lcd screen lifespan price
How long will your LED display last? In nearly every industry, from retail businesses to concert halls to corporate centers, decision makers need to evaluate the return on investment (ROI) of their LED signage. In most cases, potential buyers go straight to the obvious place: the LED manufacturer’s spec sheet. The industry standard for LED lifespan is 100,000 hours, or about 10 years, and most people assume that’s how long their display will last. But it’s not quite that simple.
The 100,000-hour figure assumes that every diode will be running at full brightness, consistently — which, on an LED screen, is virtually never the case. The lifespan figure can also be misleading because it indicates when a diode degrades to half-brightness, not completely dark. Many other variables affect an LED display’s lifespan; you can’t rely solely on the number on the diode spec sheet.
“The reality is, your screen can often last significantly longer than 100,000 hours,” says Kevin Izatt, a senior product manager in Samsung’s Display division. “We’ve had displays that have been up for 15-plus years with more than adequate brightness. Because the diode is actually only one factor in the lifespan of your LED display.”
The quality of your display’s power supply — and how hard it drives the diodes — can have a significant impact on your screen’s lifespan. The other components being powered, such as fans and electrical components, have their own lifespans as well, which are also impacted by the power supply.
“Fans are mechanical; they break down,” explains Izatt. “And similar to your computer, the electrical components don’t last forever. Together, these factors all contribute to the lifespan of an LED display. Looking at just the diode lifespan doesn’t give you the complete story — almost always, another part will go out first.”
“Something like airflow is very important,” says Izatt. “You need a screen that has good cooling, and a design that allows heat to flow out of the back through vents.”
To help businesses transition from LCD to longer-lasting LED signage, Samsung has launched a trade-in program. Samsung will come on site to remove your existing display and provide a discount on a new LED bundle kit.
Traded-in LCD displays that are still operating will be refurbished and resold, and your business will receive a cash rebate. Nonworking displays will be recycled and their parts reused.
You can’t rely on the number on the diode spec sheet; the lifespan of your LED display depends on many more factors. “Overall quality has a tremendous impact on the life of the display that diode specs just don’t take into account,” says Izatt. Your best bet is to look at the purchase holistically and invest in a top-tier product.
As you plan your LED signage rollout — or an upgrade — learn how to configure and tailor your screens’ real-time messaging with an integrated CMS in thisfree guide. And if you haven’t decided what kind of display is best suited to your current project, compare all ofSamsung’s LED displays.
Perhaps you’ve wondered how long a digital display lasts. It’s a great question. One quick search on Google will tell you that an LCD panel has a lifespan of about 60,000 hours, which is equivalent to almost seven years.
Of course, LCDs aren’t the only kind of displays. You also have LED, OLED, QLED, ELD, PDP, and MicroLED, plus many other variations. Obviously, that 7-year estimation will not apply across the board. For the sake of ease, let’s just focus on some of the common types of displays that most of us are familiar with.
Here’s some LCD alphabet soup: There are LED LCD displays, CFFL LCD displays, LED displays, and more. With all these acronyms, it can get a bit confusing. What"s important to note is whether or not the display uses an LCD panel, and how the LCD panel is illuminated. You can read more about thedifferences between types of LCD and LED signage, but these are the most common types:
LCD displaysgenerate images and colors via a Liquid Crystal Display (LCD) panel, which is not self-emitting and requires an external light source to illuminate the image, typically an LED backlight. Their full name "LED-backlit LCD display" is commonly shortened to "LED displays", which is why they"re often confused with the true LED displays we"ve identified above.
Unfortunately, LED backlights used in LCD displays burn out over time. If used at high or maximum brightness, which is necessary for outdoor applications,an LED backlight will last between 40,000 to 60,000 hours. Or, about 4.5 to 7 years.
OLED stands for Organic Light Emitting Diode. OLED displays differ from common LCD displays in that their pixels are self-illuminating. In other words, there is no LED backlight required to illuminate the the display image; everything occurs within the OLED pixels themselves. According to onearticle from the US Department of Energy,OLED screens have a life expectancy of about 40,000 hours at 25% brightness, and 10,000 hours at full brightness. That equates to about 1 to 4.5 years, which is a much shorter (albeit, brilliant) lifetime than an LCD display.
Perhaps you noticed that the acronym QLED closely resembles the acronym OLED. This is not accidental. QLED is basically Samsung’s original design built to compete with OLED technology. However, the two are not the same. QLED stands for Quantum Light Emitting Diode. While QLED is similar to a regular LED design, it in fact differs by using nanoparticles called “Quantum dots” to achieve its unique brightness and color. Samsung approximates that the lifespan ofQLED panels are likely to last 7-10 years. After that, a user is likely to notice traces of degradation.
