lcd panel connect to computer power supply made in china
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
Shenzhen Power Supply BureauIntroWhen the Chinese government established the Shenzhen Special Economic Zone in 1980 and made foreign investment possible, the area, which formerly consisted of several fishing villages, began its rapid rise. Just 60,000 residents once lived, where 17.5 million people are now at home.
Shenzhen has many names – the "Silicon Valley of Hardware", "City of Innovations", "Technology Center of China", "City of Movement". In the past, the city has had to reinvent itself time and again. Once known as the workbench of the world, Shenzhen has now turned into one of the world’s most important high-tech hardware manufacture. Looking around, you can see the successes and aspirations at every corner in the city. And Shenzhen"s power supply is no exception. Here, all public transportation – buses, cabs, sky trains are powered entirely by electricity. Generally, Shenzhen is a pioneer among major Chinese cities in terms of power supply and wants to be known as the green city. The radical conversion to electric propulsion is unique in the world.Shenzhen"s high demand for electricity
One of the most vibrant metropolises in China, Shenzhen is considered the Silicon Valley of hardware. Around 80 % of all smartphones are manufactured in Shenzhen. It’s where tech giants like Apple, Huawei and Co. all produce their devices. Generally, the city seems to be the epicenter of inventions. As a pioneer for China, Shenzhen stands out for its extremely innovative developments and ways of thinking.From fishing village to high-tech metropolis
More than 242 substations of 110 kVA are spread over the entire city area , the cumulative annual power supply by Shenzhen Power Supply Bureau is about 81 TWh. You can only imagine what an immense amount of electricity this is by taking a look at how much power European metropolises use. Berlin, for example, has an annual power consumption of about 13.5 TWh , which is about six times less than Shenzhen. Shenzhen"s transmission lines spread across 4,621 km and therefore roughly cover the same distance as between Moscow and Lisbon.More modern, quieter, easier to use
GuangZhou WeiDian Information Technology Co., Ltd. – an experienced technical integrator when it comes to KVM solutions – carried out the extensive upgrade of the existing KVM architecture. The main focus was to upgrade and modernize conference rooms, several power distribution centers, and a number of control rooms.
The main control room of the Shenzhen Power Supply Bureau has space for about ten employees. They monitor and control the remote computer technology, consisting of more than 500 powerful computers, around the clock. Therefore, all servers were moved to a technical area and connected to 20 KVM matrix systems from Guntermann & Drunck.
KVM peripheral modules extend and make computer signals available at the workstations in the control rooms. In addition, a multi-level top-down cascade ensures that additional servers can be integrated into the system. As a key advantage of this solution, all computer sources are now connected to a G&D matrix switch, extending the signals to the consoles. This allows employees to access all required computer technology from any controller station.500
The Shenzhen Power Supply Bureau control room is operated 24/7. Therefore, it’s important that the new technology runs reliably in continuous operation and facilitates the work of the employees on site. In order to make their work as comfortable as possible, the implemented IP- Control-API connects computer sources to projection media and mobile touch panels using a network. Thus, each computer can access the desired large screen projection and operator screens – independent of any location.
The integrated push-get function makes collaborating of employees easier and more comfortable. It lets employees share the contents of their screens with their co-workers to collaborate on tasks. Users can move the screen contents of a target to – or get it from – the display of another console or a big screen.
The client also wanted to keep the space occupied by racks relatively small despite the fact that they now needed to access even more servers than before. Therefore, a lean but highly flexible KVM infrastructure was designed to keep the connections between racks as short as possible.YOU CAN ALWAYS RELY ON G&D
CEO GuangZhou WeiDian Information Technology Co., Ltd.Since the system went live in the spring of 2020, it has been generating enthusiasm among both operators and the employees working with it. "We have integrated quite a number of G&D matrix systems and peripherals, and so far they have been absolutely reliable during live operation. You can always rely on G&D," says Stanly Wu, CEO of GuangZhou WeiDian Information Technology Co., Ltd. The Shenzhen Power Supply Bureau continues to grow, and we look forward to the innovations the city still has to offer.
A while back I was sitting around and wondering what to do with my dead laptop. I knew the mother board was fried but everything else was still in working condition. As a result, I decided to make an external monitor from my dead laptop and proceeded to do the research to find out if this was possible. Below is what I discovered. Unfortunately, there was no way to use the motherboard"s VGA connector. The VGA connector on a laptop is used to connect to an external monitor. In any case the VGA connector is output only and wouldn"t work for an external screen. As a result, I found that I needed to buy a controller board for the LCD screen, to make it work as an external monitor. This was the main cost but was still less than half the cost of buying an external monitor.
