distinguish between crt and lcd monitors free sample

CRT and LCD are both display devices. CRT is an old technology whereas LCD is modern one. One major difference between CRT and LCD is in the technology used for image formation. The CRT display produces an image by using an electron beam, while LCD display produces an image on the screen using liquid crystal display.

CRT stands for Cathode Ray Tube. CRT displays produce an image on the screen by using a sharp beam of electrons that is highly focused to hit a phosphor screen present in front of the tube. The important components of a CRT are electron gun, focusing mechanism, and phosphor screen.

CRT was used in earlier TVs and computer monitors. CRT produces poor quality images on the screen and also consumes large electricity. The lifespan of CRT displays is very short. Because of all reasons, CRTs are being replaced by other display technologies these days.

LCD stands for Liquid Crystal Display. In LCD, liquid crystals are used to produce images on the screen. LCD displays are thin and more energy efficient, thus they are used in several small sized devices like mobiles, laptops, TVs, desktop computer monitors, calculators, etc.

In LCDs, light is obtained from external sources, and then it is converted into a definite graphics pattern using optical effects. LCDs have several advantages over CRT such as less power consumption, faster response, smaller size, low cost, etc.

Both CRT and LCD have their own advantages and disadvantages. However, these days, CRTs have almost become extinct. No one seems to be using them anymore. LCDs and other display technologies have replaced them because the new devices are highly efficient in terms of cost, power, and performance.

distinguish between crt and lcd monitors free sample

CRT stands for Cathode Ray Tube and LCD stands for Liquid Crystal Display area unit the kinds of display devices wherever CRT is employed as standard display devices whereas LCD is more modern technology. These area unit primarily differentiated supported the fabric they’re made from and dealing mechanism, however, each area unit alleged to perform identical perform of providing a visible variety of electronic media. Here, the crucial operational distinction is that the CRT integrates the 2 processes lightweight generation and lightweight modulation and it’s additionally managed by one set of elements. Conversely, the LCD isolates the 2 processes kind one another that’s lightweight generation and modulation.

distinguish between crt and lcd monitors free sample

Since the production of cathode ray tubes has essentially halted due to the cost and environmental concerns, CRT-based monitors are considered an outdated technology. All laptops and most desktop computer systems sold today come with LCD monitors. However, there are a few reasons why you might still prefer CRT over LCD displays.

While CRT monitors provide better color clarity and depth, the fact that manufacturers rarely make them anymore makes CRTs an unwise choice. LCD monitors are the current standard with several options. LCD monitors are smaller in size and easier to handle. Plus, you can buy LCD monitors in a variety of sizes, so customizing your desktop without all the clutter is easy.

The primary advantage that CRT monitors hold over LCDs is color rendering. The contrast ratios and depths of colors displayed on CRT monitors are better than what an LCD can render. For this reason, some graphic designers use expensive and large CRT monitors for their work. On the downside, the color quality degrades over time as the phosphors in the tube break down.

Another advantage that CRT monitors hold over LCD screens is the ability to easily scale to various resolutions. By adjusting the electron beam in the tube, the screen can be adjusted downward to lower resolutions while keeping the picture clarity intact. This capability is known as multisync.

The biggest disadvantage of CRT monitors is the size and weight of the tubes. An equivalently sized LCD monitor can be 80% smaller in total mass. The larger the screen, the bigger the size difference. CRT monitors also consume more energy and generate more heat than LCD monitors.

For the most vibrant and rich colors, CRTs are hard to beat if you have the desk space and don"t mind the excessive weight. However, with CRTs becoming a thing of the past, you may have to revisit the LCD monitor.

The biggest advantage of LCD monitors is the size and weight. LCD screens also tend to produce less eye fatigue. The constant light barrage and scan lines of a CRT tube can cause strain on heavy computer users. The lower intensity of the LCD monitors coupled with the constant screen display of pixels being on or off is easier on the eyes. That said, some people have issues with the fluorescent backlights used in some LCD displays.

The most notable disadvantage to LCD screens is the fixed resolution. An LCD screen can only display the number of pixels in its matrix. Therefore, it can display a lower resolution in one of two ways: using only a fraction of the total pixels on the display, or through extrapolation. Extrapolation blends multiple pixels together to simulate a single smaller pixel, which often leads to a blurry or fuzzy picture.

For those who are on a computer for hours, an LCD can be an enemy. With the tendency to cause eye fatigue, computer users must be aware of how long they stare at an LCD monitor. While LCD technology is continually improving, using techniques to limit the amount of time you look at a screen alleviates some of that fatigue.

Significant improvements have been made to LCD monitors over the years. Still, CRT monitors provide greater color clarity, faster response times, and wider flexibility for video playback in various resolutions. Nonetheless, LCDs will remain the standard since these monitors are easier to manufacture and transport. Most users find LCD displays to be perfectly suitable, so CRT monitors are only necessary for those interested in digital art and graphic design.

distinguish between crt and lcd monitors free sample

Summary: Difference Between CRT Monitor and LCD Monitor is that CRT monitor is a desktop monitor that contains a cathode-ray tube. A cathode-ray tube (CRT) is a large, sealed glass tube. While An LCD monitor is a desktop monitor that uses a liquid crystal display to produce images. These monitors produce sharp, flicker-free images.

A CRT monitor is a desktop monitor that contains a cathode-ray tube. A cathode-ray tube (CRT) is a large, sealed glass tube.The front of the tube is the screen. A CRT’s viewable size is the diagonal measurement of the actual viewing area provided by the screen in the CRT monitor. A 21-inch monitor, for example, may have a viewable size of 20 inches.

CRT monitors produce a small amount of electromagnetic radiation. Electromagnetic radiation (EMR) is a magnetic field that travels at the speed of light. Excessive amounts of EMR can pose a health risk. To be safe, all high-quality CRT monitors comply with a set of standards that defines acceptable levels of EMR for a monitor. To protect yourself even further, sit at arm’s length from the CRT monitor because EMR travels only a short distance.

AnLCD monitor is a desktop monitor that uses a liquid crystal display to produce images.These monitors produce sharp, flicker-free images. LCD monitors have a small footprint; that is, they do not take up much desk space. LCD monitors are available in a variety of sizes, with the more common being 19, 20, 22, 24, 26, 27, and 30 inches — some are 45 or 65 inches. Most are widescreen, which are wider than they are tall. You measure a monitor the same way you measure a television, that is, diagonally from one corner to the other.