MicroLED is an emerging display technology, consisting of small LEDs in tiny arrays within each pixel. This technology goes beyond the offerings of the formerly frontrunning OLEDs, with much darker blacks and more radiant contrast levels. And, unlike OLEDs, MicroLEDs are not organic. They are not as subject to burn-in, and thus, have a longer lifespan than OLEDs. However, they are significantly more expensive - so much, in fact, that they aren’t considered a viable option for the majority of consumers.According to Samsung, the lifespan of its MicroLED panels should last about 100,000 hours, or, roughly 11 years.
PDP stands for Plasma Display Panel, and it refers to displays that use small cells full of plasma. The atoms within the plasma emit light upon being charged by electricity. While PDP is generally considered to offer better colors than LCDs, they consume a lot more power and usually cannot be battery-operated.The average lifespan of the newest generation of PDPs is approximated to be 100,000 hours, or 11 years of continual use.
In some ways,reflective LCD panelsoperate similarly to other LCDs, only they have one key difference - they do not require a backlight. Instead, they rely on ambient light (or sunlight) in order to produce images. This opens the door to some groundbreaking possibilities. The first (and most appreciable) is low power consumption. Reflective displays use up to 95% less energy. Not bad - especially in a world that is continually looking for new ways to go green. Take into consideration the financial implications of this. Lower power means less money spent on operating costs.
Being that reflective displays do not require a backlight (a component that is particularly subject to degradation), and since they do not generate as much heat, it is safe to say that the lifespan of these displays should far exceed that of backlit LCD panels (which was 7 years at the high end). However, being that thisinnovative technologyis relatively new, its actual lifespan is therefore more difficult to estimate -- simply because it has yet to be reached.
One company at the front lines of this research isAzumo. Azumo has created a light guide that laminates to the front of a display. It requires 90% less energy than the backlight of a traditional LCD display. This greatly improves the problem of low light visibility otherwise encountered, and keeps reflective displays in the same low energy consumption ballpark. One issue, however, is that Azumo currently only offers its light guides for smaller-sized units. If you happen to want this feature applied to a display that is over 10” diagonally, then you’re still on the search for a solution.
Other “pioneer companies” are at the frontier of this research as well, and many are already innovating new solutions to increase the viability of reflective technology - both in their low light visibility and in the screen sizes they are available in. Due to the huge potential offered by reflective technology, it is fair to assume that we will see even greater enhancements to it in the very near future.
One other factor to consider regarding reflective technology is its cost. That reflective layer is more costly to manufacture than many of the backlights it replaces, creating a seemingly greater upfront cost for those who are interested in investing in energy-efficient signage. However, these initial price points are quickly justified as buyers will recognize the significantly lower operating costs and increased longevity (not even including replacement costs of other “expired” displays) that comes with their purchase of reflective display signage. If a backlit LCD panel only lasts 7 years, for example, you’ll have paid for that LCD twice in the period of ten years. A very valid question arises… is that “cheaper” backlight really cheaper? Probably not. It only feels that way at first.
• Perform highly diversified duties to install and maintain electrical apparatus on production machines and any other facility equipment (Screen Print, Punch Press, Steel Rule Die, Automated Machines, Turret, Laser Cutting Machines, etc.).
Have you ever thought How long does a monitor last? or wondered what the lifespan of a monitor is? After all, monitors are the significant peripheral device of a PC.
Furthermore, much of the time it possibly winds up changing for another one when we need a new one, with a bigger screen and/or with a higher resolution. In this article, I will answer this question, which we are sure that more than one of you have ever asked yourself.
If you’re thinking about buying a new LCD monitor in today’s technological progress, though, you might be wondering how long they last. At the end of the post, you will find tips for extending the life of your Monitor.
LCD monitors usually have a lifespan of 30,000 to 60,000 hoursof use, which equals 10 to 20 years if the monitor is used for eight hours a day. It has a longer life than the plasma and CRT monitors and is somewhat shorter than that of current LED Monitors.
These numbers may fluctuate slightly, depending on the model and manufacturer, but the fact remains. After this period, the screen brightness drops noticeably, dark areas appear in the corners, and the backlight tint turns yellow.
To ensure your LCD display’s lifespan, you definitely need to adjust the contrast setting (an important factor) for the conditions under which you view your LCD display. Higher light levels and contrast levels affect the life expectancy of the LCD monitor and vice versa.
A LED monitor’s lifespan range between 80,000 to about 120,000 hours. Which is equivalent to about 20 years, if we use 8 hours a day, depending on its materials and manufacturers.
LED monitors that are being sold right now in stores to come with the latest screen materials and technology. Their main advantage if they live longer than LCDs, and CRTs by providing bright and vivid display features that are energy efficient.
A significant factor that influences the life span of a LED monitor is the conditions like Usage, Temperature, and Brightness. The harsherthe use, the higher the temperature and brightness can reduce the lifespan, and the less you can expect a LED to last.
