lcd screen too bright price
Those might as well have been the days of horses and buggies. Today? We have 8K resolution, if you want it. Flatscreen liquid crystal display (LCD) and organic light-emitting diode (OLED) displays can be lifted by one person, and they’re easy to tile. We now have flexible displays that can wrap around surfaces. LCD TVs and monitors are dirt cheap now, selling for 1/20th of early-2000s prices—and they’re twice the size.
Wondering about brightness? Well, how does 3,000 candelas per square meter (cd/m2) from LEDs strike you? On a 120-inch, 16:10 screen, that would be the equivalent of 135,000 lumens from a projector! Even half that brightness would require a 67,500-lumen projector for the same size screen. Although that’s impractical for projection, it’s just another day’s work for LED displays.
Several companies are now selling “outdoor” LCD screens with brightness ratings from 700cd/m2 to 800cd/m2. High-dynamic-range (HDR) ultra-HD TVs easily exceed 1,000cd/m2 small-area/peak luminance. Prototype “micro” LED displays have been shown with brightness specifications in the tens of thousands of candelas per square meter.
You get the point. When it comes to displays, brightness isn’t an issue anymore. But anyone who has walked through Times Square or strolled the Las Vegas Strip at night could tell you that. On some city blocks, it almost feels as though it’s daytime with all those photons showering down on us. And, under normal daylight, with light readings ranging from 10,000cd/m2 to 100,000cd/m2, you can still read those signs without much effort.
Even cinemas are experiencing a revolution with respect to screen luminance. Two years ago, I described a trip to Richmond TX to see the second Samsung Onyx LED 4K cinema screen in operation. (The first is in Chatsworth CA.) I thought to bring along a spot meter, and I took measurements of the screen, as well as the chairs, walls and clothing articles of my fellow viewers when high-luminance content was being shown. With white backgrounds onscreen, those readings hit 52 foot-lamberts (fL), or 178cd/m2. At that point, the theater was lit up more brightly than when all the house lights were turned on.
Yes, we’ve finally reached a point in time when displays are bright enough—indeed, in some cases, they can be too bright. OLED TVs—I own one of them—are often derided by LCD TV brands for “not being bright enough,” as they have a maximum small-area brightness level of 700cd/m2. Yet, having taken some measurements with my spot meter, I found that the average luminance levels for TV programs with my 55-inch OLED TV in ISF Day mode ranged from 70cd/m2 to 150cd/m2. And those levels were plenty bright enough to view with indirect daylight illuminating the room, and they were very bright at night.
Even in HDR mode, small-area/peak luminance exceeded 600cd/m2—no complaints there! TV programs with sustained luminance levels exceeding 170cd/m2 (50fL) can seem too bright in a semi-darkened room. With the lights off, those levels are high enough to fully light up the viewing space, and high luminance content is difficult to watch for sustained periods under those conditions.
My proposal in the HPA presentation was to change our way of thinking on two counts: 1) stop worrying about “brightness”; 2) instead, focus on contrast-ratio targets. I’ve taught several classes on display setup over the years, and I’ve adopted some useful contrast-ratio guidelines from other industry experts. Those would be 15:1 for classroom and meeting-room presentations, 50:1 for analytical decision-making, and 80:1 and up for true immersive viewing. Those ratios are calculated by measuring the ratio between screen luminance and room ambient-light levels.
Intriguingly, in my travels and measurements, I’ve found that it’s often difficult to attain a screen/ambient contrast ratio exceeding 50:1, especially with high-luminance content. In my own home theater, a circa-2007 full-HD LCD projector, fully calibrated, puts out a measly 330 lumens onto a 92-inch, 1.0-gain screen. But, at that light level, other objects in the room reflect light and become visible, even with a 51:1 contrast ratio. Even the walls, which are painted a dark, neutral gray (Sherwin-Williams’ “Gray Matters” color), are lighting up. Gain screens (remember those?) could mitigate the light-scattering problem, but the tradeoff is accepting narrower viewing angles.
This situation was observed in the Richmond TX Onyx theater demonstration. With bright screen content measuring peak levels of 170cd/m2, you could easily read a book or newspaper, navigate your way to and from the snack bar, and see the sound-absorbing tile patterns on the wall. White and light-colored shirts absolutely popped out, as did white athletic shoes. You’d have to drape everything—walls, floor, chairs and even patrons—in light-absorbing black stipple velvet to realize a significant improvement in the ambient contrast ratio.
Outdoors on the Strip, or in an airport or at a mall, screens are intentionally super bright to catch your eye. They’re competing with other screens and lighting, and you usually give them a brief glance. In a movie theater, however, you shouldn’t be seeing and watching anything but the theater screen. (There are exceptions, of course: an occasional glance at your snack, drink or meal; a turn to your companion to make a snide comment; a glare as if to say, “Stop looking at your @#$%^ phone!”)
I still have most of the “Angles of View” collection. In one installment (“By Different Lights—Contrasting Among Brightness Levels,” pp. 17-18), Milliken stated, “In an earlier article [Vol. IV, #11], we observed that 50 was a kind of upper-threshold number for brightness and that, if a screen were, in fact, to exhibit a luminance level of 50 foot-lamberts, it might actually be too bright for all but unusual environments.”
TRU-Vu High Bright Sunlight Readable Monitors enable users to see clear, sharp video images even in direct sunlight with a bright screen. Our high brightness displays produce at least 1,000 nits brightness. Some go up to 2,500 nits of brightness. This makes them far brighter than standard LCD monitors. Specifically, consumer or commercial-grade monitors typically offer only 150 to 300 nits brightness. High brightness displays and sunlight readable touch screens will ensure crystal-clear video images even in bright sunlight. The result is better performance and bold colors in other high ambient light conditions as well. They are also available with optical bonding as monitors or touch screen displays.
In outdoor or bright conditions, it is imperative to increase the brightness of a display to ensure crisp images. The number of nits an LCD display emits is the main factor in determining the monitor’s perceived brightness. A monitor luminance of around 200-350 nits will work well indoors. Most LCD displays and monitors fall in this range. However, 400-700 nits would be required for use in daylight conditions. Most importantly, a Sunlight readable display requires at least 1,000 nits or more for viewing in direct, bright sunlight . These high brightness displays are available with 16:9 aspect ratio or 4:3 aspect ratio screens. All TRU-Vu Sunlight Readable monitors and high-brightness touch screens are TAA Compliant.
