distinguish between crt and lcd monitors quotation

CRT and LCD are both display devices. CRT is an old technology whereas LCD is modern one. One major difference between CRT and LCD is in the technology used for image formation. The CRT display produces an image by using an electron beam, while LCD display produces an image on the screen using liquid crystal display.

CRT stands for Cathode Ray Tube. CRT displays produce an image on the screen by using a sharp beam of electrons that is highly focused to hit a phosphor screen present in front of the tube. The important components of a CRT are electron gun, focusing mechanism, and phosphor screen.

CRT was used in earlier TVs and computer monitors. CRT produces poor quality images on the screen and also consumes large electricity. The lifespan of CRT displays is very short. Because of all reasons, CRTs are being replaced by other display technologies these days.

LCD stands for Liquid Crystal Display. In LCD, liquid crystals are used to produce images on the screen. LCD displays are thin and more energy efficient, thus they are used in several small sized devices like mobiles, laptops, TVs, desktop computer monitors, calculators, etc.

In LCDs, light is obtained from external sources, and then it is converted into a definite graphics pattern using optical effects. LCDs have several advantages over CRT such as less power consumption, faster response, smaller size, low cost, etc.

Both CRT and LCD have their own advantages and disadvantages. However, these days, CRTs have almost become extinct. No one seems to be using them anymore. LCDs and other display technologies have replaced them because the new devices are highly efficient in terms of cost, power, and performance.

distinguish between crt and lcd monitors quotation

CRT stands for Cathode Ray Tube and LCD stands for Liquid Crystal Display area unit the kinds of display devices wherever CRT is employed as standard display devices whereas LCD is more modern technology. These area unit primarily differentiated supported the fabric they’re made from and dealing mechanism, however, each area unit alleged to perform identical perform of providing a visible variety of electronic media. Here, the crucial operational distinction is that the CRT integrates the 2 processes lightweight generation and lightweight modulation and it’s additionally managed by one set of elements. Conversely, the LCD isolates the 2 processes kind one another that’s lightweight generation and modulation.

distinguish between crt and lcd monitors quotation

If you are looking for a new display, you should consider the differences between CRT and LCD monitors. Choose the type of monitor that best serves your specific needs, the typical applications you use, and your budget.

Require less power - Power consumption varies greatly with different technologies. CRT displays are somewhat power-hungry, at about 100 watts for a typical 19-inch display. The average is about 45 watts for a 19-inch LCD display. LCDs also produce less heat.

Smaller and weigh less - An LCD monitor is significantly thinner and lighter than a CRT monitor, typically weighing less than half as much. In addition, you can mount an LCD on an arm or a wall, which also takes up less desktop space.

More adjustable - LCD displays are much more adjustable than CRT displays. With LCDs, you can adjust the tilt, height, swivel, and orientation from horizontal to vertical mode. As noted previously, you can also mount them on the wall or on an arm.

Less eye strain - Because LCD displays turn each pixel off individually, they do not produce a flicker like CRT displays do. In addition, LCD displays do a better job of displaying text compared with CRT displays.

Better color representation - CRT displays have historically represented colors and different gradations of color more accurately than LCD displays. However, LCD displays are gaining ground in this area, especially with higher-end models that include color-calibration technology.

More responsive - Historically, CRT monitors have had fewer problems with ghosting and blurring because they redrew the screen image faster than LCD monitors. Again, LCD manufacturers are improving on this with displays that have faster response times than they did in the past.

Multiple resolutions - If you need to change your display"s resolution for different applications, you are better off with a CRT monitor because LCD monitors don"t handle multiple resolutions as well.

So now that you know about LCD and CRT monitors, let"s talk about how you can use two monitors at once. They say, "Two heads are better than one." Maybe the same is true of monitors!

distinguish between crt and lcd monitors quotation

Responsible for performing installations and repairs (motors, starters, fuses, electrical power to machine etc.) for industrial equipment and machines in order to support the achievement of Nelson-Miller’s business goals and objectives:

• Perform highly diversified duties to install and maintain electrical apparatus on production machines and any other facility equipment (Screen Print, Punch Press, Steel Rule Die, Automated Machines, Turret, Laser Cutting Machines, etc.).

• Provide electrical emergency/unscheduled diagnostics, repairs of production equipment during production and performs scheduled electrical maintenance repairs of production equipment during machine service.

distinguish between crt and lcd monitors quotation

Since the production of cathode ray tubes has essentially halted due to the cost and environmental concerns, CRT-based monitors are considered an outdated technology. All laptops and most desktop computer systems sold today come with LCD monitors. However, there are a few reasons why you might still prefer CRT over LCD displays.