The CRT monitor is old since they were used old technology of cathode-ray rubes that illuminate the corresponding pixels ( typically old backlighting technology) leads to less efficiency, often heavy, bulky, and fragile units. result in a short lifespan.
Today the world is moving with great speed along alongside innovative progress. Also, no one will surprise anyone with a thin LCD monitor or TV. They can be seen in almost any office. Many have already swapped out their old fat CRT TVs for new thin LCD panels. Laptops also have an LCD screen, so this also applies to them.
In fact, there is no exact answer to the lifespan of OLED. However, as per the report and research, the OLED monitor can have a lifespan of 100,000 hours. And it can be last long about 8 – 15 years if you use it 8 hours a day.
There isn’t any certain time period as to when a monitor should be replaced. But, it is worth it when you notice the degradation of the monitor in the form of dead pixels, stuck pixels, dim and greenish image screens.
In most cases, visual abnormality like “Stuttering” and “flickering” is a very common sign of understanding the end of the monitor’s life. When it reaches the end of its life, the screen will disappear even when the power is turned on.
The LCD monitor is turned on and off frequently or used in an extreme temperature environment, the LCD monitor’s backlight life will be significantly shortened. Therefore, if you want to extend the life of the LCD monitor as much as possible, neither turn it on and off every few minutes nor use the LCD monitor in a harsh temperature environment.
You shouldn’t leave the monitor all the time, this significantly affects the expected service life of the monitor. Instead, you can leave your monitor on it goes into sleep mode not just displaying a black screen unless it shortens the life of the monitor as well as consume a lot of electricity
You can spread the knowledge and care for others by sharing the article “How long does a monitor last?” to make aware known of the lifespan of monitors.
Early flat-screen TVs, especially plasmas, were notorious for their limited lifespan. This has improved dramatically with the latest technology, however. You can rest assured that any new TV you buy now should last you until you decide to change it.
A screen"s lifespan is measured as "half life", which is the time it takes for the internal lamp to fade to half its original brightness. Your old CRT set has an average half life of around 25,000 hours, but the latest flat screens claim to last up to twice as long.
LCDs are said to have a slightly longer lifespan to plasmas, but the difference is not particularly significant. Plasma"s half life ranges between 30,000 to 50,000 hours, while LCD offers around 60,000 hours.
In real terms, if you watch the TV for an average of 4-6 hours a day, then a screen with a half life of 30,000 hours will last you over 16 years -- by which time we"ll probably all be watching holograms!
It"s possible to change the lamp for both plasmas and LCDs, but not all manufacturers offer this service and the cost is usually greater than the expense of simply buying a new TV.
There are several technical problems that can afflict flat screens during their lifespan, including dead pixels, backlights and, in plasmas, screen burn -- where a lasting image leaves an imprint on the screen. But manufacturers don"t usually offer repairs and it"s best to find a screen with a good guarantee.
Equally important to extending the lifespan of a flat-screen TV is finding a model with a future-proof specification. This includes features such as integrated Freeview, high-definition compatibility and multiple HDMI connections.
Sony claims the model you mentioned, the KDL-40W2000, has a half life of around 60,000 hours -- more than enough in this day and age. The screen also features a future-proof specification and comes with a free three-year warranty from good suppliers.
Knowing the average lifespan of your monitor is the first step in ensuring the monitor lasts longer. The second tip is to establish how best you can use your monitor while maintaining it in the best condition. Finally, you need to know the signs of a malfunctioning monitor.
This article is a complete guide to monitors" lifespan. We"ve discussed in detail the average lifespan of cathode ray tube monitors, LCD monitors, and so on. Most importantly, we"ve included ways in which you can maintain your monitor to last longer.
A cathode-ray tube monitor has a lifespan of between 20,000 to 30,000 hours. This duration means that your CRT monitor will last up to 10 years of active use. This duration will last if you use the monitor for eight hours every day. After lasting for ten years, you"ll need to repair it or replace it if it"s in an unworthy condition.
The CRT monitor has a shorter lifespan because it uses less efficient cathode-ray tubes. Besides, these monitors are bulky and have fragile units with low durability.
Expectedly, LCD monitors last longer than CRT monitors. Depending on use frequency and maintenance practices, a typical LCD monitor will last for about 30,000 hours to 60,000 hours. This duration translates to between 10 to 20 years of active use, given that you use the monitor eight hours a day.
The reason for the improved lifespan of the LCD monitors is the robust, durable components and the use of more advanced technology. This monitor uses a liquid crystal solution in a polarized material to produce light.
You"ll know that your LCD monitor has reached its lifespan if you notice a drop in the brightness level, display fades on the screen edges, and its backlight tint becomes yellowish.