Mobile computers and mobile devices often have built-in LCD screens. Many are widescreen; some are touch screen. Notebook computer screens are available in a variety of sizes, with the more common being 14.1, 15.4, 17, and 20.1 inches. Netbook screens typically range in size from 8.9 inches to 12.1 inches, and Tablet PC screens range from 8.4 inches to 14.1 inches. Portable media players usually have screen sizes from 1.5 inches to 3.5 inches. On smart phones, screen sizes range from 2.5 inches to 4.1 inches. Digital camera screen sizes usually range from 2.5 inches to 4 inches.

distinguish between crt and lcd monitors free sample

Summary: Difference Between CRT and LCD is that CRTis a desktop/pc monitor that contains a cathode-ray tube. A cathode-ray tube (CRT) is a large, sealed glass tube.

Picture slightly less natural and “filmlike” than plasmas; slower refresh rate; limited viewing angle; blacks are brighter; susceptible to burn-out and image persistence; dead or stuck pixels may appear

distinguish between crt and lcd monitors free sample

Resolution on a CRT is flexible and a newer model will provide you with viewing resolutions of up to 1600 by 1200 and higher, whereas on an LCD the resolution is fixed within each monitor (called a native resolution). The resolution on an LCD can be changed, but if you’re running it at a resolution other than its native resolution you will notice a drop in performance or quality.

Both types of monitors (newer models) provide bright and vibrant color display. However, LCDs cannot display the maximum color range that a CRT can. In terms of image sharpness, when an LCD is running at its native resolution the picture quality is perfectly sharp. On a CRT the sharpness of the picture can be blemished by soft edges or a flawed focus.

A CRT monitor can be viewed from almost any angle, but with an LCD this is often a problem. When you use an LCD, your view changes as you move different angles and distances away from the monitor. At some odd angles, you may notice the picture fade, and possibly look as if it will disappear from view.

Some users of a CRT may notice a bit of an annoying flicker, which is an inherent trait based on a CRTs physical components. Today’s graphics cards, however, can provide a high refresh rate signal to the CRT to get rid of this otherwise annoying problem. LCDs are flicker-free and as such the refresh rate isn’t an important issue with LCDs.

Dot pitch refers to the space between the pixels that make up the images on your screen, and is measured in millimeters. The less space between pixels, the better the image quality. On either type of monitor, smaller dot pitch is better and you’re going to want to look at something in the 0.26 mm dot pitch or smaller range.

Most people today tend to look at a 17-inch CRT or bigger monitor. When you purchase a 17-inch CRT monitor, you usually get 16.1 inches or a bit more of actual viewing area, depending on the brand and manufacturer of a specific CRT. The difference between the “monitor size” and the “view area” is due to the large bulky frame of a CRT. If you purchase a 17″ LCD monitor, you actually get a full 17″ viewable area, or very close to a 17″.

There is no denying that an LCD wins in terms of its physical size and the space it needs. CRT monitors are big, bulky and heavy. They are not a good choice if you’re working with limited desk space, or need to move the monitor around (for some odd reason) between computers. An LCD on the other hand is small, compact and lightweight. LCDs are thin, take up far less space and are easy to move around. An average 17-inch CRT monitor could be upwards of 40 pounds, while a 17&-inch LCD would weigh in at around 15 pounds.

As an individual one-time purchase an LCD monitor is going to be more expensive. Throughout a lifetime, however, LCDs are cheaper as they are known to have a longer lifespan and also a lower power consumption. The cost of both technologies have come down over the past few years, and LCDs are reaching a point where smaller monitors are within many consumers’ price range. You will pay more for a 17″ LCD compared to a 17″ CRT, but since the CRT’s actual viewing size is smaller, it does bring the question of price back into proportion. Today, fewer CRT monitors are manufactured as the price on LCDs lowers and they become mainstream.

distinguish between crt and lcd monitors free sample

The crucial difference between CRT and LCD exist in their image forming technique. CRT displays image on the screen by making use of electron beam, however, LCD utilizes liquid crystals for the formation of an image on the screen.

Another major difference that exists between CRT and LCD is their size and dimension. CRT monitors are thicker and heavier but small in size than that of LCD.

We will discuss some other important differences between CRT and LCD but before that have a look at the rough draft of the contents to be discussed under this article.

DisadvantagesHeavy, gets heated at rapid rate during operation.Provides fixed aspect ratio and resolution, requires large area, operating temperature is limited between 0 -60 degrees.

CRT is expanded as Cathode ray tube. It is a vacuum tube that produces images when a sharp beam of the electron which is highly focused hits the phosphor screen that is present at the front-end of the tube.

It consists of certain basic components that are responsible for the generation of an image on the screen. The figure below shows internal system involved in a CRT:

An electron gun assembly is present that produces a sharp beam of electrons. These electrons when moves inside the tube experience acceleration by the anode and focused towards the screen.

The two deflection plates are the reason for the movement of the beam horizontally and vertically. However, as the two movements are not dependent on each other thus the beam after hitting the screen, gets fixed anywhere on it.

When we talk about the screen of CRT then it is basically termed as the faceplate. The inner surface where the beam strikes is basically a phosphor coating. This phosphor is responsible for the conversion of electrical energy generated by the movement of the electron beam into light energy.

It is noteworthy in case of CRT that phosphor screen generates secondary electrons when electron beam hits it. So, in order to sustain an electrical equilibrium, the secondary emitted electrons must be collected which is done by aquadag.

LCD stands for Liquid Crystal Display. In LCD liquid crystal is utilized in order to generate a definite image on the screen. Liquid crystal is basically termed as the fourth state of matter. It permits the display to be very thin and thus supports numerous applications.

When we talk about LCD then its principle of working is such that light energy is not produced by LCD, despite light energy generated by an external source is controlled in order to have light or dark appearance at some particular areas.

Here, a layer of liquid crystal is placed between 2 polarizing films. When light emitted by an external source falls on the layer of liquid crystal then their combination generates a coloured visible image that is displayed on the screen.

An external potential is provided to the liquid crystal. This potential changes the orientation of the molecules. After this polarized light is passed to the crystal that generates bright and dark spots at the screen of the display.

One of the excellent property of LCD over CRT is its antiglare property. LCD screen more efficiently reduces the glare generated by light as compared to CRT.

CRT is more dominant to flickering as it possesses a low refresh rate that causes a drop in image brightness that is easily recognized by naked eyes.As against, flickering is not that much higher in LCD due to its high refresh rate.