While CRT monitors provide better color clarity and depth, the fact that manufacturers rarely make them anymore makes CRTs an unwise choice. LCD monitors are the current standard with several options. LCD monitors are smaller in size and easier to handle. Plus, you can buy LCD monitors in a variety of sizes, so customizing your desktop without all the clutter is easy.

The primary advantage that CRT monitors hold over LCDs is color rendering. The contrast ratios and depths of colors displayed on CRT monitors are better than what an LCD can render. For this reason, some graphic designers use expensive and large CRT monitors for their work. On the downside, the color quality degrades over time as the phosphors in the tube break down.

Another advantage that CRT monitors hold over LCD screens is the ability to easily scale to various resolutions. By adjusting the electron beam in the tube, the screen can be adjusted downward to lower resolutions while keeping the picture clarity intact. This capability is known as multisync.

The biggest disadvantage of CRT monitors is the size and weight of the tubes. An equivalently sized LCD monitor can be 80% smaller in total mass. The larger the screen, the bigger the size difference. CRT monitors also consume more energy and generate more heat than LCD monitors.

For the most vibrant and rich colors, CRTs are hard to beat if you have the desk space and don"t mind the excessive weight. However, with CRTs becoming a thing of the past, you may have to revisit the LCD monitor.

The biggest advantage of LCD monitors is the size and weight. LCD screens also tend to produce less eye fatigue. The constant light barrage and scan lines of a CRT tube can cause strain on heavy computer users. The lower intensity of the LCD monitors coupled with the constant screen display of pixels being on or off is easier on the eyes. That said, some people have issues with the fluorescent backlights used in some LCD displays.

The most notable disadvantage to LCD screens is the fixed resolution. An LCD screen can only display the number of pixels in its matrix. Therefore, it can display a lower resolution in one of two ways: using only a fraction of the total pixels on the display, or through extrapolation. Extrapolation blends multiple pixels together to simulate a single smaller pixel, which often leads to a blurry or fuzzy picture.

For those who are on a computer for hours, an LCD can be an enemy. With the tendency to cause eye fatigue, computer users must be aware of how long they stare at an LCD monitor. While LCD technology is continually improving, using techniques to limit the amount of time you look at a screen alleviates some of that fatigue.

Significant improvements have been made to LCD monitors over the years. Still, CRT monitors provide greater color clarity, faster response times, and wider flexibility for video playback in various resolutions. Nonetheless, LCDs will remain the standard since these monitors are easier to manufacture and transport. Most users find LCD displays to be perfectly suitable, so CRT monitors are only necessary for those interested in digital art and graphic design.

distinguish between crt and lcd monitors quotation

The obsolescence of CRT monitors requires replacing stimulators used for eliciting VEPs with new monitors. Currently, LCD monitors are the only suitable alternative, however other technologies, like OLED, may become a viable option [23]. So far, the ISCEV extended protocol for VEP methods of estimation of visual acuity recommends ensuring luminance artifacts caused by non-CRT stimulators [9], which can be achieved by reducing the stimulus contrast [23]. However, this may not be possible without falling below the minimum contrast values recommended for VEP [1, 23]. Since LCD stimulators have been shown to result in mostly a delay in the VEP responses [2,3,4, 23] but seem not to affect the size of the amplitudes [2], we expected no difference between the estimated visual acuity by using LCD or CRT monitors used as a stimulator for the sweep VEP.