Some monitors feature a sheet of glass over the LCD panel to protect it from accidental or intentional damage. However, the glass also produces unwanted glare and reflections. Internal reflections in the air gap between the glass and the LCD panel diminish image quality even further. In order to combat this, monitors are optically bonded.
Optical bondingis the process of laminating protective glass or a touch screen panel to the LCD panel with an optical-grade resin. This completely fills the air gap between the glass and LCD panel. It not only eliminates the internal reflections, but also increases the contrast ratio. This makes the screen appear much brighter and more viewable in bright light conditions. Optical bonding also eliminates internal moisture and condensation. Moreover, it will make the monitor more rugged and durable. Lastly, an Anti-Reflective coating is applied to the outside of the glass. Consequently, this will drastically reduce glare and surface reflections.
For installations in indirect sunlight, or reflected bright light, our Daylight Viewable displays will most likely suffice. These are also more cost-effective than Sunlight Readable monitors with 1,000 nits brightness. Daylight viewable monitors feature LCD screens with 400 nits to 700 nits brightness. The LCD panels also include optical bonding.
Daylight-viewable touchscreens with optical bonding are also significantly brighter than standard touch screens. Consequently, they produce far better image quality in bright conditions. Although they are not as bright as High Brightness Sunlight Readable touch screens, daylight readable touch screens do offer the benefit of lower power consumption. This may be useful in portable or mobile applications. We currently offer over 60 monitors with optical bonding; all are TAA-Compliant.
Our outdoor high brightness Sunlight Readable LCD monitors feature waterproof stainless steel enclosures. These are ideal for factory wash-down environments. Additionally, they are perfect for outside use in challenging weather. Our panel mount enclosures are made from steel, stainless steel, or aluminum. This enables them to be flush-mounted. Outdoor LCD monitors with high brightness work in a wider range of temperatures. Consequently, this broadens the environments in which they may be used. Additionally, temperature ranges are very important to consider when using outdoors. When we combine extreme operating temperatures with outdoor waterproof enclosures, we ensure your high brightness monitors will be able to function in even the harshest wet and hot environments. We will also modify or customize any model to meet your exact requirements.
In conclusion, we deploy TRU-Vu outdoor waterproof sunlight readable monitors and high brightness touch screens in a wide range of industries. For example, military, law enforcement, manufacturing plants benefit from high bright LCD displays. Amusement parks, sports stadiums, mass transit, and construction & heavy equipment also rely on high bright sunlight readable displays. In addition, outdoor high brightness LCD monitors are demanded in pipeline inspection, kiosks, marine, oil & gas, drones, security applications. When it counts, you can rely on TRU-Vu Monitors to deliver the optimal weather resistant high bright LCD monitor solution for your specific needs.
High Brightness monitor solutions provide 800 to 1000 nits of brightness for enhanced viewing. Outside environments (sun light readable) and rooms with lots of windows can benefit from the high brightness Rackmount LCD"s. If you do not need a high bright solution, our Rackmount Monitoroptions will surely fit your need. You can also integrate Cat5 KVM Switches and the DB-15 KVM Switch into all of our Rackmount LCD Monitor drawers.
For the video display developer LCD panels are available in many sizes and resolutions, they are also available with many choices of maximum brightness. The following considers the topic of LCD panel brightness, the choices, the methods for adjusting brightness and some brightness adjustment scenarios.
LCD panels are generally rated as to their maximum brightness level which is expressed in Nits, it is equal to Candela/sqm (cd/m2), and this will be at a particular color temperature as noted in the specification, usually 10,000 K. In terms of a practical understanding, the following is a rough guide:
Outdoor displays range from a low end of 700 nits to typically 1,000 or 1,500nits and up with 2,000~2,500nits and even up to 5,000nits seen with some models. This may include standard LCD panels, custom LCD panels as well as custom cut LCD panels.
Virtually all LCD panels have a LED backlight these days, these are powered by an LED driver board. Brightness control via the driver board will be by one of two methods:
PWM (Pulse Width Modulation): This varies the duty cycle of the backlight “on time” – it is predominant in modern LCD panel LED backlight designs to enable support for digital brightness controls.
Analog: Uses a simple variable voltage to adjust brightness, for example this might be a dial or slider type potentiometer / variable resistor. To see how to enable analog backlight adjustment visit: https://www.digitalview.com/blog/brightness-adjustment/
One of the advantages of LED for the backlight is the range of adjustment that is possible, however it is important to note that the range varies significantly from model to model. Some industrial panels can be turned to very low light levels making them suitable for use in special environments such as at night. Lower cost panels limit the range of brightness to what might be required for typical usage, whereas panels with full range dimming from full off to full on require more complex backlight drivers.
Backlight lifetime: Many LCD panels have a backlight lifetime rating of 50,000 hours (typically measured to half brightness), this can be extended by running the LED backlight at a lower brightness level. Some panels may only offer 30,000 hours as a lower cost solution while other panels may offer up to 100,000 hours for high end applications.
An LCD panel backlight may be constructed so the LED’s are mounted directly behind a light guide diffuser, or they may be mounted along one or more edges of the light guide.
Active backlight: This is a function of some LCD panel backlights to automatically adjust the backlight brightness in response to the image. For more advanced systems there is an LED array making up the LED backlight, this adjusts the brightness in areas localized to the image being shown. This can greatly enhance the brightness across the display and is being used primarily with video, for example on consumer TV sets. It is not useful to all image types, for example a spreadsheet or content like maps or data is not likely to benefit.
Local dimming: Some LCD panels with direct LED may support local dimming so the LED’s are dimmed in response to the image close to them. This will not be at the same resolution as the LCD panel itself but will help greater contrast over the display by enhancing the brightness in bright areas of the image and darkening the image in dark parts of the image.
For the LCD monitor manufacturer it is important to consider that any covering over the LCD panel will reduce the brightness. For example the protective glass over a digital signage display, or a touch screen, or a semi-silvered mirror. So if a specific brightness is required the measurement should be taken with these in place.