Disclaimer: Due note, I take no responsibility for your actions, implied or otherwise. I am not telling you to do anything, This instructable is informational.
Step one. Unplug the dead laptop from any power source AND remove the battery!. The laptop battery is located, usually, on the bottom and can be removed by sliding a release lever. These are lithium ion batteries and can hold a few Amps. The risk of shock might be minimal. However, there is no need to take the risk.
Step Two. To Remove the LCD screen from the laptop, you will need to remove the screws. There are rubber pads on the front of the LCD screen to protect it when the laptop lid is closed. Behind the rubber pads are the screws. Find and remove all the screws holding the front plastic frame on the laptop lid. Keep track of the pads and screws as you will need them to reassemble everything.
Step Three. Remove the plastic frame from the LCD screen. Here is where you need to be careful. The screws are not the only thing holding the plastic frame on the LCD screen! The plastic frame is snapped into place. Carefully pry loose the frame from the LCD screen. Pry it loose gently. Try to keep it as close as possible to the LCD panel while you are prying it loose because you may also find that you need to slide it to the left or right to completely remove it from the laptop. There is a small protrusion of the plastic frame where the hinge is. Because of this protrusion you need to slide the frame, in this case, to the right, to detach it from the laptop.
Step Four. Locate and remove the screws holding the LCD panel to the laptop. These are located on the bottom. The screws are attached to a small metal hinge. this is the component that is attached to the keyboard frame.
Next you will need to remove the LCD screen. Note that there is a cable attached. This is the LVDS cable. It is best to take apart the rest of the laptop and unplug it from the keyboard. However, the cable can be cut at the bottom. Take care not to cut the two wires going into the inverter (that"s the slim circuit board at the bottom.
Once the LCD panel is removed, you can remove the LVDS cable and unplug the inverter at the bottom. Unplug the inverter from both ends. Do not cut it. The LVDS cable is taped to the back of the LCD screen at the top. It is the flat cable running up the back. Remove the tape and slid the cable down. Since you need to buy an LCD controller board, you will no longer need the LVDS cable the laptop came with or the inverter. At this point you should just have an LCD screen with a pair of wires coming out of it.
Keep track of the plastic front frame and the plastic backing. You will need them to resemble the LCD screen. On the other hand, you have different fingers, just kidding. On the other hand, you can buy a picture frame and put the LCD screen in the picture frame.
Here is a picture of the LVDS cable and the inverter detached from the LCD screen. Since we will be buying an LCD control board these cables will not be needed again.
Next, once you have removed the LCD panel. Flip it over and look for a model number on the back. You will need this model number to order the correct LCD controller board. I went to E-Bay and found one for $42.00. I bought the LCD controller board and then received an email from the seller requesting the model number of the LCD screen and manufacturer. This is because each controller board is flashed, (programed to run a specific LCD) I gave him my model number, LP171WX2 A4K1 and told him it was made by LG Phillips. Since the board was coming from China, I received my order about 2 weeks later. Due note to buy one with a power cord! The LCD controller board has the VGA input connection which allows you to connect it to another computer and use it as a second monitor or as a back up in the event the one on your working computer goes out.
The LCD controller board is real easy to connect. It comes with all the required cables, except a VGA cable which you will need, in order to connect your LCD to another computer. You can buy a VGA cable from Best Buy or a computer parts store.
The LCD control Bard comes with all the cables except the VGA cable which you will have to buy. Once you have received your kit, proceed to connect it to the LCD screen. Plug the LVDS cable into the LCD panel where you removed the original from. The two wires at the bottom of the LCD screen that were connected to the inverter need to be unplugged from the old inverter and plugged into the new inverter below. Then, plug the power in. Make sure that the LCD control board is not sitting on anything conductive, like metal or it will short and fry. Next connect the VGA cable to the LCD control board and plug the other end of the VGA cable to another computer. Make sure the computer is on before you plug in the VGA cable. At this point you should have the same image that is on the computer you plugged the VGA cable into, on the LCD panel.