The results of the first experiment show statistically significant effects of the monitor type on the time-to-peak after stimulus onset and the peak-to-trough amplitude (Table 1). The mean delay of the time-to-peak after stimulus onset between recordings obtained using the LCD and the CRT monitor was about 60 ms, which is quite high and possibly caused by the relatively old LCD monitor used. Accordingly, statistically significant effects on the time-to-peak after stimulus onset and the peak-to-trough amplitude were found for the monitor/contrast combination in the results of the second experiment (Table 4). Surprisingly, the mean delay of the time-to-peak after stimulus onset of the CRT monitors with high contrast was with up to 151 ms, longer (Table 5) than that of the LCD monitors (with low and high contrast), although one would expect modern monitors to have shorter or even no delays [24, 25]. Additionally, a statistically significant interaction between the spatial frequency and the monitor type was revealed in both experiments, causing an increased time delay for the intermediate spatial frequencies (1.4–10.3 cpd) with LCD stimulation (Fig. 2, top left) in the first experiment and an almost linear increase with the spatial frequencies in the second experiment (Fig. 2, bottom left). This may be explained by the semi-manual cursor placement, which is necessary because the amplitudes are less pronounced at frequencies below and above this frequency band. Another cause might be an input lag resulting from the time required by the monitor to prepare the image data to be displayed. This could be caused by, e.g., internal scaling for non-native resolutions, which may even be present when using the monitor’s native resolution. In the worst case, this leads to nonlinearities of the response timing of the LCD monitor when presenting patterns of low or high frequency [26, 27]. In doubt, the precise duration of the input lag should be measured using a photodiode attached to the display [28] and in case of being constant, the delay could then be subtracted from the respective time-to-peak values. Finally, the higher latencies may also be caused by the different software used for generating the stimuli: whereas in the first experiment, a custom-developed Java-based software was used, in the second experiment, the Python-based PsychoPy was employed. Nevertheless, these differences seem not to affect the estimated visual acuity. The mean peak-to-trough amplitude using the LCD monitor in the first experiment is reduced by about 0.9 µV with a confidence interval from − 1.6 to − 0.2 µV compared to the CRT stimulator, but increased by about 2.6 µV (confidence interval from 1.2 to 4.0 µV) when comparing the new LCD monitor with the CRT monitor (both with high contrast) in the second experiment (Table 5). However, these differences were, despite being statistically significant, within the expected standard deviation from about 0.5 to 7 µV of the P100 amplitude found in the literature [29,30,31] and therefore probably of no clinical relevance (Fig. 2, right). Interestingly, the results of Nagy et al. [2] suggest a similar reduction in the peak-to-trough amplitude when using an LC display for stimulation. In the first experiment, no statistically significant interaction between monitor type and spatial frequency on peak-to-trough amplitude was found but a tendency to smaller amplitudes at intermediate frequencies (Table 1), whereas in the second experiment, the effect of the interaction of stimulator and spatial frequency was statistically significant (Table 4). It has to be taken into account that the residuals of the models were heteroscedastic and therefore the statistical significance of the effects may be overestimated [32].

In the first experiment, the difference between the subjective visual acuity and that estimated by the second-order polynomial method, or by the modified Ricker function, was not statistically significant from a hypothetical assumed value of 0 logMAR (Table 2). Neither were the variances between CRT and LCD statistically different. Accordingly, the linear mixed-effects models revealed no statistically significant effects of neither the monitor type, the recording cycle, nor their interaction on the difference between subjective and estimated visual acuity for both estimation methods (Table 3).

In contrast in the second experiment, the differences between subjective visual acuity determined using FrACT and the visual acuities estimated using the modified Ricker function along with the conversion formula used in the first experiment were significantly different from the hypothesized difference of 0 logMAR for both, the new gaming LCD monitor and the old LCD monitor, at high and low contrast, but not for the CRT monitor. After using an individually adjusted conversion formula for each monitor/contrast combination, no statistically significant difference from the hypothesized difference of 0 logMAR was found (Table 7). However, one should keep in mind that using the results to calculate the conversion formula used to predict the results is circular reasoning. Nevertheless, it indicates, that using individual established conversion formulas calculated from a sufficiently large number of normative data will minimize the error between true visual acuity and estimated visual acuity.

Table 6 lists the signal-to-noise ratio calculated from the fitted Ricker model for the different combinations of monitors and contrasts. The highest SNR was found for the CRT monitor using high contrast. The LCDs showed lower SNR values. The on average higher amplitudes obtained using LCD monitors (Table 5) indicate that more noise is present when stimulating using LCDs. However, this effect could be caused by the different software used for the stimulus presentation and the lower number of sweeps recorded for averaging compared to the recordings using the CRT monitor. Nevertheless, none of the differences between the SNR values obtained from the different monitor types was statistically significant (Table 6), which corresponds to the findings of Fox et al. [28].

We want to point out the limitations of the current study: We included only healthy participants, so the possible effects of LCD stimulators on patients with reduced visual acuity remain unclear and should be further investigated, especially since we found a statistically significant, albeit not clinically relevant, effect of the monitor/contrast combination on peak-to-trough amplitude and time-to-peak after stimulus onset in the second experiment (Tables 4, 5). Further limitations are that the participants were not stratified by age and that the subjective visual acuity in the first experiment was determined using an eye chart projector, in contrast to the second experiment, where FrACT was used, limiting the accuracy of the estimated value. Finally, this study compared only three specific monitors; therefore, the results are not universally valid.