CRT and LCD both have their separate advantages and disadvantage over the image formation technique. But LCD has replaced CRT very efficiently in the recent era. Despite LCD is more costly than CRT but due to its better image display and almost negligible flickering property, it is widely used.

distinguish between crt and lcd monitors free sample

"Between 0.0001 and 0.00001 nits" "Sony claims an OLED contrast range of 1,000,000:1. When I asked how the contrast could be so high I was told that the surface is SO black the contrast is almost infinite. If the number representing the dark end of the contrast scale is nearly zero then dividing that number into the brightest value results in a very, very high contrast ratio."

Does not normally occur at 100% brightness level. At levels below 100% flicker often occurs with frequencies between 60 and 255 Hz, since often pulse-width modulation is used to dim OLED screens.

No native resolution. Currently, the only display technology capable of multi-syncing (displaying different resolutions and refresh rates without the need for scaling).Display lag is extremely low due to its nature, which does not have the ability to store image data before output, unlike LCDs, plasma displays and OLED displays.

distinguish between crt and lcd monitors free sample

The obsolescence of CRT monitors requires replacing stimulators used for eliciting VEPs with new monitors. Currently, LCD monitors are the only suitable alternative, however other technologies, like OLED, may become a viable option [23]. So far, the ISCEV extended protocol for VEP methods of estimation of visual acuity recommends ensuring luminance artifacts caused by non-CRT stimulators [9], which can be achieved by reducing the stimulus contrast [23]. However, this may not be possible without falling below the minimum contrast values recommended for VEP [1, 23]. Since LCD stimulators have been shown to result in mostly a delay in the VEP responses [2,3,4, 23] but seem not to affect the size of the amplitudes [2], we expected no difference between the estimated visual acuity by using LCD or CRT monitors used as a stimulator for the sweep VEP.

The results of the first experiment show statistically significant effects of the monitor type on the time-to-peak after stimulus onset and the peak-to-trough amplitude (Table 1). The mean delay of the time-to-peak after stimulus onset between recordings obtained using the LCD and the CRT monitor was about 60 ms, which is quite high and possibly caused by the relatively old LCD monitor used. Accordingly, statistically significant effects on the time-to-peak after stimulus onset and the peak-to-trough amplitude were found for the monitor/contrast combination in the results of the second experiment (Table 4). Surprisingly, the mean delay of the time-to-peak after stimulus onset of the CRT monitors with high contrast was with up to 151 ms, longer (Table 5) than that of the LCD monitors (with low and high contrast), although one would expect modern monitors to have shorter or even no delays [24, 25]. Additionally, a statistically significant interaction between the spatial frequency and the monitor type was revealed in both experiments, causing an increased time delay for the intermediate spatial frequencies (1.4–10.3 cpd) with LCD stimulation (Fig. 2, top left) in the first experiment and an almost linear increase with the spatial frequencies in the second experiment (Fig. 2, bottom left). This may be explained by the semi-manual cursor placement, which is necessary because the amplitudes are less pronounced at frequencies below and above this frequency band. Another cause might be an input lag resulting from the time required by the monitor to prepare the image data to be displayed. This could be caused by, e.g., internal scaling for non-native resolutions, which may even be present when using the monitor’s native resolution. In the worst case, this leads to nonlinearities of the response timing of the LCD monitor when presenting patterns of low or high frequency [26, 27]. In doubt, the precise duration of the input lag should be measured using a photodiode attached to the display [28] and in case of being constant, the delay could then be subtracted from the respective time-to-peak values. Finally, the higher latencies may also be caused by the different software used for generating the stimuli: whereas in the first experiment, a custom-developed Java-based software was used, in the second experiment, the Python-based PsychoPy was employed. Nevertheless, these differences seem not to affect the estimated visual acuity. The mean peak-to-trough amplitude using the LCD monitor in the first experiment is reduced by about 0.9 µV with a confidence interval from − 1.6 to − 0.2 µV compared to the CRT stimulator, but increased by about 2.6 µV (confidence interval from 1.2 to 4.0 µV) when comparing the new LCD monitor with the CRT monitor (both with high contrast) in the second experiment (Table 5). However, these differences were, despite being statistically significant, within the expected standard deviation from about 0.5 to 7 µV of the P100 amplitude found in the literature [29,30,31] and therefore probably of no clinical relevance (Fig. 2, right). Interestingly, the results of Nagy et al. [2] suggest a similar reduction in the peak-to-trough amplitude when using an LC display for stimulation. In the first experiment, no statistically significant interaction between monitor type and spatial frequency on peak-to-trough amplitude was found but a tendency to smaller amplitudes at intermediate frequencies (Table 1), whereas in the second experiment, the effect of the interaction of stimulator and spatial frequency was statistically significant (Table 4). It has to be taken into account that the residuals of the models were heteroscedastic and therefore the statistical significance of the effects may be overestimated [32].

In the first experiment, the difference between the subjective visual acuity and that estimated by the second-order polynomial method, or by the modified Ricker function, was not statistically significant from a hypothetical assumed value of 0 logMAR (Table 2). Neither were the variances between CRT and LCD statistically different. Accordingly, the linear mixed-effects models revealed no statistically significant effects of neither the monitor type, the recording cycle, nor their interaction on the difference between subjective and estimated visual acuity for both estimation methods (Table 3).

In contrast in the second experiment, the differences between subjective visual acuity determined using FrACT and the visual acuities estimated using the modified Ricker function along with the conversion formula used in the first experiment were significantly different from the hypothesized difference of 0 logMAR for both, the new gaming LCD monitor and the old LCD monitor, at high and low contrast, but not for the CRT monitor. After using an individually adjusted conversion formula for each monitor/contrast combination, no statistically significant difference from the hypothesized difference of 0 logMAR was found (Table 7). However, one should keep in mind that using the results to calculate the conversion formula used to predict the results is circular reasoning. Nevertheless, it indicates, that using individual established conversion formulas calculated from a sufficiently large number of normative data will minimize the error between true visual acuity and estimated visual acuity.

Table 6 lists the signal-to-noise ratio calculated from the fitted Ricker model for the different combinations of monitors and contrasts. The highest SNR was found for the CRT monitor using high contrast. The LCDs showed lower SNR values. The on average higher amplitudes obtained using LCD monitors (Table 5) indicate that more noise is present when stimulating using LCDs. However, this effect could be caused by the different software used for the stimulus presentation and the lower number of sweeps recorded for averaging compared to the recordings using the CRT monitor. Nevertheless, none of the differences between the SNR values obtained from the different monitor types was statistically significant (Table 6), which corresponds to the findings of Fox et al. [28].

