB (Normally black). We have just mentioned in figure 9 and figure 10 all belongs to the configuration of NW, also we can know from figure 11, For type TN LCD, located in the upper and lower glass is perpendicular to the membrane, and the difference between NB and NW just lies in the relative position of the polarizing film is different. For NB, the fluctuation of the polarizing film polarity is parallel to each other. So when the NB no applied voltage, the light will be because the polarity of the LCD to rotate 90 degrees to be pervious to light. Why there are NW and NB these two kinds of a different configuration of the polarizing film? Mainly for different applications. Commonly used in a desktop computer or notebook computer, most of the NW configuration. That’s because, if you notice, generally the use of computer software environment, you will find that most of the entire screen is a bright spot, that is to say, computer software for the application of white background and black text. Since on the point of the majority, using NW is more convenient, of course. Also because the NW window does not need to add the voltage, the average will compare to save electricity. In turn, said that the application of the NB environment mostly belongs to the screen for the application of black.

The STN LCD and TN LCD are very similar in structure, the main difference between TN LCD, the arrangement of the liquid crystal molecules, the rotation angle from top to bottom. A total of 90 degrees and type the STN LCD liquid crystal molecules are arranged, the rotation angle will be greater than 180 degrees, usually is 270 degrees. (see figure 12) because of its rotation Angle is different, its characteristics different. We from figure 13 TN type and type the STN LCD voltage of the transmittance curve can know, when the voltage is low, the light penetration rate is very high. With a high voltage, the light of the penetration rate is very low. So they belong to the Normal White polaroids configuration. When the voltage in the middle position, the change of type TN LCD curve is flat, and the change of the STN LCD type curve is steep. So in TN type LCD, when transmittance change from 90% to 10%, corresponding to the voltage difference is larger than the STN LCD. We mentioned before, in the liquid crystal display, The different characteristics of TN and STN will result in TN type LCD, which has more grayscale changes than STN type LCD, so generally TN type LCD has 6~8 bits of changes. It is 64 ~ 256 gray-scale changes. Type the STN LCD for a maximum of 4 bits are only 16 orders of gray-scale changes. In addition, the STN type and TN LCD has a different place is the reaction time (response time) general type the STN LCD it’s response time to type in more than 100 ms and TN LCD its response time is 30 ~ 50 ms as shown in the image change quickly for the STN LCD type ghosting effect phenomenon is easy to happen.

TFT LCD Chinese translation of the name is called a thin film transistor liquid crystal display, from the beginning, we mentioned LCD voltage control is needed to produce gray. And the use of a thin-film transistor to generate the voltage, to control the transition of liquid crystal display, is called a TFT LCD. From the point of the cross-section structure of figure 8, between upper and lower two layers of glass, with LCD, will form a parallel plate capacitor, we call it the CLC (capacitor of liquid crystal). Its size is about 0.1 m3, But on the practical application, the capacitance and unable to keep the voltage to the next time to update the data in the picture.

That is to say, when TFT is good to the capacitor charging power, it is impossible to maintain voltage, until the next TFT this point charge again. (in general of 60 Hz screen update frequency, need time to keep about 16 ms.) as a result, there were changes in voltage, displayed gray scale is not correct. Therefore generally on the design of the panel, we will add a storage capacitor CS (storage capacitor is about 0.5 pF). So charged electric voltage can keep until the next update screen. But the right, long on the glass TFT itself, just use a transistor to make the switch. Its main work is to determine the LCD source voltage on the driver whether to charge to this point. As for this point more charge to high voltage, so as to show how the gray-scale. It is outside of the LCD source driver.