There are various relatively low cost brightness meters available, typically in the couple of hundred dollars range. It is difficult to comment on the accuracy of these but we have found them to be within 5% of each other, though more importantly they do appear to be quite consistent in measurement so good for measurement comparisons. For more accurate measurement there are light meters from companies such as Minolta that can be calibrated, the cost may run into several thousand dollars.
Examples of light meters costing a few hundred dollars include SpyderX by Datacolor (needs a PC), a handheld meter is the SM208 by Sanpometer (search SM208 meter). Note: Many light meters, including smartphone apps, will be meters used for photography and not give readings in nits (or candelas). LCD panel specifications are typically measured using nits.
PWM and Analog: Most Digital View LCD controllers support PWM and Analog as a method for adjusting the backlight brightness level (this is noted in the column headed “Other” on the controller board summary table: https://www.digitalview.com/controllers/lcd-controllers-home.html. Also see https://www.digitalview.com/blog/brightness-adjustment/ for a guide to using a dial or slider type variable resistor to adjust the backlight.
Ambient light sensor: The backlight is adjusted for brightness or powered off depending on ambient light conditions. This uses a light sensor attached to the LCD controller board, see https://www.digitalview.com/blog/light-sensor-app-note/ for more details.
The specifics of the backlight control are documented separately for each LCD controller model (product summary here) in the product manual available for download on the product page.
Note: There are two ways to adjust the perceived brightness of a LCD panel or LCD monitor, the backlight and the black-level. Very often, particularly in the past, the monitor brightness setting adjusted the black-level, this adjusts the LCD but not the backlight.
Color, color temperature etc: In addition to adjusting the brightness other settings may be adjusted as well. For example the color temperature or for example a switch to green monochrome for night vision.
Night-safe lighting (update) : Dual-rail backlights can also be supported. These special backlight enable normal brightness and extreme low level brightness with custom night-safe lighting. Contact us for details.
Note: We have a blog on methods for implementing an ambient light sensor with Digital View LCD controller boards to automatically adjust the backlight or system power, see: Ambient Light Sensor
Update March 2019: Most of the above remains unchanged except for the increased availability of high bright LCD panels of around the 1,000 nit to 2,500 nit range. AUO for example has a number of large size LCD panels with 1,500 nit brightness for the digital signage market. Tianma has panels under 20″ with 1,000 nit to 1,500 nit brightness for various outdoor applications.
The other change is that high bright panels are now increasing edge-lit, this makes the panels thinner and these panels tend to use less power than the previous models. One of the benefits for monitor designers is easier heat management and reduced overall display system costs.
When you plan to use digital signage and are wondering what screens to use, there are several aspects that you should consider. The most obvious one is the size of the screen.
The subject of a previous blog post is how to choose the best screen size. However, a second factor you should consider is the screen"s brightness, which can significantly influence the screen"s price and running costs. This article will explain what brightness is and what things you should consider in choosing a screen and includes a table of what screen brightness to best use in typical digital signage environments.
To understand the rest of this article and most screen vendor documentation, it is necessary to briefly define what we mean by "brightness" and "illuminance":
Brightness (also called luminance) is a measure of how much light is reflected or emitted from an object (screen), it is expressed/measured in "nits" (which is the same as cd/m2)
In short, brightness is the measure of light coming from a screen, and illuminance is the measure of light in a space. So, it makes sense that for content on a screen to be visible, it has to be brighter than the objects around it (which are illuminated by the ambient light).
The "correct" brightness of a screen is "enough to make the content of the screen overcome the brightness of its direct surroundings". Which, in its turn, depends on the illuminance of the screen"s location. When the illuminance around the screen varies, the maximum illuminance is considered. On the other hand, the brightness should not be too high; a screen that is too bright will be unpleasant to look at, unnecessarily expensive, and negatively influence the surrounding lighting indoors.
Since brighter screens have a higher purchase price, use more electricity, and, depending on the screen technology, need to be replaced more frequently, it makes sense to use a screen with just enough brightness for its location. In addition, some professional screens have a light sensor allowing them to adjust the brightness to the illuminance of the environment. Adaptive brightness ensures good visibility at the lowest energy use and can be valuable for screens in locations with variable lighting conditions.
for indoor screens; a brightness of at least 300 nits and double the illuminance - so if the illuminance in a room is 200 lux the brightness of the screen should be 400 nits.
The 2-to-1 rule holds for outdoor screens, but a maximum of 3000 nits is enough in most situations. Factor 2 can be adjusted down in cases with higher illuminance to 1,5. Since most outdoor conditions have an illuminance of 1000 lux a minimum brightness for outdoor screens is around 2000 nits, which rules out consumer TV screens. When using outdoor screens at night, they should not be brighter than 100-150 nits
Digital signage screens are available in several technologies; LCD, OLED and LED to name a few. There are some pros and cons to each of these technologies. Concerning screen brightness, there are a few things that you should take into consideration concerning these technologies:
Placing a screen behind a shopping window takes special care. A bright screen will probably solve visibility issues, but it is more expensive to purchase and use electricity. Placing the screen close to the glass and ensuring the surrounding light is adjusted can eliminate the need for high-brightness screens.
To support your decision-making, we include a table of typical ambient illuminance and the recommended screen brightness for that environment. Using this table, you will get more detailed advice than the "rule of thumb" explained above.
IndustryWorkspaceTypical ambient illuminance (in lux or lm/m2)Recommended screen brightness (in nits or cd/m2)Aviation and TransportationAirport departure hall350 – 5,000700 – 2,500
How does the song go?My future’s so bright I need to wear shadesI"ve got a job waiting for my graduationFifty thou a year, buys a lot of . . . coffee??????
This article is limited to monochrome since they perform better in direct sunlight and can still be read when the back light is off. Also, the tooling cost, if necessary, is much lower.
Swap out the transflective polarizer with a transmissive polarizer. This increases the brightness without increasing the amount of power necessary or decreasing the half-life of the LEDs. The one downside is the display will be a bit more difficult to read when the back light is off, but it is still readable.