We want to point out the limitations of the current study: We included only healthy participants, so the possible effects of LCD stimulators on patients with reduced visual acuity remain unclear and should be further investigated, especially since we found a statistically significant, albeit not clinically relevant, effect of the monitor/contrast combination on peak-to-trough amplitude and time-to-peak after stimulus onset in the second experiment (Tables 4, 5). Further limitations are that the participants were not stratified by age and that the subjective visual acuity in the first experiment was determined using an eye chart projector, in contrast to the second experiment, where FrACT was used, limiting the accuracy of the estimated value. Finally, this study compared only three specific monitors; therefore, the results are not universally valid.

In conclusion, based on the results of this study, LCD monitors may substitute CRT monitors for presenting the stimuli for the sweep VEP to objectively estimate visual acuity. Newer LCD screens, especially with low response times in the range of 1–2 ms, therefore, allow for a reduction in luminance artifacts at required contrast levels [23], albeit the luminance artifact may not have a large effect on the recorded signals [28]. New technologies like OLED displays [23] may even be better suited, since one the one hand, the onset will be the same for the whole pattern, and on the other hand, LCDs and OLEDs provide a constant luminance level during stimulation, whereas CRTs need a constants pulses to keep the phosphor lit up, causing fast local luminance flashes all the time [28]. Therefore, in contrast to CRTs, LCD and OLED stimulators, e.g., may allow for recording true offset responses [33]. However, caution should be taken when leveraging modern displays for stimulation, since their in-built electronics perform all kinds of sophisticated image-enhancing procedures including color-correction, brightness boosting, contrast enhancement by real-time adjustments of the colors or the backlight, or eyestrain-reducing blue light filtering, with the aim to improve the users’ experience, or to increase the monitors lifetime. This applies in particular to consumer electronics like TVs. Gaming monitors, in addition, use special acceleration drivers, which shut down the backlight, insert black frames (Black Frame Insertion, BFI), or employ variable refresh rates (e.g., Nvidia G-SYNC or AMD FreeSync) to clean the retained image from the eye. Therefore, one should disable any image processing or enhancing functionality in the monitor settings, before using the monitor as stimulator for electrophysiological experiments. Finally, it is advisable to perform a calibration with healthy volunteers using best-corrected and artificially reduced visual acuity and to collect normative data for the employed setup, as always recommended by ISCEV [34], in order to establish an individual conversion formula between the sweep VEP outcome and the estimated visual acuity.

distinguish between crt and lcd monitors free sample

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Associated DataThe empirical experiment was preregistered. The preregistration, as well as all data, analysis scripts, and experimental materials are available at (https://osf.io/g842s/).

Liquid crystal display (LCD) monitors are nowadays standard in computerized visual presentation. However, when millisecond precise presentation is concerned, they have often yielded imprecise and unreliable presentation times, with substantial variation across specific models, making it difficult to know whether they can be used for precise vision experiments or not. The present paper intends to act as hands-on guide to set up an experiment requiring millisecond precise visual presentation with LCD monitors. It summarizes important characteristics relating to precise visual stimulus presentation, enabling researchers to transfer parameters reported for cathode ray tube (CRT) monitors to LCD monitors. More importantly, we provide empirical evidence from a preregistered study showing the suitability of LCD monitors for millisecond precise timing research. Using sequential testing, we conducted a masked number priming experiment using CRT and LCD monitors. Both monitor types yielded comparable results as indicated by Bayes factor favoring the null hypothesis of no difference between display types. More specifically, we found masked number priming under conditions of zero awareness with both types of monitor. Thus, the present study highlights the importance of hardware settings for empirical psychological research; inadequate settings might lead to more “noise” in results thereby concealing potentially existing effects.

With modern display technology becoming increasingly advanced, bulky cathode ray tube (CRT) monitors are (with few exceptions) no longer being produced. Instead, flat panel technologies have become the de-facto standard and among those, liquid crystal display (LCD) monitors are most prevalent. This technological change has also affected experimental research relying on computerized presentation of stimuli. Based on decades of experience with CRT monitors, their characteristics are well known and they have proven to provide reliable and precise stimulus presentation

The present paper summarizes the current knowledge base regarding important differences between CRT and LCD monitors; it aims to provide a hands-on guide for the setup of computer experiments using LCD monitors in a manner that yields reliable presentation times and CRT-comparable results. Additionally, we provide empirical evidence from a masked priming task and a prime-discrimination task, demonstrating that current-generation LCD monitors can be used for masked visual stimulus presentation.

First, we will provide a brief technical overview of functional principles as they relate to visual stimulus presentation. Detailed descriptions and parameter measurements are already available from the existing literature; however, our intention here is to equip readers with limited technical expertise with the necessary knowledge to set up computer experiments with LCD monitors. Thus, we keep our explanations relatively short and simplified.

LCD monitors work differently: Each pixel consists of liquid crystal threads that can be twisted or arranged in parallel by an electrical current applied to them. This leads to a polarization effect that either allows or prevents light passing through. A white light source located behind this crystal array uniformly and constantly illuminates the array. To display a black pixel, the crystal threads are twisted by 90° such that no light will pass through. A white pixel is achieved by aligning the crystals such that maximum light is allowed to pass through, until a different, non-white color needs to be displayed (see the lower panel of Fig. 1 for an LCD pixel’s brightness over time). This is a static process, not a pulsed one as in CRTs.

In theory, the difference in presentation methods, namely a strobing versus a static image, should be of no consequence if the light energy that falls onto the retina remains the same over the time period of one single frame. As the Talbot-Plateau law states2 is equally well detectable as a light flash presented for 60 ms at 40 cd/m2. This suggests that temporal integration can be easily described by energy summation”. Thus, in principle, LCD and CRT monitors should be able to yield comparable results.