The lifespan of a LED monitor is higher than that of a CRT monitor and LED monitor. On average, it has a lifespan of 80,000 hours to 120,000 hours of active use. This duration translates to 30 to 40 years if you use it for 8 hours every day.
The reason behind the long lifespan of LED monitors is its production of bright displays with energy efficiency. Its screen technology is also efficient in energy consumption, making the monitor last longer.
Little is known about the lifespan of OLED monitors. However, various research and experiments show that an OLED monitor can last 100,000 hours of active use. This duration implies that your OLED monitor can last for 35 years if you use it for 8 hours a day.
How long your OLED monitor lasts largely depends on how you use it. Exposing the OLED monitor to harsh working conditions degrades its components, resulting in early burn-in. Long session gaming on these monitors also limits its lifespan.
The number of hours you use your monitor per day can extend or lower the computer monitor lifespan. The average estimate of hours per day you should use your monitor is 8 hours. Keeping the monitor active past 8 hours can lower its lifespan. Similarly, using the monitor for fewer hours than 8 hours per day may increase its duration, provided you keep it at optimum condition.
The tips for improving the lifespan of your monitor are listed below.Always observe the recommended usage condition of the monitor as stipulated by the manufacturer.
Calibrate the screensaver to solid black mode. This mode has low power consumption and the LCD"s backlight bulb to last longer. With this mode, you won"t experience burn-in issues easily.
Dead pixels are a dead end to a monitor screen. Your screen may start showing blank pixels. If your monitor has such an issue, you have no other option than to replace it with a new one. Note that if you don"t replace this screen immediately, your monitor may develop other severe issues.
If your monitor has a burn-in, it will frequently display some unintended graphics on the screen. You can address the burn-in issue by placing a screensaver at the exact point the graphics show up. You can also use JScreenFix software.
Your monitor may develop unusual behavior when it nears the end of its lifespan. It may switch on or off unexpectedly, hibernate suddenly, and show a black screen more often. The most common cause of this malfunction is a faulty power supply unit.
A faulty screen display does not display images or graphics. Instead, it lights up but shows a blue screen. You shouldn"t confuse this problem with the black screen. If the screen is black, then it is a power supply issue.
Faulty monitors have many signs. You can tell your monitor is faulty when it turns on and off unexpectedly, black or blue display, or horizontal and vertical lines on the screen.
If you’re designing a display application or deciding what type of TV to get, you’ll probably have to choose between an OLED or LCD as your display type.
LCDs utilize liquid crystals that produce an image when light is passed through the display. OLED displays generate images by applying electricity to organic materials inside the display.OLED and LCD Main Difference:
These different technological approaches to display technology have big impact in some features including contrast, brightness, viewing angles, lifespan, black levels, image burn-in, and price.
graphics and images visible. This is the reason you’re still able to see light coming through on images that are meant to be dark on an LCD monitor, display, or television.
OLEDs by comparison, deliver a drastically higher contrast by dynamically managing their individual pixels. When an image on an OLED display uses the color black, the pixel shuts off completely and renders a much higher contrast than that of LCDs.OLED vs LCD - Who is better at contrast?
Having a high brightness level is important if your display is going to be used in direct sunlight or somewhere with high ambient brightness. The display"s brightness level isn"t as important if it’s going to be used indoors or in a low light setting.OLED vs LCD - Who is better at Brightness?
Have you ever looked at a screen from an angle and noticed that the images became washed out or shadowy? The further away you get from the “front and center” view, the worse the image appears to be. This is an example of viewing angles in action – the wider the viewing angle, the better the images on screen will appear as you view them from different vantage points.
This means the display is much thinner than LCD displays and their pixels are much closer to the surface of the display, giving them an inherently wider viewing angle.
You’ll often notice images becoming distorted or losing their colors when tilting an LCD or when you view it from different angles. However, many LCDs now include technology to compensate for this – specifically In-Plane Switching (IPS).
LCDs with IPS are significantly brighter than standard LCDs and offer viewing angles that are on-par with OLEDs.OLED vs LCD - Who is better at Viewing Angles?
LCDs have been on the market much longer than OLEDs, so there is more data to support their longevity. On average LCDs have proven to perform for around 60,000 hours (2,500) days of operation.
With most LCDs you can expect about 7 years of consistent performance. Some dimming of the backlight has been observed but it is not significant to the quality of the display.
So depending on how your OLED is used, this can greatly affect its lifespan. An OLED being used to show static images for long periods of time will not have the same longevity as one displaying dynamic, constantly moving images.OLED vs LCD - Which one last longer?
There is not yet a clear winner when it comes to lifespans between LCD and OLED displays. Each have their advantages depending on their use-cases. It’s a tie!
