2.4 diagonal lcd tft display arduino examples supplier

Spice up your Arduino project with a beautiful touchscreen display shield with built in microSD card connection. This TFT display is 2.4" diagonal and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. As a bonus, this display has a optional capacitive touch panel and resistive touch panel with controller XPT2046 attached by default.

The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).

This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!

If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.

2.4 diagonal lcd tft display arduino examples supplier

tft.fillRect(0, 0, BOXSIZE, BOXSIZE, RED); tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, YELLOW); tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, GREEN); tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, CYAN); tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, BLUE); tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, MAGENTA); // tft.fillRect(BOXSIZE*6, 0, BOXSIZE, BOXSIZE, WHITE); tft.drawRect(0, 0, BOXSIZE, BOXSIZE, WHITE); currentcolor = RED; pinMode(13, OUTPUT); }

if (p.z > MINPRESSURE && p.z < MAXPRESSURE) { /* Serial.print("X = "); Serial.print(p.x); Serial.print("\tY = "); Serial.print(p.y); Serial.print("\tPressure = "); Serial.println(p.z); */ if (p.y < (TS_MINY-5)) { Serial.println("erase"); // press the bottom of the screen to erase tft.fillRect(0, BOXSIZE, tft.width(), tft.height()-BOXSIZE, BLACK); } // scale from 0->1023 to tft.width p.x = tft.width()-(map(p.x, TS_MINX, TS_MAXX, tft.width(), 0)); p.y = tft.height()-(map(p.y, TS_MINY, TS_MAXY, tft.height(), 0)); /* Serial.print("("); Serial.print(p.x); Serial.print(", "); Serial.print(p.y); Serial.println(")"); */ if (p.y < BOXSIZE) { oldcolor = currentcolor;

if (p.x < BOXSIZE) { currentcolor = RED; tft.drawRect(0, 0, BOXSIZE, BOXSIZE, WHITE); } else if (p.x < BOXSIZE*2) { currentcolor = YELLOW; tft.drawRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, WHITE); } else if (p.x < BOXSIZE*3) { currentcolor = GREEN; tft.drawRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, WHITE); } else if (p.x < BOXSIZE*4) { currentcolor = CYAN; tft.drawRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, WHITE); } else if (p.x < BOXSIZE*5) { currentcolor = BLUE; tft.drawRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, WHITE); } else if (p.x < BOXSIZE*6) { currentcolor = MAGENTA; tft.drawRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, WHITE); }

if (oldcolor != currentcolor) { if (oldcolor == RED) tft.fillRect(0, 0, BOXSIZE, BOXSIZE, RED); if (oldcolor == YELLOW) tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, YELLOW); if (oldcolor == GREEN) tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, GREEN); if (oldcolor == CYAN) tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, CYAN); if (oldcolor == BLUE) tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, BLUE); if (oldcolor == MAGENTA) tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, MAGENTA); } } if (((p.y-PENRADIUS) > BOXSIZE) && ((p.y+PENRADIUS) < tft.height())) { tft.fillCircle(p.x, p.y, PENRADIUS, currentcolor); } } }

2.4 diagonal lcd tft display arduino examples supplier

In electronics world today, Arduino is an open-source hardware and software company, project and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices. Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (‘shields’) or breadboards (for prototyping) and other circuits.

The boards feature serial communications interfaces, including Universal Serial Bus (USB) on some models, which are also used for loading programs. The microcontrollers can be programmed using the C and C++ programming languages, using a standard API which is also known as the “Arduino language”. In addition to using traditional compiler toolchains, the Arduino project provides an integrated development environment (IDE) and a command line tool developed in Go. It aims to provide a low-cost and easy way for hobbyist and professionals to create devices that interact with their environment using sensors and actuators. Common examples of such devices intended for beginner hobbyists include simple robots, thermostats and motion detectors.

In order to follow the market tread, Orient Display engineers have developed several Arduino TFT LCD displays and Arduino OLED displays which are favored by hobbyists and professionals.