However, due to the differences in technology, the visual signals produced by the two display types have different shapes (i.e., a different light energy-over-time-curve; see Fig. 1). Moreover, default luminance as well as visual-signal response times (in addition to other parameters, see below) differ between most CRT and LCD monitors

Table 1 reports the parameters we considered in setting up the CRT and LCD monitors. Certainly, most of them are commonly considered when setting up a computer experiment; nevertheless we deemed it important to mention them here explicitly, as their neglect might have unintended consequences. We used a 17” Fujitsu Siemens Scenicview P796-2 CRT color monitor previously used in several published studies including studies with masked presentation conditions

FeatureDescriptionRecommendationCommentExperiment settingLCD panel typeIPS (in-plane switching): true-color and contrast less dependent on viewing angle, slower response time;

Native resolution, screen diagonal, and aspect ratioWith constant screen diagonal and aspect ratio: The higher the resolution, the smaller objects and stimuli that are measured in pixels appear on the screen.To achieve results as close as possible to a CRT experiment, calculate the size (e.g., in mm) of one native pixel and resize the stimuli if necessary, so that the real size (in mm) on the CRT corresponds to the real size on the LCD.Take the aspect ratio into account to avoid distortions like they would appear when a resolution with an aspect ratio of 4:3 (e.g., 1024 * 768) is applied to a monitor with a native aspect ratio of 16:9 (e.g., native resolution of 1920 * 1080). If you need to do the latter, consider letterboxing.In the present study, CRT resolution was 1024 * 768 (visible area 324 * 243 mm, aspect ratio 4:3), diagonal 17”, dimensions of 1 pixel: 0.316 * 0.316 mm. LCD resolution was 1024 * 768 (visible area 531 * 299 mm, aspect ratio 16:9, dimensions of 1 pixel (letterboxed to 4:3) was 0.389 * 0.389 mm). LCD stimulus size thus needed to be enlarged by a factor of 1.23. Stimuli were adjusted to match sizes.

Monitor brightness (as can be set in the monitor’s user menu)Provides the same amount of radiated energy in a single frame compared to CRTs.Measure the brightness of a used (and warmed up) experimental CRT with a luminance meter with both a completely black and a completely white screen. Try to match both values with the LCD.When an exact match is not possible, try to adjust the monitor’s contrast setting accordingly (i.e., usually downregulate the LCD).In the present study, CRT settings used an on-screen-display brightness setting of 100%; LCDs were set to 9%.

Refresh rateMultiple complex effects are dependent on the choice of the correct refresh rate, particularly the multiples of the presentation time of a single frame.Choose the refresh rate to match your CRT or, when designing a new experiment, to match your desired stimulus presentation times as closely as possible.Example: Stimulus presentation 30 ms; typical refresh rates are 60, 70, 100, 120, 144 Hz. Possible choices are two frames of 60 Hz = 2 * (1/60) = ca. 33 (ms). A better choice would be three frames of 100 Hz = 3 * (1/100) = 30 (ms).The experiment in the present study used a refresh rate of 100 Hz with presentation times consisting of multiples of 10 ms.

We tested various monitor user settings, refresh rates, resolutions and luminance settings (see materials available at https://osf.io/g842s/) with regard to the emitted light energy–over-time-curve and therefore response characteristics (i.e., onset and offset of full screen and centrally presented stimuli). Measurements were conducted with a photodiode setup, using both an oscilloscope (model “Agilent MSOX 3012 A”) and a self-developed microcontroller setup as measurement devices. Stimuli were black and white squares.

Our measurements revealed several interesting characteristics: First, luminance of the LCD monitor at default setting (i.e., maximum brightness) exceeded the CRT luminance at a ratio of 3.25:1. However, comparable average luminance can be (and was) achieved by downregulating the LCD monitor (the older CRT technology emits less energy even at maximum settings, see Table 2), without participants perceiving it as unnaturally dark. If one plans to upgrade from CRT to LCD monitors in an experimental laboratory, we therefore recommend measuring the CRT monitors’ brightness levels and matching them in the new LCD monitors’ user setup, if comparability with the old setup is needed. This will minimize hardware-dependent variability, thus contributing to better replicability. Please note that a brightness adaption is not a necessary precondition when employing LCD monitors; researchers should simply be aware that the brightness level can have an influence onto the resulting effects, especially in time-critical experiments with short and/or masked presentation. Thus, we recommend the adaptation for time-critical experiments in which researchers orient on existing empirical evidence gathered with CRT monitors. Furthermore, gray-to-gray response times varied slightly depending on the employed brightness levels2), so we suggest that researchers can rely on this more efficient method as an approximation.

Note. Brightness refers to monitor menu settings, cd/m² was measured with the luminance meter and also calculated from the measured voltage (i.e., via oscilloscope). The voltage function matches the values measured with the luminance meters almost perfectly.

For the empirical comparison of human performance with CRT and LCD monitors, we relied on these results and set the monitor settings accordingly (see Method section below).

Participants were administered a masked number priming task and a subsequent forced-choice prime discrimination task using both a CRT and an LCD monitor. In this well-established paradigm

Of central interest was the question whether both monitors would yield comparable masked priming effects. Monitors were set according to the parameters described in the previous section (see also Method section below). In order to obtain conclusive evidence, we decided for sequential hypothesis testing using Bayes factorshttps://osf.io/g842s/.

As we aimed to find evidence for or against monitor type differences in priming, we applied sequential hypothesis testing with Bayes factors (BF), which allow quantification of evidence both for and against a null hypothesisn = 24 was collected (see preregistration), we continued data collection until the preregistered BF (with JSZ prior r = 1) was reached. Specifically, data collection was stopped after the BF reached either (a) BF01 > 6 in favor of the null hypothesis of no difference in priming effects for CRT and LCD monitors, or (b) BF10 > 6 in favor of the alternative hypothesis that there is a difference between CRT and LCD monitors. We computed the BF after each day of data collection, and the critical BF was reached after testing 68 participants.

Participants were non-psychology students from Saarland University (40 females, 25 males; age Md = 25 years, range: 18–36), who were compensated with €8. Participants gave written informed consent before the study, and were free to withdraw from the study at any point in time. Anonymity of data was ensured, and treatment of subjects was in accordance with the Declaration of Helsinki. According to the guidelines of the German Research Association (Deutsche Forschungsgemeinschaft; DFG), no ethical approval was needed for this study (http://www.dfg.de/foerderung/faq/geistes_sozialwissenschaften/index.html) because it did not pose any threats or risks to the participants and participants were fully informed about the objectives of the study. The chairman of the Ethics Committee of the Faculty of Empirical Social Sciences of Saarland University confirmed that ethical approval was not needed for this study.

