open smart tft lcd shield made in china
This is a 3.2 inch TFT touch screen expansion board using standard Shield interface and it has good compatibility. It integrates a 3.2-inch touch screen, I2C temperature sensor, TF card holder, level conversion circuit, and the secondary development is easy.IF with GPRS module, you can design your Arduino phone. IF with NFC reader module, you can create access control systems with the photos show. IF with voltage and current sensor, you can make oscilloscope.
Begin by carefully starting the rear connector of the TFT shield onto the Arduino Uno/Mega. Go slowly and ensure that all pins are inserted correctly and are straight.
In order to use 3.2″ TFT lcd Shield , We must have the libraries. So you can download Adafruit-GFX-Library and MCUFRIEND kbv install the library by extracting that zipped file in the library folder as shown below.
Open the folder “MCUFRIEND_kbv” into your directory: “C:\Program Files (x86)\Arduino\libraries” , And Open MCUFRIEND_kbv H file . To do some minor edits to H file you can use Notepad++ download it here.
I have bought "MCUFRIEND" 2.8 tft touch lcd and controller printed on it shows "ILI9338". Example given in this library are not working except for the basic one and it don"t even work with touch examples. After searching on google found out that "MCUFRIEND_kbv" library for debug. When i run "diagnose_tft_support" it shows following output. Also added "Read reg" after first output. Please Help !!!
This module is a 2.4-inch TFT LCD module with “320X240” resolution and 65K color display. It is suitable for Arduino Uno and Mega2560 development boards, and also supports SD card expansion function. It uses 8-bit parallel port communication, and the driver IC is ILI9341.
The 2.4-inch display is a ready-made shield for Arduino Uno, which can also be placed on the Arduino Mega. The pins of this shield are designed to be easily installed on the Arduino. The bad point about these modules is that they use all Arduino Uno pins.
Open the downloaded file and upload the main.ino code on your Arduino Board. This code is for testing the display module and comes with full screen calibration.
To understand what an Arduino Shield is, it is first necessary to understand that Shields are electronic boards that can be fitted on top of the Arduino, allowing its capacity to be increased.
In addition, the Arduino Shield increases its functions in a simple and reliable way, with a lean (area limited to the Arduino) and robust circuit (with everything ready for that application).
That"s because with it, in just one Shield there is a wide variety of devices: buttons, potentiometer, buzzer, 7-segment display, and connectors for various tools.
For IoT (Internet of Things) applications, this Shield is the most suitable, because with it you can connect the Arduino exactly to a switch or router.
As the output connector of the PAB_03 Shield for the display, through which the power and communication passes to the display, there are three options exposed on the Shield PCB.
To choose between the physical protocols, there are two configuration jumpers on the Shield, with the correct marking of the connection engraved on the Shield"s silk.
Arduino has always helped to build projects easily and make them look more attractive. Programming an LCD screen with touch screen option might sound as a complicated task, but the Arduino libraries and shields had made it really easy. In this project we will use a 2.4” Arduino TFT LCD screen to build our own Arduino Touch Screen calculator that could perform all basic calculations like Addition, Subtraction, Division and Multiplication.
Before we actually dive into the project it is important to know, how this 2.4” TFT LCD Module works and what are the types present in it. Let us take a look at the pinouts of this 2.4” TFT LCD screen module.
As you can see the pins can be classified in to four main classifications such as LCD Command Pins, LCD Data Pins, SD Card Pins and Power Pins, We need not know much about the detailed working of these pins since they will be take care by our Arduino Library.
You can also find an SD card slot at the bottom of the module shown above, which can be used to load an SD card with bmp image files, and these images can be displayed in our TFT LCD screen using the Arduino Program.
Another important thing to note is your Interface IC. There are many types of TFT modules available in the market starting from the original Adafruit TFT LCD module to cheap Chinese clones. A program which works perfectly for your Adafruit shield might not work the same for Chinese breakout boards. So, it is very important to know which types of LCD display your are holding in hand. This detail has to be obtained from the vendor. If you are having a cheap clone like mine then it is most probably using the ili9341 driver IC.You can follow this TFT LCD interfacing with Arduino tutorial to try out some basic example programs and get comfortable with the LCD screen. Also check out our other TFT LCD projects with Arduino here:
If you planning to use the touch screen function of your TFT LCD module, then you have to calibrate it to make it work properly. A LCD screen without calibration might work unlikely, for instance you might touch at one place and the TFT might respond for a touch at some other place. These calibrations results will not be similar for all boards and hence you are left on your own to do this.
The 2.4” TFT LCD screen is a perfect Arduino Shield. You can directly push the LCD screen on top of the Arduino Uno and it will perfectly match with the pins and slid in through. However, as matters of safety cover the Programming terminal of your Arduino UNO with a small insulation tape, just in case if the terminal comes in contact with your TFT LCD screen. The LCD assembled on UNO will look something like this below.
We are using the SPFD5408 Library to get this arduino calculator code working. This is a modified library of Adafruit and can work seamlessly with our LCD TFT Module. You can check the complete program at the end of this Article.
Now, open Arduino IDE and select Sketch -> Include Librarey -> Add .ZIP library. A browser window will open navigate to the ZIP file and click “OK”. You should notice “Library added to your Libraries” on the bottom-left corner of Arduino, if successful. A detailed guide to do the same is given in the Interfacing Tutorial.
As said earlier we need to calibrate the LCD screen to make it work as expected, but don’t worry the values given here are almost universal. The variables TS_MINX, TS_MINY, TS_MAXX, and TS_MAXY decide the calibration of the Screen. You can toy around them if you feel the calibration is not satisfactory.
As we know the TFT LCD screen can display a lot of colours, all these colours have to be entered in hex value. To make it more human readable we assign these values to a variable as shown below.
The final step is to calculate the result and display them on TFT LCD Screen. This arduino calculator can perform operation with 2 numbers only. These two numbers are named as variables “Num1” and “Num2”. The variable “Number” gives and takes value from Num1 and Num2 and also bears the result.
The working of this Arduino Touch Screen Calculator is simple. You have to upload the below given code on your Arduino and fire it up. You get the calculator displayed on your LCD screen.
Description:; This is a 2.8 inch TFT LCD expansion board. This display has a controller built into it with RAM buffer so that almost all work is done by the TFT.; It leads out the pins of the TFT and pins; is 2.54 mm, so the secondary development is easy. With the GPRS module, you can design your phone. With the NFC reader module, you can create access control systems with the photos show. With voltage and current sensors, you can make an oscilloscope.;