LCD panels are made of a layer of liquid crystal between two pieces of polarized glass. Liquid crystal can not emit light. Backlights are therefore used to illuminate the display. LCD panels are sleek in design, but typically limited to specific sets of dimensions.
LCD video walls on the other hand take on a tiled approach. This means that screens are jutted against one another. This approach creates bezels or seams and the final dimensions of the wall is directly dependent on the dimensions of the individual screens.
LCD is a more straightforward product and consumers are generally more familiar with LCD. LCD is used for cell phones, computer screens, and most TVs, but is it the best choice for video walls? Ultimately that choice is up to the consumer. LCD is cheaper, but generally less customizable. LCD does not work well for outdoor uses and is generally very limited in terms of size and shape.
LED technology has improved drastically in recent years improving quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours.
The act of selecting the television screen that suits your needs can be difficult enough, but when you consider all the different technologies available out there, it can become downright confusing. If you aren’t into buying a new set every couple of years, you’ll want to take the TV lifespan into consideration. Thankfully, we’re going to cover
Many of us are unaware of the technical aspects regarding televisions, which often leads to blindly purchasing products with a short shelf life. In fact, the more people shift their shopping habits into the online world, many consumers never even see the screen until it’s up in their living rooms. It doesn’t always work out the way they’d hoped.Selecting a set in person will allow you to see the differences in the different technologies, and you won’t find any surprises when you mount it in your home. It can make or break a purchase in regards to how one wants their favorite show or film presented, so knowing what you’re looking for can be incredibly helpful.
In many cases, the location where the television is being used in the household/building can change opinions regarding a purchase. For example, a room full of windows will cause glare on the screen. If the television is at an angle or mounted up high, the picture may not be visible at all. Since these factors have a huge impact on the usage of the televisions, here’s what the most popularscreensoffer:
LED & LCD –LED and LCD televisions are the big players in the market today. They are basically the same backlit setup and each technology has similar perk/setbacks. LED and LCD televisions work excellent in bright rooms, they’ve outsold plasma televisions (and they have taken over the market). They consume less power, they’re thin/light to transport, and they’re bright. However, both LCD and LED televisions fall short when it comes to motion blur (on lower-end models), they sometimes have backlight issues, and they offer limited viewing angles.
Plasma –Although the plasma screen market has been declared “dead”, some still floating around on the market for a decent price. Plasma screens are known for working the best in dark/dimly lit areas, they have no motion blur, and they have the best black coloring in their picture. Unfortunately, plasma screens fall short when it comes to performing in rooms with lots of windows, so this might be a good purchase on the second-hand market for the basement. They’re bulkier than the competition, and they sometimes have image retention issues. Also, they consume more power and can make a buzzing noise.
People generally want to know the lifespan of a TV in years. The average life of LED TVs and LCD sets is typically somewhere from 4 to 7 years of active use. Most of us don’t watch our TVs twenty-four hours a day, so a simple calculation on your watching habits can give you a good estimate. If you watched for 6 hours a day, you could theoretically multiply that lifespan by 4 (6×4=24), giving you 16 to 28 years.
Considering the regular defects and issues that occur over time, LCD and LED televisions basically have the same lifespan. With each of these technologies, the likely failure will come in the form of a worn-out backlight, so decreasing your backlight levels can significantly extend your set’s lifespan. A higher-quality set with a better backlight can also net you a few more years of use.
Plasma screens look great, but are much more sensitive and have little warranty as they have ceased production. The added bulk also means it will be a little tougher to move around if you’re prone to rearranging rooms. If you choose to purchase a plasma screen, chances are it’s a second set, and you shouldn’t expect it to last forever. If longevity is a big factor, opt for newer technology.
LED-vs-LCD? Lately, choosing a TV has become like walking into a candy store. There are so many TV technology options to choose from, and each of them seems just as good.
Then there are the technical terms to deal with, such as LED TV, LCD TV, QLED TV, UHD TV, OLED TV, and more. You might feel like you need to be a tech pro just to watch your favourite TV show in the evening or enjoy a game with your friend.
Here at Dynamo LED, we offer both LED and LCD TVs, and we appreciate the benefits of both TVs. Be sure to check out our buying an LED Display guide for more info.
First, an important thing to understand is that the LED (Light Emitting Diode) monitor is an improvised version of the LCD (Liquid Crystal Display). This is why all LED monitor is LCD in nature, but not all LCDs are LED monitors.
LCD technology revolutionized monitors by using cold cathode fluorescent lamps for backlighting to create the picture displayed on the screen. A cold cathode fluorescent lamp (CCFL) is a tiny fluorescent bulb. In the context of this article, LCDs refer to this traditional type of CCFL LCD TVs.
The quality of direct-view LED screens is measured by pixel pitch. The pixel pitch is the distance between two adjacent LEDs on the display. The smaller the pixel pitch, the better the quality of the image.