The experiment was a replication of Kunde et al. 2003, Exp.1et al.’s experiment). Participants’ task was to classify one-digit target numbers as smaller or greater than 5. Preceding the targets, sandwich-masked number primes were presented. The basic design of the priming task was a 2 (prime: smaller/greater than 5) × 2 (target: smaller/greater than 5) × 2 (monitor type: CRT vs. LCD) within-participants design. Following Kunde et al.et al.et al. did not find an impact of these factors on the congruency effect; they were, however, included for replication purposes (As a side effect, Kunde et al. found an interaction of notation match x congruency x prime novelty indicating small differences in masking efficiency due to greater/smaller overlap in prime-target shape; we also found such an effect, see below).

We used two 17” Fujitsu Siemens Scenicview P796-2 CRT color monitors and two 24” ViewSonic VG2401mh TFT monitors, all set to a resolution of 1024 × 768 pixels, and a refresh rate of 100 Hz . Luminance on both monitors was set to 110 cd/m² (using the luminance meter model “Gossen Mavo-Monitor USB”). The room was completely dark (i.e., measured background luminance was less than 0.5 cd/m²). Stimulus presentation and measurement of response latencies were controlled by E-Prime version 2.0 run on a DELL PRECISION T1600 computer. Participants gave their responses with a standard QWERTZ keyboard connected via PS/2. They sat at a distance of approx. 60 cm to the monitor. Distance to the monitor and viewing angle were measured at the beginning of each task (i.e., with each monitor change) and visually monitored by the experimenter in regular intervals.

Up to two individuals participated concurrently, separated by partition walls. Participants were randomly assigned to a monitor order (CRT or LCD first), and switched monitors twice, that is, they first completed the priming task on monitor 1, then the same priming task on monitor 2 [or vice versa]. Afterwards, they switched again to monitor 1 for the prime discrimination task, and then executed the prime discrimination task again at monitor 2 [or vice versa]).

The trial sequence was as follows: First, a fixation cross was displayed for 30 frames (i.e., 300 ms), followed by a pre-mask presented for seven frames (i.e., 70 ms), the prime presented for three frames (i.e. 30 ms), and a post-mask for seven frames (i.e., 70 ms; SOA = 100 ms). The post mask was immediately followed by the target, which was presented for 20 frames (i.e., 200 ms), followed by a blank (black) screen for 200 frames (i.e., 2,000 ms), which signaled the response deadline. Response keys were the ‘f’ and ‘j’ keys on a standard German QWERTZ keyboard, marked with blue stickers. If a response was given, immediate feedback (“Richtig!”/“Falsch!”; i.e., “Correct!”/“Wrong!”) was provided. After an inter-trial-interval of 800 ms, the next trial started. Figure 2 depicts an example trial.

At the beginning of the experiment, participants were informed that the experiment was investigating the differences between CRT and LCD computer monitors and that they were therefore asked to work on a simple number-categorization task using different monitors. They were instructed to categorize the presented numbers as quickly and accurately as possible. They were not informed about the primes. To familiarize participants with the procedure, they first received a practice block of 32 trials. The actual experiment consisted of five blocks of 128 trials each. After each block, participants were free to take a short break.

Mean response latency for correctly categorized targets was the dependent variable of interest. Data preparation and analysis were done as preregistered, that is, trials with reaction times below 150 ms or more than 3 interquartile ranges above the third quartile or below the first quartile of the individual distribution were discarded (1.06% of all trials), as were trials with incorrect responses (M = 6.48%, SD = 4.42%, range from 1.09% to 20.39%). Table 3 shows mean reaction times and error rates across conditions.

In the following, we present the Bayes factors based on sequential hypothesis testing as preregistered (computed with JASP, version 0.10.2), alongside results of conventional null-hypothesis significance testing (NHST) on the final sample (conducted with SPSS, version 26) to allow comparison with the original results of Kunde et al.N = 65 provided sufficient power to detect effects of dZ = 0.35 (i.e., between small and medium size according to

As our central hypothesis regarded the (lack of) priming differences between monitor types, we first present the Bayesian analysis assessing the interaction of priming condition (congruent, incongruent) and monitor type (CRT vs. LCD).

The final BF01 for the interaction of priming condition and monitor type was BF01 = 7.47; this means that the data are approx. 7.5 times more likely under the null, and thus represents moderately strong evidence for the hypothesis that the two monitor types produced equivalent masked priming effects. The evolution of the BF01 can be seen in Fig. 3. Overall there was also strong evidence for the presence of a small priming effect (M = 1.92 ms, SD = 4.15 ms, dZ = 0.46) with BF10 = 46.62.

The 2 (priming condition: congruent vs. incongruent) × 2 (monitor type: CRT vs. LCD) × 2 (notation match: match vs. non-match) × 2 (prime novelty: practiced vs. unpracticed primes) repeated measures ANOVA yielded significant main effects of priming condition, F(1,64) = 13.82, p < 0.001, ηp2 = 0.178 (dz = 0.46), monitor type, F(1,64) = 99.11, p < 0.001, ηp2 = 0.608 (dz = 1.23), and notation match, F(1,64) = 5.33, p = 0.024, ηp2 = 0.077 (dz = 0.29). Furthermore, a significant three-way-interaction of priming condition × monitor type × notation match emerged, F(1,64) = 7.00, p = 0.010, ηp2 = 0.099 (dz = 0.33). No further results were significant (for the sake of interest: priming condition × prime novelty, F(1,64) = 2.55, p = 0.115, ηp2 = 0.038 (dz = 0.20); priming condition × notation match, F(1,64) = 2.16, p = 0.147, ηp2 = 0.033 (dz = 0.18); priming condition × monitor type × notation match × prime novelty, F(1,64) = 2.77, p = 0.101, ηp2 = 0.042(dz = 0.21)). We also checked for a possible effect of monitor order; no effects emerged. Please note that the main effect of monitor largely reflects the DCC input lag (see Introduction), that is, the recorded response times are larger for the LCD monitor, because the internally recorded stimulus onset time is earlier than it actual was due to the input lag.

We followed up the significant three-way interaction with separate ANOVAs for each monitor type. The repeated measures ANOVA for the LCD monitor yielded a significant priming condition × notation match interaction, F(1,64) = 8.16, p = 0.006, ηp2 = 0.113 (dz = 0.35), while the interaction was not significant for the CRT monitor, F(1,64) = 0.58, p = 0.45, ηp2 = 0.009 (dz = 0.09). In the LCD monitor analysis, prime-target combinations with non-matching format yielded a congruency effect, t(64) = 4.54, p < 0.001, dZ = 0.56, while matching prime-target combinations did not yield a congruency effect, t(64) = 0.22, p = 0.83, dZ = 0.03. It is likely that differences in masking efficiency were responsible for this finding (i.e., stimuli matching in format mask each other better), as Kunde et al.