Next, I attached a 4 inch section of two by four on the outside back of the laptop lid. I needed this in order to attach my stand to the LCD screen. I used 5 screws and screwed them in place from the inside. I did splice and extend the cables going from the LCD controller to the inverter it came with just to have a little more room.
Originally, I built a nice wooden stand for my LCD panel but was not satisfied with it. So, I took a broken florescent desk lamp and dremeled off the section holding the florescent tubes, leaving enough metal to screw on to the two by four on the laptop lid. Before attaching the stand, I drilled four holes in the metal to make it easier to screw it on the two by four.
Next you will need to attach the LCD controller to the laptop lid. To do this, screw in a few sections of wood from the inside of the lid. Then on the outside of the lid attach the LCD control board. Place the wood in an area where the control board can reach.
Next you will need to find all those screws you have been saving and reassemble the LCD screen. I also added some surgical tubing to the top springs for added strength.
By the way a store bought swing arm half the size of this one, I found, cost around $400.00. If you choose to use a swing arm like this one, go with the one that has a magnifier on it and dremel off the magnifier leaving enough metal to attach to your LCD lid. You need one of this caliber to hold the LCD screen. Swing arms with the light attached are not strong enough.
By the way, I did remove the web cam from the laptop lid, wired it to a USB cable, and turned it into and external peripheral. I wired the two microphones that I found next to the web cam and turned them into external peripherals. I dremeled the batteries open and wired them into a 3 million candle power flashlight made from spare parts I had. I have a lithium ion battery charger, so it worked great.
Since I was asked about the web cam, I though Should add it to the instructable. There is a nice instructable here at this site showing how to convert a web cam from an LCD screen: http://rntmns.com/2011/02/rebirth-of-a-webcam/
The web cam is now wired for plug and play. However, it only works on another computer running Windows Vista. There are no drivers for windows 7, yet. Since I don"t have Windows XP, I don"t know if it would work on it. Once you have wired it, open Skype on Vista and click on change profile pic. It will show two web cams in the drop down menu. If your web cam starts getting hot then you have revered the power cables.
Mine works great on my Vista laptop. If you want to use it for checking plumbing pipes, I suppose you can put a small prism on the web cam aperture so you can insert the web cam in a pipe and view images directly ahead--this would be good for archaeology where you need to investigate tight spaces.
I"m so glad I found this... I have a nearly identical HP laptop that you used and recently noticed that it was overheating and too much work to fix up, but the big beautiful display works great and I was sadly thinking I"d be better off selling it rather than dissecting the entire thing to fix its overheating issue.
Actually, you can do One better. You can salvage the RAM, the Wireless card, the Batteries, the charger, the hard drive, the DVD disk player and sell them to people that need them on E-bay and Still keep the LCD screen for yourself.
Very nice instructable. This instructable is the answer to a question that comes up about once a week in instructables questions and will get referred to often.0
The LVDS cable of the controller board is too short for the way I need it to be, does anyone know if there is an easy or inexpensive way to extend its lenght? (with LVDS cable I mean the 20/30 pin cable that is the main data cable for the display and goes to [in my case] 20 pin on the big board of the controller board)
Thanks for this instructable. I recently came upon some discarded laptops with either had bad screens or nonfunctioning everything else. I may be able to mix and match to get a usable machine out of the pile of junk!0
I checked ebay for the LCD control Board and all I did was punch in " LCD control Board for a LP154W01(A3)" , That"s my model number. You, of course, use your"s. ebay came up with the correct one for $25.00 and it has all the imputs you could want. This is good today, 2/11/19. Have fun folks!
i have a similar lcd panel to yours. infact 3 of them! they"re so easy to work with and doesn"t need a backlight controller LP154WH4 TLA1 except the lvds cable sold separately. I"ve build one and runs on
This would be great for the Flight Sim I am building, Problem is e-qstore can"t speak English. I bought 2 18.4 monitors after I ordered the controller, then they email me 2 days laster telling me they can"t make this control board. Been trying to find another board that will work with another monitor only to get "Sorry Sorry" and other things I can"t even make sense of.
Nicely done and very informative!! However unfortunately, by the time you add the cost of the LCD Controller card, various parts and time you could have bought a new inexpensive monitor.
it really depends on what kind of display your laptop came with. I recently had a laptop that featured a 4k OLED screen and If I add the price up of the controller kit and materials (depending how you are going to make the stand) it would actually in my case be cheaper to make that an external monitor because, quite frankly 4k is pretty expensive and I don"t want to degrade to a lower resolution. in said laptop the motherboard died so I just scavenged everything including the LCD which I have just lying on my desk. so I might even consider trying this.0
Most computer parts are made in China. Most computer headquarters are located in Taiwan as parsec mentioned. But the place where the components are assembled are in China.