Since LEDs replace fluorescent bulbs with light-emitting diodes, LED TVs are more energy-efficient than LCDs. A 32-inch LED TV screen consumes 10 watts less power than the same size LCD screen. The difference in power consumption increases as the size of the display increases.
Light-emitting diodes are considerably smaller than fluorescent lamps used in LCD monitors. Fluorescent lamps have a considerable thickness, but the thickness of diodes is next to none. Moreover, countless diodes are assembled in the same plane, so the thickness of the array isn’t increased no matter how many diodes are present.
Edge-lit LEDs have a slight drawback in viewing angle compared to LCDs, because of the position of the light source. However, direct-view LEDs offer a better angle for viewing than LCDs as the light source is evenly spread on the screen.
Since LED displays use full-array LED backlighting rather than one big backlight, LED TVs offer significantly better contrast than LCDs. LCD backlighting technology only shows white and black, but LED backlighting can emit the entire RGB spectrum, thereby providing a deeper RGB contrast.
If you wonder which display will last longer, this debate is also won by LED displays. LED televisions have a longer lifespan of 100,000 hours on average, compared to 50,000 hours provided by LCD televisions.
An LED display provides the option to dim the backlight, along with other eye comfort features. Not only that, it provides a wider viewing angle without harming image quality. Therefore, an LED display is far better for your eyes than an LCD.
In an LED display, a lot of smaller diodes are used and if a diode is damaged, it can be replaced. In an LCD, you will need to replace the entire bulb in case of damage. Therefore, an LED display is easier and cheaper to maintain than an LCD.
Since LEDs are a better and newer technology, the price of an LED display is higher than an LCD. However, this is only when we are considering the purchase cost.
The picture quality of an LED display is far better than an LCD. Due to modular light-emitting diodes, an LED screen produces better control over the contrast, rendering a clear picture. Also, LED provides RGB contrast, which can show truer blacks and truer whites.
Not to forget, they provide a shorter response time as well. Both of these factors result inLED displays having a better picture quality compared to LCD displays.
Since LED displays are considerably thinner than LCDs, they weigh considerably less. On average, an LED screen weighs about half of an LCD screen of the same size.
As you might have noticed by now, LED wins the battle with LCD without any doubt. This is because LED displays have an advantage in all the factors that matter when considering a purchase, except price.
Even when you consider the price, you will find that while LED technology is costlier, it provides better value for money in the long run. This is because of the longer lifespan and easier maintenance of LED screens.
LED screens are the first choice among the public today, across generations. All are opting to switch to LED from LCD to make their lives more enjoyable and better.
Contrast ratio is a measure to compare the darkest black with the whitest white. Plasma TVs score well on this parameter with a contrast ratio of up to 3000:1. LCD TVs have a contrast ratio of up to 1000:1; however, this metric is calculated differently for LCDs so it"s not an apples-to-apples comparison. Plasma TVs, in general, offer a better contrast than LCDs.
Older models of Plasma TVs can suffer from burn-in produced by static images. After extended periods, stationary images "burn in" the screen and produce an after-image ghost which remains permanently on the screen. This no longer affects new Plasma displays, as they continually shift the image around to prevent the image from being stationary.
LCD TVs do not suffer from burn-in. However, it is possible for individual pixels on an LCD screen to burn out. This causes small, visible, black or white dots to appear on the screen.
In comparison, the nature of LCD technology – where a backlight shines through the LCD layer – makes it hard for it to achieve true blacks, i.e. true absence of light. There is always some light leakage from adjacent picture elements in an LCD panel.
LCD TV displays reproduce colours by manipulating light waves and subtracting colours from white light. This makes it more difficult for maintaining colour accuracy and vibrancy. But, LCD TVs have colour information benefits from the higher-than-average number of pixels per square inch found in their displays.
In plasma TVs, each pixel contains red, green, and blue elements, which work in conjunction to create 16.77 million colours. Colour information is more accurately reproduced with plasma TV technology than it is with any other display technology, including LCD TVs.
Plasma TV displays refresh and handle rapid movements in video about as well as normal CRT TVs. LCD TVs were originally designed for computer data displays, and not video. Refresh rates are therefore not as good, but LCD TVs are fast catching up.
LCD TVs life span is typically 50,000-60,000 hours, which equates to about 6 years of 24/7 use. However, LCD TVs will actually last as long as its backlight does, and those bulbs can be replaced - so in essence there"s nothing which can wear out.
Plasma TVs do not use Mercury while LCD TVs do in their CCFL backlight. However, this issue is a red herring. Most common high-efficieny phosphorescent lamps use mercury and it is not a big deal. The amount of mercury used in LCD TVs is very small and besides, the user never comes in contact with it.