The signal detection index d’ served as the dependent variable in the prime-recognition task. In a first analysis, d’ was tested against zero with a repeated-measures MANOVA, with monitor type as a within-participants factor. The constant test of this MANOVA was not significant, F(1,64) = 0.01, p = 0.94, ηp2 = 0.000 (dz = 0.01), indicating overall chance performance. The main effect of monitor type was also not significant, F(1,64) = 0.59, p = 0.45, ηp2 = 0.009 (dz = 0.10), indicating zero awareness with both monitor types (d’CRT = 0.004; d’LCD = −0.005).

A repeated measures ANOVA with notation (Arabic vs. verbal), prime novelty, and monitor type as within-participants factors yielded a notation × prime novelty interaction as the sole significant effect, F(1,64) = 6.20, p = 0.015, ηp2 = 0.088 (dz = 0.31). Practiced digits were recognized better than unpracticed digits (d’prac_digits = 0.021; d’unprac_digits = −0.009), t(64) = 1.97, p = 0.05, dZ = 0.24, while there was no such effect for number words, t(64) = 1.80, p = 0.08, dZ = 0.22 (d’prac_words = −0.019; d’unprac_words = 0.006). Indeed, recognition was different from chance performance for practiced digits, t(64) = 2.16, p = 0.034, dZ = 0.25, but not for any other item type, ts < 1.

The present paper contributes in important ways to empirical investigations of effects that necessitate millisecond-precise timing, such as the masked priming effects inspected in this paper. We laid out important differences between CRT and LCD technology, and provided guidelines on how to configure a current-generation LCD monitor to achieve results comparable to those obtained with a CRT monitor. Thus, our paper may help researchers establish adequate conditions to conduct such experiments with the precision needed, using state-of-the-art technology. Empirically, we demonstrated that experiments requiring precise timing—in this case a masked priming experiment—can yield comparable effects using CRT and LCD monitors. Specifically, we found comparable masked number priming effects using CRT and LCD monitors under conditions of zero prime awareness (with the exception of the practiced digits condition), as assessed with a separate forced-choice prime discrimination task. Thus, we replicated and extended the findings of Kunde et al.

First of all, the present paper shows that current-generation LCD monitors can be used for millisecond-precise presentation, even under masked presentation conditions. To this end, we used a twisted nematic (TN) panel, enabled DCC, used high-contrast stimuli, and adjusted the luminance of the LCD screen to yield a result comparable to a CRT monitor, given a predetermined stimulus presentation time. As we outlined extensively in the theoretical introduction, and as already stated by several other authors

Regarding our empirical findings, we found, as hypothesized, significant and comparable masked number priming effects using both CRT and LCD monitors under conditions which yielded (for all except one condition) zero awareness in a subsequent forced-choice prime discrimination task. The Bayes factor evaluating a difference in priming effects between CRT and LCD monitors—the preregistered main hypothesis that provided the basis for data sampling—indicated strong evidence for the null hypothesis. Thus, the present results show that LCD monitors are suited for research requiring millisecond-precise timing, and that such research can yield comparable results to those obtained with a CRT monitor if luminance is matched and settings are chosen appropriately.

To summarize, the present empirical results showed that LCD monitors can be used for research requiring millisecond-precise timing, which can yield results that are comparable to those obtained from research conducted with CRT monitors, if settings are chosen appropriately. Our study thus highlights the importance of considering the effects of technological setup on empirical research. We hope that researchers in the field can use the recommendations we provided to achieve high precision in visual stimulus presentation.

We thank Kilian Leonhardt for his help in measuring the signal shapes of the CRT and LCD monitors and for providing the measurement device. We thank Felix Kares and Tatiana Koeppe for their help in data collection, and Ullrich Ecker for his comments on an earlier draft of the manuscript.

M.R. conceived and designed the study, analyzed the human performance data, prepared the figures and tables belonging to the human performance data and wrote the main manuscript text. She also prepared all materials which are online available at OSF. A.W. configured the LCD and CRT monitors as well as the computers, did the hardware measurements, programmed the study, wrote some of the corresponding paragraphs in the manuscript and prepared the figures and tables related to the hardware settings.

The empirical experiment was preregistered. The preregistration, as well as all data, analysis scripts, and experimental materials are available at (https://osf.io/g842s/).

1. Wiens, S. & Öhman, A. Probing unconscious emotional processes: On becoming a successful musketeer in Handbook of Emotion Elicitation and Assessment (eds. Coan, J. A. & Allen, J. J. B.) 65–90 (Oxford University Press, 2007).

5. Ghodrati M, Morris AP, Price NSC. The (un) suitability of modern liquid crystal displays (LCDs) for vision research. Front. Psychol.2015;6:303. doi: 10.3389/fpsyg.2015.00303. PubMed] [CrossRef]

6. Lagroix HE, Yanko MR, Spalek TM. LCDs are better: Psychophysical and photometric estimates of the temporal characteristics of CRT and LCD monitors. Atten. Percept. Psycho.2012;74:1033–1041. doi: 10.3758/s13414-012-0281-4. [PubMed] [CrossRef]

7. Bauer B. A timely reminder about stimulus display times and other presentation parameters on CRTs and newer technologies. Can. J. Exp. Psychol.2015;69:264–273. doi: 10.1037/cep0000043. [PubMed] [CrossRef]

9. Zhang GL, et al. A consumer-grade LCD monitor for precise visual stimulation. Behav. Res. Methods.2018;50:1496–1502. doi: 10.3758/s13428-018-1018-7. [PubMed] [CrossRef]

10. Bognár A, Csibri P, András CM, Sáry G. LCD monitors as an alternative for precision demanding visual psychophysical experiments. Perception.2016;45:1070–1083. doi: 10.1177/0301006616651954. [PubMed] [CrossRef]

11. Kihara K, Kawahara JI, Takeda Y. Usability of liquid crystal displays for research in the temporal characteristics of perception and attention. Behav. Res. Methods.2010;42:1105–1113. doi: 10.3758/BRM.42.4.1105. [PubMed] [CrossRef]