Every monochrome display with a LED back light contains a current limiting resistor. The lower the resistor value, the higher the current draw. Hence the brighter the back light. The down side is the back light draws more power (not always good for battery powered products) and it reduces the half-life of the LED back light.
Nature has a lot of nits. The noonday sun measures around 1,600,000,000 nits and the night sky around 0.001 nits. Or, more relevant to us here, the average modern TV maxes out around 500-1,000 nits, and a movie theater screen maybe 50. We"re starting to see some TVs pushing 1,500 nits, but that"s still pretty rare and, in the case of the
Sony"s 10,000-nit prototype, which just happened to also be 8K, was stupendously bright. One wonders at the power required to drive such a beast. maybe Sony"s crazy demo TV was the real culprit.
Seriously though, I"ve been reviewing and writing about TVs for 17 years and I"ve never resorted to this specific hyperbole: I think this prototype might be the most realistic image I"ve ever seen. Even in a darkened room off to the side of Sony"s booth, the image was incredible. Highlights like reflections, headlights, really anything that required a spike of brightness, was so realistically bright, it added a whole new layer of realism.
The key? The TV isn"t always 10,000 nits. Or at least, it shouldn"t be. Ideally just a tiny part of the image, the brightest highlights, would be that bright.
Imagine a character walking through the woods at night. Creepy, moody, dark. They take out a flashlight to see their way. The whole scene is still dark, just a few nits, but the just bulb on the flashlight could be 10,000 nits. As bright, perhaps, as if you were standing in that wood yourself. It would be more realistic, since the thing on screen that"s supposed to be bright is actually physically bright. It"s the beauty of HDR, potentially.
It works in daytime scenes too, with bright objects looking just like they do in real life. Imagine a glint off a piece of chrome, sunlight filtering through a tree or headlights flashing rapidly to get you out of the middle of the street (because you were staring at chrome and sunbeams). Your TV could look that realistic too.
Done right, most of the TV screen won"t be much brighter than what you already have, most of the time. The benefit is headroom: when the content requires something to be super bright, it can be, just like real life.
Also like the Porsche, just because that performance is there doesn"t mean you"ll need to use it. If you get a shiny 10,000-nit TV, you"ll be able to turn down that peak brightness if you find it fatiguing. Almost certainly, there will be some sort of night mode that will limit the overall light output. There will also likely be limiters that prevent the whole screen from getting too bright, just in case some ill-mastered content tries to exfoliate your retinas with a full-screen white image at full brightness.
It has long been an accepted truth that the brightest TV on the sales floor sells the best. In big-box stores, cranking the brightness certainly helps juice sales. Along with the advent of 4K, a comparatively dim image helped contribute to
So how bright is too bright? Even though the human eye is capable of seeing a huge range of brightness, there"s a comfort limit. If you"ve ever gotten eye fatigue from staring at a screen in a dark room, you"re familiar with this limit.
With light output assuredly heading for the exosphere, however, it"s going to be important that TVs, and filmmakers, keep a tight leash on this potential performance. Like best TVs of the next decade won"t necessarily be the brightest, but the ones that are best able to wrangle that brightness to create a punchy, realistic, easy-to-watch image.
First, the display screen on a sunlight readable/outdoor readable LCD should be bright enough so that the display is visible under strong sunlight. Second, the display contrast ratio must be maintained at 5 to 1 or higher.
Although a display with less than 500 nits screen brightness and a mere 2 to 1 contrast ratio can be read in outdoor environments, the quality of the display will be extremely poor. At i-Tech, a truly sunlight readable display is typically considered to be an LCD with 1000 nits or greater screen brightness with a contrast ratio greater than 5 to 1. In outdoor environments under the shade, such a display can provide an excellent image quality.
Luminance is the scientific term for hotopic Brightness?which specifies the visual brightness of an object. In layman"s terminology, it is commonly referred to as brightness? Luminance is specified in candelas per square meter (Cd/m2) or nits. In the US, the British unit Foot-lamberts (fL) is also frequently used. To convert from fL to nits, multiply the number in fL by 3.426 (i.e. 1 fL = 3.426 nits).
Luminance is a major determinant of perceived picture quality in an LCD. The importance of luminance is enhanced by the fact that the human mind will react more positively to brightly illuminated scenes and objects. Users are typically more drawn to brighter displays that are more pleasing to the eye and easier to read. In indoor environments, a standard active-matrix LCD with a screen luminance around 250 nits looks good. However, a sunlight readable LCD with a screen luminance of 1,000 will look even more beautiful.
Contrast ratio (CR) is the ratio of luminance between the brightest �white� and the darkest �black� that can be produced on a display. CR is another major determinant of perceived picture quality. If a picture has high CR, you will judge it to be sharper and more crisp than a picture with lower CR. For example, a typical newspaper picture has a CR of about 5 to 7, whereas a high quality magazine picture has a CR that is greater than 15. Therefore, the magazine picture will look better even if the resolution is the same as that of the newspaper picture.
A typical AMLCD exhibits a CR between 300 to 700 when measured in a dark room. However, the CR on the same unit measured under ambient illumination is drastically lowered due to surface reflection (glare). For example, a standard 200 nit LCD measured in a dark room has a 300 CR, but will have less than a 2 CR under strong direct sunlight. This is due to the fact that surface glare increases the luminance by over 200 nits both on the white and the black that are produced on the display screen. The result is that the luminance of the white is slightly over 400 nits, and the luminance of the black is over 200 nits. The CR ratio then becomes less than 2 and the picture quality is drastically reduced.
i-Tech sunlight readable LCDs with 1500 nits screen brightness will have a CR over 8 with the same amount of glare under the same strong sunlight, making the picture quality on these units extremely good. For further reading on contrast ratio, please see Tech Note 0101, Page 2, the Display Contrast Ratio.
The viewing angle is the angle at which the image quality of an LCD degrades and becomes unacceptable for the intended application. As the observer physically moves to the sides of the LCD, the images on an LCD degrade in three ways. First, the luminance drops. Second, the contrast ratio usually drops off at large angles. Third, the colors may shift. The definition of the viewing angle of an LCD is not absolute as it will depend on your application.
Most LCD manufacturers define viewing angle as the angles where the CR (contrast ratio)^3 10. For LCDs designed for less demanding applications, the viewing angle is sometimes defined as the angles where the CR^3 5.