You might be thinking why companies like Asus are choosing China to make their stuff.. The staff that makes the parts are fully certified and tested to prove they know this stuff inside out. (I"ve seen it in a Tom"s Hardware article years ago).
Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.
Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:
Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:
MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:
LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.
2015, sold to giantplus and tce photomasks, gen 3 still operated by giantplus, gen 4 line sold to giantplus, equipment sold and line demolished, remainder operated by tce
"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.
"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.
"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"TCL"s Panel Manufacturer CSOT Commences Production of High Generation Panel Modules". www.businesswire.com. June 14, 2018. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.
Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.
www.etnews.com (30 June 2017). "Samsung Display to Construct World"s Biggest OLED Plant". Archived from the original on 2019-06-09. Retrieved 2019-06-09.
Colantonio, Andrea; Burdett, Richard; Rode, Philipp (2013-08-15). Transforming Urban Economies: Policy Lessons from European and Asian Cities. Routledge. ISBN 9781134622160. Archived from the original on 2019-01-01. Retrieved 2019-06-09.
Shilov, Anton. "LG"s New 55+ inch OLED Plant in China Opens: Over 1m+ per Year". www.anandtech.com. Archived from the original on 2019-09-14. Retrieved 2019-12-18.
www.wisechip.com.tw. "WiseChip History – WiseChip Semiconductor Inc". www.wisechip.com.tw. Archived from the original on 2018-02-17. Retrieved 2018-02-17.
"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.
Shilov, Anton. "JOLED Starts Construction of New Printed OLED Facility". www.anandtech.com. Archived from the original on 2019-06-30. Retrieved 2019-06-30.
Pooler, Michael (29 September 2015). "Subscribe to read". Financial Times. Archived from the original on 2019-10-25. Retrieved 2019-10-25. Cite uses generic title (help)
FSP Group is one of the global leading power supply manufacturers. Our products include ac dc power supplies, UPS, energy storage systems, battery chargers & more. Learn more about FSP Group.
To resize a LCD is literally to cut the glass, polarizers, circuits and circuit boards to a new size. Years ago, it was thought impossible to preserve the original performance of a previously manufactured LCD once the glass circuits are cut. However, Litemax has done the impossible, over and over again, becoming the world"s leading pioneer and leader in LCD resizing solutions.
Squarepixel series is designed for high brightness with power efficiency LED backlight. It provides LCD panel with specific aspect ratios and sunlight readable for digital signage, public transportation, exhibition hall, department store, and the vending machines.
The spirit of Durapixel indeed lies with its name: durability. Why Durapixel? Commercial-grade LCD displays, due to the competitive pricing structure, are unable to offer more than MTBF of 30,000 hours, which will not be sufficient for any applications that require around-the-clock operations. System designers, integrators and users serious about rugged, industrial displays for demanding environments need to look no further – the unfailingly robust and high-quality Durapixel is the key to each of your success.
UbiPixel, industrial LCDs are used in many professional applications. High bright sunlight readable and low power consumption display technologies offer the highest quality LCDs for specific industrial applications. Our embedded LCD can be manufactured in an open frame, VESA mount, or fully enclosed housing for HMI display, KIOSK, Vending machine, home automation, point-of-sale terminals, digital signage and more. UbiPixel, industrial LCDs are used in many professional applications. High bright sunlight readable and low power consumption display technologies offer the highest quality LCD screen for specific industrial applications. Our embedded LCD can be manufactured in an open frame, VESA mount or fully enclosed housing for HMI display, KIOSK, Vending machine, home automation, point-of-sale terminals, digital signage and more.
Marine displays from Litemax are internationally recognized and certified with a proven track record of satisfying all types of scenarios, applications and environments for maritime professionals and organizations. Whether the project involves system building, maintenance, repair or equipment upgrade of a yacht, a submarine or any relevant maritime structure, Litemax"s marine displays guarantee high quality and performance from the dock to the engine room.
Litemax"s 2.5” Pico-ITX boards feature fanless operation, low power, compact designed for space-limited embedded applications. With built-in AMIO expansion interface to develop high flexibility and scalable capabilities.