13. Sperling G. Flicker in computer-generated visual displays: Selecting a CRO phosphor and other problems. Behav. Res. Meth. Instr.1971;3:151–153. doi: 10.3758/BF03209940. [CrossRef]

14. Greene E. Evaluating letter recognition, flicker fusion, and the Talbot-Plateau law using microsecond-duration flashes. PLoS One.2015;10:1–17. doi: 10.1371/journal.pone.0123458. PubMed] [CrossRef]

15. Parr AC. The candela and photometric and radiometric measurements. J. Res. Natl. Inst. Stand. Technol.2001;106:151–186. doi: 10.6028/jres.106.007. PubMed] [CrossRef]

19. Scharnowski F, Hermens F, Herzog MH. Bloch’s law and the dynamics of feature fusion. Vision Res.2007;47:2444–2452. doi: 10.1016/j.visres.2007.05.004. [PubMed] [CrossRef]

20. Folyi, T., Rohr, M., & Wentura, D. When emotions guide your attention in line with a context-specific goal: Rapid utilization of visible and masked emotional faces for anticipatory attentional orienting. Emotion; 10.1037/emo0000621.supp (2019). [PubMed]

22. Rohr M, Degner J, Wentura D. The ‘emotion misattribution’ procedure: Processing beyond good and bad under masked and unmasked presentation conditions. Cogn. Emot.2015;29:196–219. doi: 10.1080/02699931.2014.898613. [PubMed] [CrossRef]

31. Shimizu H. Measuring keyboard response delays by comparing keyboard and joystick inputs. Behav. Res. Methods Instrum. Comput.2002;34:250–256. doi: 10.3758/bf03195452. [PubMed] [CrossRef]

distinguish between crt and lcd monitors free sample

For many decades, conventional film-screen systems have been the tools of choice for diagnostic procedures. Although a cathode-ray tube (CRT) monitor is relatively expensive and has limited spatial resolution and luminance compared to conventional film, computed radiographic technology can produce image quality that is adequate for interpreting posteroanterior radiographs of the chest, while offering the advantages of gray-scale manipulation and flexible image-processing. It is well accepted that the diagnostic performance of a CRT monitor is sufficient to replace conventional radiographs (12, 13); however, constant operation causes CRTs to degrade and to lose beam focus, spatial linearity, luminance, uniformity, brightness, and contrast. In addition, due to their high initial purchase price and the high maintenance expenditure needed for correction and calibration, CRT monitors are costly. They are, furthermore, not only heavy and bulky but also have high levels of heat dissipation and power consumption. In contrast, high-resolution liquid crystal display (LCD) monitors provide clear, cost-effective and energy-efficient display. The significant advantage of an LCD monitor is the consistency of image display throughout its lifecycle, and the absence of degradation over time. The luminance of an LCD monitor is high enough to locate the flat panel next to conventional medical light boxes, and its additional benefits include a slim and compact profile and the fact that it emits no low-level radiation.

Our results indicate that for the display and analysis of soft-copy images in the detection of a solitary pulmonary nodule, LCD and CRT monitors are comparable, but when interpreting our results, several considerations should be borne in mind. First, the LCD monitor was operated at a higher brightness level (700 cd/m2) than the CRT monitor (490 cd/m2), and this might have made the LCD results appear more favorable than they really were. Nonetheless, since the brightness of both monitor systems was set according to the recommendation of the suppliers, we believe that our results reflect real clinical practice. Second, in terms of contrast and focus, the LCD monitor is superior to the CRT monitor (14), so the former is less sensitive to ambient light. Even though all the reading sessions in our study were performed in a dark room, environmental light could influence image contrast during a CRT session. Third, the matrix number of the imaging plates used in this study was 1760×2140, which is similar to the resolution of the LCD monitor, with a matrix of 1536×2048. In addition, the detection of a pulmonary nodule is more dependent on contrast than spatial resolution, and so in our study, the superiority of the CRT monitor in terms of spatial resolution might not be an advantage. Fourth, despite the other merits of the CRT monitor, including less angle viewing dependence and far fewer artifacts, we considered that these factors did not influence visual comparisons between the LCD and CRT display when used to detect a solitary pulmonary nodule.

Pavlicek et al. (15) showed that compared with CRT monitors, LCD monitors have higher luminance and a shorter warm-up time, but the two types are of comparable uniformity, and are fully acceptable for clinical image viewing. However, they did not study their diagnostic performance, measuring only their display performance at actual clinical locations and administering a user questionnaire. A study by Siegel, presented at the American Roentgen Ray Society meeting on April 30, 2002, found no significant differences in overall sensitivity and specificity between LCD and CRT monitors used for the detection of pulmonary nodules on chest radiographs. Siegel did not, however, use receiver-operating-characteristic analysis to compare diagnostic performance between the two types of monitor, and to our knowledge, ours is the first study to use ROC analysis to compare the two types in terms of their ability to diagnose solitary pulmonary nodules. This study was designed to simulate daily clinical practice; readers used a commercial PACS viewer, and real-time adjustment of contrast and brightness, the most commonly used functions in daily practice, was allowed.

The major limitation of our study is that the performance comparison was limited to the detection of pulmonary nodules, which are less dependent on spatial resolution. We did not compare the performance of the two monitor systems in the detection of other pulmonary pathologic conditions such as the fine pattern occuring in interstitial lung disease, septal lines, and pneumothorax. The detection and characterization of these abnormalities are known to be highly dependent on spatial resolution, and in view of the difference in pixel size and number between the two types of monitor, the results might be different in a comparative study of the detectability of these linear structures. Accordingly, our results do not directly indicate that LCD monitors can replace CRT monitors for the diagnosis of all pathologic lung conditions. To ascertain whether this is so, further comparison between the two types is needed.

In conclusion, for the display of soft-copy digital images, LCD monitors and CRT monitors are comparable, and for the detection of small solitary non-calcified pulmonary nodules in medical practice, LCD monitors are acceptable replacements for the cathode-ray type.

distinguish between crt and lcd monitors free sample

The article provides a detailed insight into the difference between CRT and LCD display type of PC monitors. Take time to read through to get awareness.

distinguish between crt and lcd monitors free sample

Differences between LCD and LEDare important to understand as they are both very co-related and it is possible to get confused between one and the other. LCD is the abbreviation for liquid crystal display while LED is the abbreviation for light-emitting diodes. They differ from one another in the fact that LCDs usually use fluorescent lights while lights use light-emitting diodes.

The structu