The sizes are 0.96” (160×80), 1.13” (240×135), 1.3” ((240×240), 1.33” (128×128), 1.54” (240×240), 1.77” (128×160), 2.0” (240×320), 2.3” (320×240), 2.4” (240×320), 2.8” (240×320), 3.2” (240×320).

Although Orient Display provides many standard small size OLED, TN and IPS Arduino TFT displays, custom made solutions are provided with larger size displays or even with capacitive touch panel.

2.4 diagonal lcd tft display arduino examples supplier

If none of these part numbers meet your requirements in terms of brightness, interface, or connection method, please email us at info@orientdisplay.com.

2.4 diagonal lcd tft display arduino examples supplier

The 2.4 inch TFT LCD Touch Display Shield is a Bright, 4 white-LED backlight, on by default but you can connect the transistor to a digital pin for backlight control. So spice up your Arduino UNO project is a beautiful large touchscreen display shield with a built-in microSD card connection. This TFT display is big (2.4″ diagonal) bright (4 white-LED backlights) and colorful (18-bit 262,000 different shades)!

2.4 inch TFT LCD Touch Display Shield for ArduinoUno is fully assembled, tested and ready to go. Add the touch display without wiring, no soldering! Simply plug it in and load up a library – you ‘ll have it running in under 10 minutes! Works best with any classic Arduino ATMEGA328 Board.

The 2.4 inch TFT LCD Touch Display comes with 240×320 pixels with individual pixel control. It has way more resolution than a black and white 128×64 display. As a bonus, this display has a resistive touchscreen attached to it already, so you can detect finger presses anywhere on the screen.

Display worked perfect! No dead pixels, backlight was bright and touch screen had minimal lag and was very responsive. Recommended if you need a touchscreen.

This touch display works 100% right out of box . Touch screen and SD card reader functions works as designed. You just "plug and play" into the UNO module.

2.4 diagonal lcd tft display arduino examples supplier

This module is designed to plug directly into Arduino UNO R3 (or its clone) boards. It is compatible with CH340 and Atmega16u2 version boards, as well as Mega 2560. This LCD shield may also work with other boards, but the compatibility can"t be guaranteed.

2.4 diagonal lcd tft display arduino examples supplier

Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735  colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.

The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.

The schematics for this project is fairly easy as the only thing we will be connecting to the Arduino is the display. Connect the display to the Arduino as shown in the schematics below.

Due to variation in display pin out from different manufacturers and for clarity, the pin connection between the Arduino and the TFT display is mapped out below:

We will use two libraries from Adafruit to help us easily communicate with the LCD. The libraries include the Adafruit GFX library which can be downloaded here and the Adafruit ST7735 Library which can be downloaded here.

We will use two example sketches to demonstrate the use of the ST7735 TFT display. The first example is the lightweight TFT Display text example sketch from the Adafruit TFT examples. It can be accessed by going to examples -> TFT -> Arduino -> TFTDisplaytext. This example displays the analog value of pin A0 on the display. It is one of the easiest examples that can be used to demonstrate the ability of this display.

The second example is the graphics test example from the more capable and heavier Adafruit ST7735 Arduino library. I will explain this particular example as it features the use of the display for diverse purposes including the display of text and “animated” graphics. With the Adafruit ST7735 library installed, this example can be accessed by going to examples -> Adafruit ST7735 library -> graphics test.

The first thing, as usual, is to include the libraries to be used after which we declare the pins on the Arduino to which our LCD pins are connected to. We also make a slight change to the code setting reset pin as pin 8 and DC pin as pin 9 to match our schematics.

Next, we create an object of the library with the pins to which the LCD is connected on the Arduino as parameters. There are two options for this, feel free to choose the most preferred.

Next, we move to the void setup function where we initialize the screen and call different test functions to display certain texts or images.  These functions can be edited to display what you want based on your project needs.

The complete code for this is available under the libraries example on the Arduino IDE. Don’t forget to change the DC and the RESET pin configuration in the code to match the schematics.

Uploading the code to the Arduino board brings a flash of different shapes and text with different colors on the display. I captured one and its shown in the image below.

That’s it for this tutorial guys, what interesting thing are you going to build with this display? Let’s get the conversation started. Feel free to reach me via the comment section if you have any questions as regards this project.