Litemax"s 3.5" SBCs feature rich I/O ports, wide-temperature support, and wide input voltage range and low-power to robust high -performance computing modules designed for outdoor applications or harsh environmental requirements.
Litemax"s Mini-ITX embedded board provides the performance, expansibility, and durability to meet needs across a wide variety of applications, such as industrial control, industrial IOT, gaming, smart healthcare, and digital signage.
This high performance series supports Intel, AMD, Nvidia processor with multi I/O expansions, mini PCIe/M.2 expansion cards, and wide temperature range, being ideal for automation system, machine automation, factory automation, and IoT platforms.
Featuring a modular designed, this series can be fitted with a number of modules to expand its base capabilities. On-site maintenance and future upgradability are easier than ever by deploying our panel PCs and monitors.
Litemax rugged panel PCs go beyond that of the standard industrial panel computes with elegant, full IP68/65-rated construction, powerful performance and flexible mounting options making it ideal for harsh environments and demanding applications, such as machine controller, command centers, and fast, efficient computing.
The Litemax ITRP series is fanless Passenger Information System, It features stretched LCD display, with high brightness to ensure easy readability even in light-insufficient environments. It serves as a reliable platform to provide passenger information on wide versatility of vehicles, such as bus and trams.
Litemax develops an embedded artificial intelligence application platform for AI edge computing to meet client vertical market applications and various needs and solve the changing challenges of the operating environment. In response to the increasing demand for AI computing, computer vision, deep learning, edge computing, etc., Litemax offers a series of fanless BOX PC with Intel Edge Computing and NVIDIA® Jetson Nano™ to effectively improve the cooling performance of fanless systems. Field applications can smoothly provide powerful computing performance, support high-level AI computing chips, and provide a solution platform for a variety of application scenarios to integrate software and hardware to create more flexible and better vertical functions. Simplify the manpower required for the client to invest in AI system integration.
Intel® offers the Intel® Smart Display Module (Intel® SDM) specification and reference design that can be integrated into the sleekest all-in-one designs. Intel® SDM delivers the same level of intelligence and interoperability as the Open Pluggable Specification, but in our smallest form factor yet eliminates the housing and advances the thinnest integrated displays.
The new Intel® Smart Kiosk Module (Intel® SKM) is a revolutionary solution that makes it easier to scale and maintain interactive kiosks, which are increasingly being used by businesses and governments worldwide to offer customers around-the-clock access to information and services.As the market for interactive kiosks increases, so does the demand for smarter multi-function kiosks with advanced capabilities such as workload consolidation, artificial intelligence, smartphone and social media integration, 5G connectivity, telepresence, remote manageability, and data analytics.
LITEMAX AD Board is with high speed Analog/ Digital conversion and minimal programming. A wide variety of computer interfaces are available in your choice.
LITEMAX power board provides maximum output from 60W to 100W, it is an intelligent vehicle power converter with wide input voltage range from 9V to 16V DC.
Through intelligent thermal management technologies, Litemax is enabling smarter platforms for various vertical markets deploying display systems. Through the intelligent thermal control board, Litemax helps system integrators and engineers around the world improve efficiency and reliability.
One consideration when it comes to PSU form factor is the physical size of the unit. For the vast majority of desktop PC users, standard ATX power supplies should be fine, though you’ll still want to make sure your PSU will fit in your case by checking the appropriate clearances.
If you’re a small form factor PC (SFF) enthusiast, you’ll want to do a little more research to make sure your PSU will fit. There is a wide variety of SFF PSU sizes, like SFX, CFX, and more, so make sure you find the PSU that works with your case, no matter how small your PC.
A power supply operates by converting energy from a wall socket and routing that power to each of the individual components in your system through a variety of cables. If your power supply is non-modular, these cables will already be soldered to the circuit board, meaning you don’t get to choose the cables that will be in your build. All the cabling, even the ones that you don’t use, will need to be stored in your case.
There’s nothing inherently wrong with this from a functional perspective, though poor cable management can lead to less efficient airflow, so you’ll want to be sure those extra cables don’t get in the way.
Modular power supplies, on the other hand, don’t come with the cables attached. This changes the installation process, as you’ll need to connect each cable to the PSU and the component that it is powering, but that also means you can optimize for fewer cables. This results in a cleaner build and potentially better airflow. Most people aren’t going to use every connector provided by the average power supply, which makes modular units a little more practical, as well.