For LCDs used in outdoor applications, defining the viewing angle based on CR alone is not adequate. Under very bright ambient light, the display is hardly visible when the screen luminance drops below 200 nits. Therefore, i-Tech defines the viewing angles based on both the CR and the Luminance.
All LCD backlights powered by cold cathode fluorescent lamps (CCFL) require inverters. An inverter is an electronic circuit that transforms a DC voltage to an AC voltage, which drives the CCFLs. i-Tech Technology manufactures inverters for all its products. Additionally, Applied Concepts and ERG also provide inverters for our products as well.
The dimming range or dimming ratio of an inverter specifies its capability of performing backlight luminance adjustment. For inverters used in notebook computers and LCD monitors, the backlight luminance can be adjusted typically over a dimming range of less than 10:1. That is, the luminance is adjusted from 100% down to about 10%.
For very high brightness backlights used in i-Tech Technology sunlight readable LCD modules, the inverters must be able to provide a much wider dimming range. Otherwise, the LCD screen will be too bright during nighttime conditions. Therefore, our inverters provide a typical dimming ratio of 200:1, meaning that the luminance can be adjusted from 100% down to 0.5%.
Any high brightness backlight system will consume a significant amount of power, thereby increasing the LCD temperature. The brighter the backlight, the greater the thermal issue. Additionally, if the LCD is used under sunlight, additional heat will be generated as a result of sunlight exposure. Temperature issues can be handled through proper thermal management design.
We provide TFT LCD with reflective mode of illumination without compromising its transmissive illumination. With the imposed reflective function, the modified LCD can reflect the ambient light passing the LCD cell and utilize the reflected light beams as its illumination. The stronger the ambient light is, the brighter the LCD will appear. As a result, the modified LCD is viewable under all lighting conditions including direct sunlight regardless the LCD"s original brightness.
The market demands for outdoor LCD applications are expanding, such as mobile navigator/video systems, PDA, personal organizer, Tablet PC, notebook computer, and Kiosk display etc. However, a regular transmissive LCD is very difficult to read under strong ambient light. This limits the outdoor applications of a conventional transmissive LCD.
The high bright LCD and the transflective LCD are the solutions generally utilized for outdoor applications. However, both solutions have some shortcomings. Because of the added lamps, high bright LCD creates some undesirable problems, which include high power consumption, excessive heat generation, increased dimensions, electrical circuit alterations, and shortened LCD lifetime. Thus, it is usually troublesome and costly to accommodate a high bright LCD in systems. Though giving good performance under the direct sunlight, the transflective LCD trades of its indoor performances.
Problems noticed in transflective LCD include narrow viewing angle, discoloration, low brightness, and loss of contrast. Moreover, the transflective LCD is currently limited in choice of sizes and resolutions.
On the other hand, a Transflective LCD is readable everywhere including outdoor environments without extra power consumption and excessive heat generation. The indoor viewing qualities are also enhanced. The modified unit fits right back into its original system with no need of any alteration and extra effort. Thus in your choice of size, resolution, and model, a direct sunlight readable LCD is conveniently incorporated into your device.
i-Tech is a premier supplier of optical bonding and performance added passive enhancements for all flat panel . i-Tech Optical Bonding process produces an optical bond between any display cover glass or touch panel, and any size LCD.
In the world of LCD"s, i-Tech takes display enhancement to a new level above all others. Utilizing advanced proprietary optical bonding technology; i-Tech overcomes optical challenges for display product manufacturers at an affordable price. In a wide range of applications, standard liquid crystal appear to "washed out" in high ambient lighting conditions. This wash out is due to excessive reflections and glare caused by bright light.
Commercially available LCDs, especially when protected by a separate cover glass or plastic shield, can not deliver enough brightness to make the display functional in outdoors or in other high ambient light applications. The exclusive Optical Bonding process from i-Tech provides a significant reduction of ambient light reflections at an affordable price, compared to other display enhancement technologies.
Optical Bonding seals either a top cover glass or touch screen directly to the face of the display bezel. Our bonding process eliminates the air-gap between the display and the cover glass, vastly reducing reflective light, which causes visual washout of the display image. Optical Bonding also enhances structural integrity by supporting the LCD assembly with the cover glass. The bond maintains perfect display uniformity while providing shock protection, unlimted humidity protection, and elimination of fogging caused by trapped moisture accumulating in typical air-gap assemblies.
Sunlight viewability of a display depends on the differences between "lumination" and "illumination" of the display. The lumination of the display is its brightness. A display"s brightness, typically referred to as a Nit (Candela per meter/2) is the amount of light energy coming out of the display. Illumination is the amount of ambient light shining onto a display. The readability of a display is dependant on the amount of light that is being reflected off of the display.
Light travels through a variety of transparent materials; such as air, glass, plastic, and even water. These material"s abilty to transmit light is measured by their "indices of refraction". As light transfers from one material to another, such as air to glass, the differences the index of refraction will cause reflection. In the case of an air-to-glass interface, the reflection will be slightly less than 5% of the ambient light. All surfaces that have an index mismatch will reflect and the reflection is cumulative. In the case of a standard glass or plastic window, there are three surfaces with an index mismatch which will create a total relfection of nearly 15% of the ambient light. If the total reflection (in nits) is close to the displays brightness, the contrast of the display will be reduced to the point where the display"s readabilty is reduced to unacceptable levels.
Optical Bonding from i-Tech is a solid, transparent bond which optically couples the front cover glass or touch screen directly to the face of the display. This internal bond eliminates reflection from the two internal layers. The outer surface of the window is treated with anti-reflecting coatings which matches the front surface of the glass with the index of refraction of air. This combination reduces the total reflection of the display and front cover glass to less than 2% of the ambient light. A reduction of reflection of this level, all but eliminates reflective loss in most ambient lighting conditions. With reductions of this level, displays with 300-500 nits of brightness will be viewable in daylight or indirect lighting conditions. At 500-800 nits brightness, most displays will be completely sunlight viewable.
Aside from the optical quality, Optical Bonding elminates the air-gap which prevents heat build-up from the "greenhouse" effect and prevents fogging from moisture or contamination from dirt or particles. It also offers shock protection and other damage to the LCD itself.