Most electronics retailers carry both LCD and Plasma TVs, including Best Buy, Amazon.com, Wal-Mart, Dell, Target, P.C. Richard & Son, Sears, Costco and hhgregg.com.
So, how does e-paper stand up? Can the technology make up for these LED/LCD roadblocks, or is it just hype?Ise-ink paper the most energy-efficient digital signage out there?
✓ Energy usageE-paper displays only use power when you change what’s on the display or when the wireless display pushes over WiFi for new updates. In fact, an e-paper low-power display can use merely0.008% of the power an LCD display requiresin a day. The ultra-efficient technology hardly makes a dent in your electricity bill. What’s more, the low power consumption allows these devices to run on battery power, lasting months between charges.
✓ Long-livedWhile a baseline LCD might be cheaper upfront, e-paper devices make up the difference in longevity. With such low refresh requirements, electronic ink displays are dormant most of their lives. This inactivity greatly increases the lifespan of the devices, resulting in an ultra-low failure rate and incredible longevity.
✓ EffectiveElectronic paper displays are just that — digital paper. As with paper, these displays reflect light in the environment off of the surface of the display. The result is a glare-free experience, improving screen readability in any setting. What’s more, electronic ink displays function perfectly in a wide range of temperatures, thriving from 32°F to 122°F (0°C to +50°C) and working in more extreme conditions.
✓ Long-term costContrary to LED and LCDs, e-paper displays cost substantially less in the long run. The initial purchase price is about equal to a high-quality LCD display made of sustainable materials, but that’s where the similarities end. E-paper technology uses very little energy, keeping utility costs down. The displays require no installation, aside from the two minutes it takes to mount them on a surface. Their low refresh rate gives them an unparalleled lifespan, keeping replacement costs negligible.
✓ SustainableAs far as power consumption goes, e-paper displays are naturally more sustainable than LED or LCDs. Therefore, e-paper technology has a small carbon footprint in comparison. Many top-of-the-line e-paper devices are made of quality, sustainable materials that are reusable or recyclable, making e-paper the most environmentally-friendly display technology on the market.
The Hisense U8H matches the excellent brightness and color performance of much pricier LCD TVs, and its Google TV smart platform is a welcome addition. But it’s available in only three screen sizes.
The Hisense U8H is the best LCD/LED TV for most people because it delivers the performance of a much pricier TV yet starts at under $1,000, for the smallest (55-inch) screen size. This TV utilizes quantum dots, a full-array backlight with mini-LEDs, and a 120 Hz refresh rate to deliver a great-looking 4K HDR image. It’s compatible with every major HDR format. And it’s equipped with two full-bandwidth HDMI 2.1 inputs to support 4K 120 Hz gaming from the newest Xbox and PlayStation consoles. Add in the intuitive, fully featured Google TV smart-TV platform, and the U8H’s price-to-performance ratio is of inarguable value.
That’s not to say the U8H has pixel-precise light control—it’s not an OLED TV, after all—but it does a terrific job most of the time. In fact, in our tests, the U8H bested last year’s upgrade pick, the Samsung QN90A, in certain scenarios: The intro to Guillermo del Toro’s Cabinet of Curiosities on Netflix features the filmmaker against a pitch-black backdrop. Though last year’s QN90A failed to maintain perfect control over dimming elements during this scene (the black backdrop brightened distractingly once a sufficient amount of brighter content appeared on screen), the U8H did not. (For the record, the newer QN90B also passed this test.) The U8H’s mini-LEDs also help the screen look uniformly bright: Although the U8H is still not as good as an OLED TV in this respect, it shows very little indication of being a backlight-driven display, even during tricky scenes with large swaths of dim lighting.
The onboard Google TV smart platform is another feather in this TV’s cap. As usual, however, it will be much more satisfying to use if you have a Google account and already take advantage of Google’s connected services, like Photos. The experience of navigating the TV’s smart features—scanning QR codes to sign into apps, using the onscreen keyboard, and browsing your Google Photos to set a photo as a screensaver—was very satisfying in terms of responsiveness and speed. Powering on the TV and booting into an app took just seconds. The included Bluetooth remote is also equipped with a handy “Hey Google” button, allowing you to pull up Google’s assistant and use voice commands to search for content or set a reminder. If you have multiple users with their own Google accounts, you can designate separate profiles (attached to a Gmail account) so that each user can customize the experience to their liking, as well as access their own Google Drive or Photos. While some reviewers have reported instances of momentary freezing while using the U8H’s platform, I didn’t personally experience any instances of slowdown that were egregiously worse than with any other smart-TV platform.