If you have a chance, take a magnifying glass, close to the LCD screen. You will find that as shown in figure 9 shows. We know that red, blue and green, are the so-called primary colors. That is to say, using the three kinds of color, can produce a variety of different colors. In a lot of flat-panel displays, this principle is used to show the color. We put the RGB 3 kinds of color, is divided into independent three points, each has different gray-scale changes, then the three neighboring RGB display point, as the basic unit of a display, Pixel is that this a pixel, and can have different color changes. Then for a need for a 1024 * 768 resolution display screen, we just let the composition of the flat panel display with 1024 * 768 pixels, can show a picture of the right. In figure 9, each point between the Black part of RGB is called the Black matrix. We can find that looking back on it in figure 8Black matrix is mainly used to cover do not intend to previous to light part. Such as some ITOs walk the line, or Cr/Al walk the line or are part of a TFT. This is why we in figure 9, the highlight of each RGB, it seems, is not a rectangle, and also on the top left corner is a piece of black matrix cover part, this part of a black missing Angle is the location of the TFT.

The CRT screen, it is using a high-speed electron gun that emits electrons, hits the phosphors on the silver screen, so as to produce the light, to show the picture. LCD itself, however, can only control the brightness of the light through, no glowing function itself. Therefore, a liquid crystal display must be combined with a backplate, to provide high brightness, brightness, and uniform distribution of the light source. We can see in figure 14, of the backplate of the main parts are CCFL (cold cathode tube), reflex plate, guide plate, prism sheet, Diffuser plate, and so on. Tubes are the main light-emitting parts, by a light guide, everywhere. The light distribution and baffle will be limited only to the TFT LCD light direction. Finally, by prism sheet and help diffuser, the light evenly distributed to all areas, provide TFT LCD a bright light. While TFT LCD is borrowed by the rotation of the voltage-controlled liquid crystal, control through the brightness of the light, so as to form different grayscale.

Another box in figure 14 glue and spacer structure of two kinds of ingredients. The box adhesive USES is to make the LCD panel in the upper and lower two layers of glass, to be able to stick close and to provide a panel of LCD screen molecules, cut off from the outside world, so the box plastic as its name suggests, is around and around in the panel to the liquid crystal molecules box limited to within a panel. The spacer is mainly provided two-layer glass support, it must be distributed evenly on the glass, or a part but uneven distribution cause spacer gathered together, it will block the light, It is also unable to maintain the appropriate gap between the upper and lower glass, which will lead to uneven distribution of electric field and affect the performance of the crystal grayscale.

A very important specification of LCD is brightness, and the most important factor to determine the brightness is the opening rate. What is the opening rate? Is simple light can pass through the effective area proportion. 17, let’s look at the picture to the left of figure 17 is an LCD display from directly above or below the past structure. When the light is emitted through the backplate, not all of the light can be through the panel, like for LCD source driver chip and the gate driver chip signal line, and TFT itself, the stored voltage is the use of storage capacity, etc. These places besides incomplete pervious to light, but also because the light through these places is not under voltage control, to display the correct gray-scale, so have to use the black matrix to cover, in order to avoid interference to other correct brightness of the light area. So the effective area of the previous to light, it’s just like figure 17 shows area on the right. This piece of the effective area of the previous to light and the ratio of the total area is called the opening rate.

When the light is emitted from the backlight plate, it will pass through the polarizer, glass, LCD screen, color filter, etc. It is assumed that the penetration rate of each part is as follows:

STONE is industrial screen manufacturers, provide a full range of 3.5 inches to 15.1 inches of small and medium-size standard quasi TFT LCD module, TFT screen module, TFT display module, display industry, industrial LCD screen, under the sunlight visually highlight TFT LCD display, industrial custom TFT screen, TFT LCD screen-wide temperature, industrial TFT LCD screen, touch screen industry. The TFT LCD module is very suitable forindustrial control equipment, medical instruments, POS system, electronic consumer products, vehicles, and other products.

tft lcd driver principle in stock

The liquid crystal cannot emit light by itself, and the backlight should be added behind the LCD panel. A few years ago, CCFL cold cathode backlighting was the dominant market application, but with the development of technology, the LED backlight has gradually replaced the traditional CCFL backlight.