Clearing Point - The temperature at which the liquid crystal fluid changes from a nematic into an isotropic state. In practice, a positive image LCD will turn totally black at this temperature and will therefore be unreadable. Because the clearing point is different for every fluid type, ask for design assistance from your supplier if high temperature operation is critical in your application.
Also, for most cases, both TN, HTN and STN utilize the phase known as nematic for display purpose. Within this phase, the liquid crystal has a "rod shape" exists within the solution which has fast response and has excellent electro-optic properties. This phase, however, only exists within a limited temperature range. The higher end of this temperature range is known as clearing point, above which, the liquid crystal lost its birefrigerance properties and cannot bend the light path anymore. Thus the polarizer will then be the only factor which affect incoming and out coming light. When the LCD is cooled down to below its clearing point, the display should be working again. The temperature for the clearing point varies greatly from material to material and you should contact our engineers regarding what you have. Normally a safe margin should be used to avoid clearing point when designing the display.
The lighter sensor measures the outside brightness according to different environments and sends the information to display. Display will adjust the brightness automatically.
With lighter condition (Outdoor/Sun-light) the brightness will increase; in the opposite condition, the brightness will be decreased to fit darker environment.
Light sensor detect the change of illumination outside, then it send the signal to MCU via I�2C interface. MCU will ask inverter to switch the brightness if the outside illumination was change over the default. MCU will transmit PWM signal to the inverter, amd the inverter will change the brightness of panel.
Winmate �light sensor� technology are now available for 8.4�, 10.4�,12.1�, 15�, 17�, and 19� LCD with specific panel option. Please contact with sales for more detail information.
TouchScreen Solutions is a specialist manufacturer of touchscreens, optical filters to enhance the performance of electronic displays, and transparent composites.
By utilising TouchScreen Solutions�s traditional lamination expertise, touchscreens are designed to provide the highest levels of light transmission, excellent readability and unsurpassed protection against a wide range of physical threats. The touchsacreens are accurate, highly dependable and have a rapid response time
The electronic controls effectively divide the screen into pixel sized sensing cells, using microfine wires which are not visible on a powered display. These wires are connected to a controller board, and an oscillation frequency is established for each wire. Touching the glass causes a change in the frequency of the wires at that particular point, the position of which is calculated and identified by the controller. Unlike other capacitive systems where the operator touches the actual conducting surface of the sensing panel, the active component of the sensor can be embedded up to 25mm from the touch surface ensuring long product life and stability.
The touchscreen can be supplied with the options of anti�glare or anti-reflection coatings, thermal toughening or chemical strengthening and privacy or contrast enhancement filters. The front glass of the touchscreen acts as a dielectric and enhances the capacitance of the touchscreen.
The driver software allows the touchscreen to interface with the host computer�s operating system by emulating the behaviour of a computer �mouse� and translates taps on the touchscreen surface into mouse clicks.
Touchscreen is proven to meet today�s demanding requirements for ATM�s, web phones, ticket machines, medical displays, industrial displays, pay-at-the-pump gas machines, and interactive kiosk systems. The touchscreen is durable and dependable, its construction protects against damage caused by moisture, heat and even vandalism.
The touchscreen comprises a laminated glass sensor, which encompasses the sensing medium, and the control card which connects to the communications port of the computer.
Recently there many end customer was mislead believing high brightness (over 2000nits, even up to 5000nits) is the better solution. But there are few concerns that the so called extreme high brightness (3000nits to 5000nits) panel manufacturer don"t tell you:
1. How much power consumption is the extreme high brightness LCD? It is very important because all of our outdoor LCD is in completely sealed enclosures keeping it cool is a very huge Challenge. Not mentioned the hot temperature around 40-50C area.
2. Also, you need to determine how far is viewer distance. Because high brightness (3000-5000nits LCD) might Damage eyesight if the viewer is too closed. LCD is design with high resolution for people to see it very closely, so extreme high brightness doesn"t make sense for outdoor LCD. If they want to put on extreme high brightness LCD on roof top to attract audience which LCD is not even big enough for seeing from far away. Most case customer will use LED which is more reliable and cost effective if it is larger than 82".
3. High chance rejection from city sign official. Many LED billboard brightness can goes up to 5000-7000nits, but the local government agency will not approve this brightness, because it is traffic distraction for driver or other people. So, it doesn"t make sense to spend a fortune on extreme high brightness but need to dim it down back to 1000-1500nits.
4. Viewable under sunlight is not just brightness only, it involve contrast ratio, reflection of the front glass and content graphics contrast such as (red and white). Sunlight readable is combination of all above, not just brightness only.
4. Viewable under sunlight is not just brightness only, it involve contrast ratio, reflection of the front glass and content graphics contrast such as (red and white). Sunlight readable is combination of all above, not just brightness only.
3. All the major branded LG and Samsung LCD manufacturer the most brightness that they do is only 1000-2000nits because we believe this major LCD maker already done a study on what is the most feasible and comfortable LCD brightness for outdoor. That"s why all the high brightness (3000-5000nits) maker is after market vendor without any study about the what is most suitable brightness for different applications, only advertising high brightness is not the solution. If you ask these vendor for outdoor enclosure which they will not provide or guaranteed it will work because they know it is a huge Challenge to cool down the display. Just like you are buying a 800 horse power car, but you still need to design the car frame and cooler to make this engine run safely on the road, which this extreme high brightness won"t help you to design that.
For the ABL calculation to be significant, it should correspond to the way we perceive different luminosity levels. The eye is much more sensitive to small changes in luminosity in a dark environment than in a bright one. Although the measured change in luminosity may be the same, the brighter source is better because we don"t notice the change in brightness as much. Essentially, if a screen goes from 25cd/m² to 20 cd/m², it"s more noticeable than a screen going from 100 cd/m² to 95 cd/m². This linearization is done with the PQ EOTF, as you can see below.
PQ is a function that relates luminosity with noticeable differences in brightness. When the PQ curve is divided into 4096 segments (12-bit), there are smaller steps that relate to the change in brightness; the horizontal dotted lines represent each step, and as you can see, the first step in each segment represents a higher change than the last segment. We use this to linearize all of our luminosity measurements for this test, ensuring the ABL best represents what"s seen.