The Hisense U8H has some difficulties with banding, or areas of uneven gradation, where transitions that should appear smooth instead look like “bands” of color (sometimes also called posterization). Like many current 4K HDR TVs, the U8H uses an 8-bit panel rather than a 10-bit panel, which affects the color decoding and color presentation process. This is usually relevant only with HDR video and games. When playing games on the PlayStation 5 and Xbox Series X, I saw a few instances where the content wasn’t rendered correctly and displayed ugly splotches of color on the screen. However, this almost always occurred during static screens (such as a pause menu or loading screen); I rarely spotted it during actual gameplay. Hisense has stated that it would address the problem in a future firmware update, but at the time of writing it was still present. This is a flaw that may give dedicated gamers pause, but we don’t consider it to be a dealbreaker for most people.
Finally, like most TVs that use vertical alignment (VA) LCD panels, the U8H has a limited horizontal viewing angle, which may be a bit annoying if you’re hoping to entertain a large crowd. Our upgrade pick uses a special wide-angle technology to address this.
For the video display developer LCD panels are available in many sizes and resolutions, they are also available with many choices of maximum brightness. The following considers the topic of LCD panel brightness, the choices, the methods for adjusting brightness and some brightness adjustment scenarios.
LCD panels are generally rated as to their maximum brightness level which is expressed in Nits, it is equal to Candela/sqm (cd/m2), and this will be at a particular color temperature as noted in the specification, usually 10,000 K. In terms of a practical understanding, the following is a rough guide:
Outdoor displays range from a low end of 700 nits to typically 1,000 or 1,500nits and up with 2,000~2,500nits and even up to 5,000nits seen with some models. This may include standard LCD panels, custom LCD panels as well as custom cut LCD panels.
Virtually all LCD panels have a LED backlight these days, these are powered by an LED driver board. Brightness control via the driver board will be by one of two methods:
PWM (Pulse Width Modulation): This varies the duty cycle of the backlight “on time” – it is predominant in modern LCD panel LED backlight designs to enable support for digital brightness controls.
Backlight lifetime: Many LCD panels have a backlight lifetime rating of 50,000 hours (typically measured to half brightness), this can be extended by running the LED backlight at a lower brightness level. Some panels may only offer 30,000 hours as a lower cost solution while other panels may offer up to 100,000 hours for high end applications.
An LCD panel backlight may be constructed so the LED’s are mounted directly behind a light guide diffuser, or they may be mounted along one or more edges of the light guide.
Active backlight: This is a function of some LCD panel backlights to automatically adjust the backlight brightness in response to the image. For more advanced systems there is an LED array making up the LED backlight, this adjusts the brightness in areas localized to the image being shown. This can greatly enhance the brightness across the display and is being used primarily with video, for example on consumer TV sets. It is not useful to all image types, for example a spreadsheet or content like maps or data is not likely to benefit.
Local dimming: Some LCD panels with direct LED may support local dimming so the LED’s are dimmed in response to the image close to them. This will not be at the same resolution as the LCD panel itself but will help greater contrast over the display by enhancing the brightness in bright areas of the image and darkening the image in dark parts of the image.
For the LCD monitor manufacturer it is important to consider that any covering over the LCD panel will reduce the brightness. For example the protective glass over a digital signage display, or a touch screen, or a semi-silvered mirror. So if a specific brightness is required the measurement should be taken with these in place.
Examples of light meters costing a few hundred dollars include SpyderX by Datacolor (needs a PC), a handheld meter is the SM208 by Sanpometer (search SM208 meter). Note: Many light meters, including smartphone apps, will be meters used for photography and not give readings in nits (or candelas). LCD panel specifications are typically measured using nits.
PWM and Analog: Most Digital View LCD controllers support PWM and Analog as a method for adjusting the backlight brightness level (this is noted in the column headed “Other” on the controller board summary table: https://www.digitalview.com/controllers/lcd-controllers-home.html. Also see https://www.digitalview.com/blog/brightness-adjustment/ for a guide to using a dial or slider type variable resistor to adjust the backlight.
Ambient light sensor: The backlight is adjusted for brightness or powered off depending on ambient light conditions. This uses a light sensor attached to the LCD controller board, see https://www.digitalview.com/blog/light-sensor-app-note/ for more details.
The specifics of the backlight control are documented separately for each LCD controller model (product summary here) in the product manual available for download on the product page.
Note: There are two ways to adjust the perceived brightness of a LCD panel or LCD monitor, the backlight and the black-level. Very often, particularly in the past, the monitor brightness setting adjusted the black-level, this adjusts the LCD but not the backlight.
Note: We have a blog on methods for implementing an ambient light sensor with Digital View LCD controller boards to automatically adjust the backlight or system power, see: Ambient Light Sensor
Update March 2019: Most of the above remains unchanged except for the increased availability of high bright LCD panels of around the 1,000 nit to 2,500 nit range. AUO for example has a number of large size LCD panels with 1,500 nit brightness for the digital signage market. Tianma has panels under 20″ with 1,000 nit to 1,500 nit brightness for various outdoor applications.