There’s also a third, in-between option, creatively called a semi-modular power supply. These are exactly what they sound like: Some of the most frequently used cables are attached to the PSU, while some you’ll have to connect yourself.
For modular and semi-modular power systems, keep in mind that you do not want to mix and match cables from other manufacturers, or even different models from the same manufacturer, unless stated otherwise. Though the cable-ends that connect to the components in your build are standardized, the end that connects to the PSU isn’t, meaning different brands could have different connections. That’s why you should only use the cables that came with your power supply.
STONE Technologies is a proud manufacturer of superior quality TFT LCD modules and LCD screens. The company also provides intelligent HMI solutions that perfectly fit in with its excellent hardware offerings.
There is also a downloadable design software called STONE Designer. This is a completely free GUI design software you can use to create responsive digital module-ready user interfaces.
STONE TFT LCD modules come with a microcontroller unit that has a 1GHz Cortex-A8 CPU. Such a module can easily be transformed into an HMI screen. Simple hexadecimal instructions can be used to control the module through the UART port. Furthermore, you can seamlessly develop STONE TFT LCD color user interface modules and add touch control, features to them.
You can also use a peripheral MCU to serially connect STONE’s HMI display via TTL. This way, your HMI display can supply event notifications and the peripheral MCU can then execute them. Moreover, this TTL-connected HMI display can further be linked to microcontrollers such as:
Becoming a reputable TFT LCD manufacturer is no piece of cake. It requires a company to pay attention to detail, have excellent manufacturing processes, the right TFT display technology, and have a consumer mindset.
Now, we list down 10 of the best famous LCD manufacturers globally. We’ll also explore why they became among the top 10 LCD display Manufacturers in the world.
Interface Devises Business includes Display and Senor, Sensor, and Application Solutions. As a leading company in the global semiconductor display industry, BOE has made the Chinese display industry develop from scratch to maturity and prosperity. Now, more than one-quarter of the global display panels are made by BOE, with its UHD, flexible display, microdisplay, and other solutions broadly applied to well-known worldwide brands.
Smart IoT Systems Business includes Intelligent Manufacturing Services, IoT Solution, and Digital Art IoT Platform. BOE provides integrated IoT solutions in smart retail, smart finance, digital art, business office, smart home, smart transportation, smart education, smart energy, and other fields. In the field of digital art, BOE has launched its digital art IoT solution – BOE iGallery, realizing the perfect combination of technology and art. For smart retail, BOE provides IoT solutions in price management, shelf management, and customer behavior analysis to achieve seamless online and offline convergence.
Smart Medicine & Engineering Integration Business includes Mobile Healthcare IoT Platform and Smart Healthcare Services. BOE has launched mobile platforms for healthcare management, based on AI and big data algorithms, to provide personalized medical treatment and health management services for users. Healthcare services combine medical, information, AI, cell engineering, and other technologies, focusing on the digital hospital, digital human body and regenerative medicine, etc., and is committed to developing comprehensive and life-cycle health management solutions.
In 2019, BOE’s yearly new-patent applications amounted to 9657, of which over 90% are invention patents, amounting to over 70,000 usable patents in total. Data from IFI Claims also shows that BOE has ranked 13th among the Top 50 USPTO (The United States Patent and Trademark Office), Patent Assignees, in 2019. According to the 2019 International PCT Applications of WIPO, BOE ranked No.6 with 1,864 applications.
LG Display is a leading manufacturer of thin-film transistor liquid crystal displays (TFT-LCD) panels, OLED, and flexible displays.LG Display began developing TFT-LCD in 1987 and currently offers Display panels in a variety of sizes and specifications using different cutting-edge technologies (IPS, OLED, and flexible technology).
LG Display now operates back-end assembly plants in South Korea, China, and Vietnam. In addition, LG Display operates a sales subsidiary with a global network to effectively serve overseas markets.
Samsung Electronics is South Korea’s largest electronics industry and the largest subsidiary of the Samsung Group. In the late 1990s, Samsung Electronics’ independent technology development and independent product innovation capabilities were further enhanced. Its product development strategy not only emphasizes “leading the technology but also using the most advanced technology to develop new products to meet the high-end market demand at the introduction stage”.In addition to the matching principle, it also emphasizes the principle of “leading technology, developing new products with the most advanced technology, creating new demand and new high-end market”.