You should set your TV’s backlighting/brightness to whatever level looks best in your room. Generally, you should keep it a bit dimmer when watching in a dark room and make it very bright in a room with lots of light. Adjusting the luminance of the TV doesn"t affect picture quality, so you can easily put it to whatever setting you like.
Backlight/Brightness/OLED Light:These settings are what increase the luminosity. The majority of LED TVs call it Backlight, but Samsung and Sony use Brightness. On OLEDs, it"s usually called OLED Light, but the Vizio OLED 2020 has a Luminance setting. Whatever they"re called, these settings are meant to adjust the luminance and are the best setting to use to get the brightest image possible.
Local Dimming: Some LED TVs include a feature that darkens the backlight to make blacks extra dark, and sometimes this feature even makes highlights even brighter. Local dimming isn"t always perfect, as it could cause blooming around bright objects. Learn more about local dimming
Contrast: The contrast setting increases the brightest white, which could help increase the overall luminosity. However, changing this setting also affects picture quality, so we don"t recommend changing it for the most part.
Brightness:Opposite of contrast, the brightness setting controls the black level, and on some TVs, the setting itself is called "Black Level". Decreasing it makes blacks darker, but that means you can easily lose details, so we don"t recommend changing it.
Gamma:Gamma affects the brightness of the overall scene, but it doesn"t have an impact on the luminosity. In our testing, we want TVs to follow a gamma target of 2.2; anything higher results in a darker overall image and lower means the image is brighter. Some TVs have gamma settings, so you should change it to your liking if you notice the overall image is too dark, even if you have the backlight at its max.
Eco Mode/Light sensor: Some TVs use a sensor to detect how much light is in the room and adjust the backlight accordingly. It can be helpful, but it can also change the brightness often while you"re watching, so it"s best to turn it off.
At the end of the day, you"re the one watching TV, so if you want to make the image brighter, do whatever it takes to make it look better for your viewing experience. These are just generalized recommendation settings, and it changes between TVs.
A TV"s brightness indicates how bright images can get on the screen. It matters most if you watch TV in a well-lit room, as you want your screen to get bright enough to combat glare; otherwise, it may be hard to see. We test for a TV"s brightness to know exactly how bright it can get, but also to see if it remains a consistent brightness level across different content. If you watch TV in dark rooms, then brightness shouldn"t be something to worry about.
As far as brightness, other than the in built options on the screen, there is now way (I know of) to lower the brightness any further, though it should dim slightly through use during its lifetime.
If you’re always surrounded by displays—PCs, smartphones and tablets—are you placing too much strain on your eyes, neck and shoulders? If this sounds like you, read this article and take steps to address it right away before your symptoms worsen.
Have you ever been on a train and had the sun shine on your book from behind you making it hard to read or on your smartphone screen creating a glare and making it hard to see?
When you"re working on your PC, similar poor conditions may develop without you realizing it. For example, if the lights are near the center of the room, and your PC is set up with you facing the wall, although the level of brightness is different, you could experience something similar to sunlight shining on your screen from behind you like on the train. If that"s the case, consider changing the layout.
What can further worsen your eye fatigue in a situation like this is the light reflected from your display. Shiny glare panels are made to provide accurate blacks and colorful display, so they are good for watching videos, but they also tend to reflect outside light. In an office or similar setting, lights and other displays can be reflected on your screen, throwing off your focus and causing eye fatigue.
For regular PC work, an LCD with a non-glare panel that does not reflect light is easier to use. If the product you"re currently using has a glare panel, you can affix low-reflection film to the screen.
Fluorescent lights are brightly reflected on the glare panel, making the screen hard to see. These conditions can easily strain your eyes (left). A non-glare panel can substantially reduce the reflection of fluorescent lights and reduce the strain on your eyes (right). The difference is as plain as day.
It’s also important not to make the lights in the room too bright. It"s common for advice to focus on not letting the room be too dark, but if the lights are too bright, it creates a difference between the screen brightness and ambient light, and that"s also no good. More specific details on screen brightness are provided in Point 5. Also pay attention to the temperature setting on your air conditioner and the direction in which it blows. These things can cause dry eyes, and your seat should never be positioned so that the air conditioner is blowing directly in your face.
Generally speaking, the distance between the user and the screen should be at least 40 centimeters or 50 centimeters in the case of a wide screen. The reason you should be further away from a wide screen is that the wider screen will not fit completely into your field of vision unless you sit further back. The conditions will vary slightly depending on other factors as well, including screen resolution, text size and your eyesight.
No matter what the situation, if you are viewing a screen at a distance of less than 30 centimeters for long periods of time, your eyes are obviously going to become fatigued. If you have an A4-sized sheet of paper, hold it up longways between you and the screen on which this article is displayed and see if there is enough room for it to fit. An A4-sized sheet of paper is about 30 centimeters (297 millimeters) long, so if you"re viewing the screen from a shorter distance than this, you"re too close. If you"re viewing it at a distance of about 1.5 times that length, you"re safe for now.
Once you"re at the proper distance from the display, try to have it so that your line of sight is directly ahead or slightly downward when viewing the screen. You should avoid looking up at the screen, because that can cause dry eye.
Displays that do not allow sufficient adjustment of the angle and height of the screen can lead users to adjust their posture to the screen position, which prevents them from working in the correct posture. Choose a display that has rich features including a tilt function allowing the screen to be tilted up and down and a height adjustment function.
The adjustment mechanism of the LCD is also important for working on a PC in a posture that does not strain the eyes, neck and shoulders. Choose a product that allows the screen to be lowered just above the table top and flexible tilt adjustments (photograph: EIZO"s FlexScan EV2436W.
The brightness of your display should not be left at the default setting but adjusted according to the brightness of the room where it"s installed. This can greatly reduce the strain on your eyes. For example, in an office with normal brightness of 300-500 lux, the display brightness should be adjusted to around 100-150 cd/m2.
But when you give specific numbers like this, most people have no idea what they mean. So what you want to remember is that the trick to adjusting the brightness is using white paper like copy paper. Compare the paper under the lighting in the room to the screen, and adjust the brightness of the display so that the brightness matches as closely as possible. This will put the brightness at about the right level.
Particularly, when using the display for work, you"ll often be comparing paper documents with documents on the screen, so by adjusting the brightness of the screen to the brightness of the paper under the lighting, you"ll reduce the strain on your eyes, making this an effective measure against eye fatigue.
Put white paper next to the screen as shown, and adjust the display brightness while comparing it to the paper. Screen too bright compared to the paper (left), and display brightness adjusted to appropriate level so that the brightness of the paper and the screen are roughly the same (right).
What you need to remember is that if the brightness of the room where the display is installed changes dramatically in the morning, afternoon and evening, the brightness of the screen needs to be changed accordingly, or there"s no point. If you have to adjust it frequently like that, doing it manually is bothersome, and keeping it up becomes difficult. Consider purchasing a display that comes with a function to automatically adjust screen brightness to the optimal setting according to external light.
The majority of LCDs today have LED backlights. In some cases, the brightness adjustment mechanism (dimming system) causes eye fatigue. Specifically, caution is required with the system called PWM (Pulse Modulation), which is employed by most displays. In this system, the LED element blinking time is adjusted to control the display brightness — extending the time that it"s on makes it brighter, and extending the time that it"s off makes it darker.
For some people, this blinking of the screen is experienced as flickering, leading to eye fatigue. There is a difference among individuals in how this flickering is experienced. Many people using the same display will not notice anything at all, so even in an office where the same model is purchased in bulk, it"s difficult to figure out that the display is the cause.
We"d like to add a note about the EyeCare dimming system. This hybrid system uses DC dimming at high brightness settings and PWM dimming at low brightness settings as it does a better job than DC dimming at reproducing colors at low brightness. PWM dimming is only used at low brightness settings, so the blinking luminance difference is smaller, thereby controlling flickering.
EIZO"s FlexScan EV series employs the unique EyeCare Dimming system. We put a small USB fan in front of the screen to check for flickering. At high brightness, DC dimming is used, and the light emitting elements do not blink, so the shape of the blades appears circular (left). At low brightness, PWM dimming is used, and the blades appear separate from each other, so you can see that high-speed blinking that can"t be perceived is taking place (right).
The reason it has recently been the subject of attention is that there are many LCD products with LED backlights that have a high color temperature display (white appears bluish), and there are more cases where the user is subjected to stronger blue light than with conventional displays, so this type of problem has come under closer scrutiny.
Some methods to address the problem are to wear blue light blocking glasses or to apply blue light reducing film to the LCD screen. Also remember that on products that allow the display picture quality to be adjusted, you can lower the color temperature on the display.
For example, results of an experiment (results of EIZO study) show that if you change the 6,500-7,000K color temperature used in common displays to 5,000K, the 400-500nm wavelengths corresponding to blue light can be cut by about 20%. Furthermore, by adjusting the screen brightness to a proper level that does not cause eye fatigue, you can reduce blue light by a total of 60-70%. Many of the aforementioned blue light blocking glasses only cut up to 50% of blue light, so this is more effective.
However, lowering the color temperature causes the screen display to change to reddish or yellowish in color, and color reproducibility is lowered. For that reason, it"s best if you can lower the color temperature for working with office documents and put it back to normal when doing creative work dealing with photographs and images.
Cutting down on PC and smartphone use before bedtime is also a surprisingly important point. The light put off by PC and smartphone screens, including the aforementioned blue light, is said to be effective in waking you up. Looking at these screens before bedtime tends to make it harder to fall asleep. Considering this, it"s actually not a good idea to read e-books on smartphones or tablets before bedtime.
For example, EIZO"s FlexScan EV series of LCDs places emphasis on addressing eye fatigue and has features to address points 1 (installation environment), 2 (posture during use), 3 (proper rest), 5 (brightness), 6 (flickering) and 7 (blue light) above.
In Paper mode, the color and contrast display is similar to paper. With this excellent feature, the color temperature is lowered instantly with the touch of a button, and blue light is substantially reduced (left). If you use the Auto EcoView function, the built-in illuminance sensor detects ambient brightness and automatically takes the display brightness down to the optimal level in real time (right). The aforementioned EyeCare Dimming system suppresses flickering of the screen display at the same time.
Auto EcoView automatic brightness adjustment function detecting ambient brightness with built-in illuminance sensor and setting display brightness to optimal level
Paper mode display features color and contrast similar to paper. EyeCare Filter software applies filter pattern that controls brightness and contrast.
The value of considering replacing the display itself is significant as a trump card for addressing eye fatigue. At home, it will help protect your eyes and the eyes of your loved ones, and at the office where you sit in front of the screen for long hours, it"s sure to contribute to greater efficiency and an improved working environment.
Someone spilled tea on it and saw the screen short out. After using Windex to clean up the logic board almost everything works, memory, power, etc. except that the screen is so dim I need to use a flashlight to see it. Output to external monitor is just fine. Can this dim screen output be fixed?
Repair shop tried soldering something on the logic board they thought would affect screen brightness but to no avail. They said that the controller for screen brightness was not working, not sending the correct voltage out to make the screen brighter.
I can press every key on the keyboard and they all work, but the screen brightness keys (although showing the brightness icon and filling more bars as I press longer) do not affect screen brightness in any way. It is still dim. So close and yet so far-- what can I do to fix this?
I have always set all my Nikon LCD"s to -2 to approximate getting files that look right on my computer and roughly match the LCD and also have review set to highlight warning blinking and I check the histogram when there is time.
A few things to consider: The darker the room the brighter the LCD appears to our eyes. So I often find if I am shooting a wedding reception with a club like or candle light ambience, which is common these days, I end up with a lot of pictures that looked good on the LCD at -2 while shooting but are actually a stop too dark.I am trying to remember to set LCD to -3 when I am in a dark room.
On the D700 going to -2 did not seem to affect the contrast of the image on the LCD but I have found that on the D600 and D750 going to -2 lowers the contrast. I have experiments with using picture mode fine tune to add a little snap and adjust the mid tones so they are a closer match on the LCD to my computer but watch out: This gives you shitty looking jpegs if you are shooting jpegs.
Even if you are s