Founded in 2003, Innolink listed its shares in Taiwan in 2006. In March 2010, it merged with Chi Mei Optoelectronics and Tong Bao Optoelectronics, the largest merger in the panel industry. Qunchuang is the surviving company and Chi Mei Electronics is the company name. In December 2012, it was renamed As Qunchuang Optoelectronics.
With innovative and differentiated technologies, QINNOOptoelectronics provides advanced display integration solutions, including 4K2K ultra-high resolution, 3D naked eye, IGZO, LTPS, AMOLED, OLED, and touch solutions. Qinnooptoelectronics sets specifications and leads the market. A wide range of product line is across all kinds of TFT LCD panel modules, touch modules, for example, TV panel, desktop and laptop computer monitor with panels, small and medium scale “panels, medical, automotive, etc., the supply of cutting-edge information and consumer electronics customers around the world, for the world TFT – LCD (thin-film transistor liquid crystal display) leading manufacturers.
AU Optronics Co., LTD., formerly AU Optronics Corporation, was founded in August 1996. It changed its name to AU Optronics after its merger with UNIOPtronics in 2001. Through two mergers, AU has been able to have a full range of generations of production lines for panels of all sizes.Au Optronics is a TFT-LCD design, manufacturing, and r&d company. Since 2008, au Optronics has entered the green energy industry, providing customers with high-efficiency solar energy solutions.
Sharp has been called the “father of LCD panels”.Since its founding in 1912, Sharp developed the world’s first calculator and LIQUID crystal display, represented by the living pencil, which was invented as the company name. At the same time, Sharp is actively expanding into new areas to improve people’s living standards and social progress. Made a contribution.
Sharp is committed to creating a unique company, creating life in the 21st century through unparalleled “originality” and “sophistication”, and is a sales company, operating video, home appliances, mobile phones, and information products throughout the major cities of the country. Establish a business point, establish a perfect after-sale service network, satisfy consumer demand.
BYD IT products and businesses mainly include rechargeable batteries, plastic mechanism parts, metal parts, hardware electronic products, cell phone keys, microelectronics products, LCD modules, optoelectronics products, flexible circuit boards, chargers, connectors, uninterruptible power supplies, DC power supplies, solar products, cell phone decoration, cell phone ODM, cell phone testing, cell phone assembly business, notebook computer ODM, testing and manufacturing and assembly business, etc.
Toshiba is a famous multinational company with a history of 130 years. It covers a wide range of businesses, including social infrastructure construction, home appliances, digital products, and electronic components. It covers almost every aspect of production and life. Toshiba has the largest research and development institution in Japan. Through unremitting innovation and development, Toshiba has been at the forefront of science and technology in the world.
From the introduction of Japan’s original washing machines, refrigerators, and other household appliances, to the world’s first laptop, the first 16MB flash memory, the world’s smallest 0.85-inch HDDs; Create advanced HDDVD technology; Toshiba created many “world firsts” in the research and manufacture of new SED displays and contributed to changing people’s lives through constant technological innovation.
Kyocera was founded in 1959 as a manufacturer of technical ceramics. Industrial ceramics is a series of advanced materials with unique physical, chemical, and electronic properties. Today, most of Kyocera’s products are related to telecommunications, including semiconductor components, RF and microwave packaging, passive electronic components, wireless mobile phones and network equipment, crystal oscillators and connectors, and optoelectronic products for optoelectronic communication networks.
Tianma microelectronics co., LTD., founded in 1983, the company focus on smartphones, tablets, represented by high order laptop display market of consumer goods and automotive, medical, POS, HMI, etc., represented by professional display market, and actively layout smart home, intelligent wear, AR/VR, unmanned aerial vehicles (UAVs) and other emerging markets, to provide customers with the best product experience.IN terms of technology, the company has independently mastered leading technologies such as LTPS-TFT, AMOLED, flexible display, Oxide-TFT, 3D display, transparent display, and in-cell/on-cell integrated touch control. TFT-LCD key Materials and Technologies National Engineering Laboratory, national enterprise Technology Center, post-doctoral mobile workstation, and undertake national Development and Reform Commission, The Ministry of Science and Technology, the Ministry of Industry and Information Technology, and other major national thematic projects. The company’s long-term accumulation and continuous investment in advanced technology lay the foundation for innovation and development in the field of application.