In conclusion, based on the results of this study, LCD monitors may substitute CRT monitors for presenting the stimuli for the sweep VEP to objectively estimate visual acuity. Newer LCD screens, especially with low response times in the range of 1–2 ms, therefore, allow for a reduction in luminance artifacts at required contrast levels [23], albeit the luminance artifact may not have a large effect on the recorded signals [28]. New technologies like OLED displays [23] may even be better suited, since one the one hand, the onset will be the same for the whole pattern, and on the other hand, LCDs and OLEDs provide a constant luminance level during stimulation, whereas CRTs need a constants pulses to keep the phosphor lit up, causing fast local luminance flashes all the time [28]. Therefore, in contrast to CRTs, LCD and OLED stimulators, e.g., may allow for recording true offset responses [33]. However, caution should be taken when leveraging modern displays for stimulation, since their in-built electronics perform all kinds of sophisticated image-enhancing procedures including color-correction, brightness boosting, contrast enhancement by real-time adjustments of the colors or the backlight, or eyestrain-reducing blue light filtering, with the aim to improve the users’ experience, or to increase the monitors lifetime. This applies in particular to consumer electronics like TVs. Gaming monitors, in addition, use special acceleration drivers, which shut down the backlight, insert black frames (Black Frame Insertion, BFI), or employ variable refresh rates (e.g., Nvidia G-SYNC or AMD FreeSync) to clean the retained image from the eye. Therefore, one should disable any image processing or enhancing functionality in the monitor settings, before using the monitor as stimulator for electrophysiological experiments. Finally, it is advisable to perform a calibration with healthy volunteers using best-corrected and artificially reduced visual acuity and to collect normative data for the employed setup, as always recommended by ISCEV [34], in order to establish an individual conversion formula between the sweep VEP outcome and the estimated visual acuity.

distinguish between crt and lcd monitors quotation

"Between 0.0001 and 0.00001 nits" "Sony claims an OLED contrast range of 1,000,000:1. When I asked how the contrast could be so high I was told that the surface is SO black the contrast is almost infinite. If the number representing the dark end of the contrast scale is nearly zero then dividing that number into the brightest value results in a very, very high contrast ratio."

Does not normally occur at 100% brightness level. At levels below 100% flicker often occurs with frequencies between 60 and 255 Hz, since often pulse-width modulation is used to dim OLED screens.

No native resolution. Currently, the only display technology capable of multi-syncing (displaying different resolutions and refresh rates without the need for scaling).Display lag is extremely low due to its nature, which does not have the ability to store image data before output, unlike LCDs, plasma displays and OLED displays.

distinguish between crt and lcd monitors quotation

The crucial difference between CRT and LCD exist in their image forming technique. CRT displays image on the screen by making use of electron beam, however, LCD utilizes liquid crystals for the formation of an image on the screen.

Another major difference that exists between CRT and LCD is their size and dimension. CRT monitors are thicker and heavier but small in size than that of LCD.

We will discuss some other important differences between CRT and LCD but before that have a look at the rough draft of the contents to be discussed under this article.

DisadvantagesHeavy, gets heated at rapid rate during operation.Provides fixed aspect ratio and resolution, requires large area, operating temperature is limited between 0 -60 degrees.

CRT is expanded as Cathode ray tube. It is a vacuum tube that produces images when a sharp beam of the electron which is highly focused hits the phosphor screen that is present at the front-end of the tube.

It consists of certain basic components that are responsible for the generation of an image on the screen. The figure below shows internal system involved in a CRT:

An electron gun assembly is present that produces a sharp beam of electrons. These electrons when moves inside the tube experience acceleration by the anode and focused towards the screen.

The two deflection plates are the reason for the movement of the beam horizontally and vertically. However, as the two movements are not dependent on each other thus the beam after hitting the screen, gets fixed anywhere on it.

When we talk about the screen of CRT then it is basically termed as the faceplate. The inner surface where the beam strikes is basically a phosphor coating. This phosphor is responsible for the conversion of electrical energy generated by the movement of the electron beam into light energy.

It is noteworthy in case of CRT that phosphor screen generates secondary electrons when electron beam hits it. So, in order to sustain an electrical equilibrium, the secondary emitted electrons must be collected which is done by aquadag.

LCD stands for Liquid Crystal Display. In LCD liquid crystal is utilized in order to generate a definite image on the screen. Liquid crystal is basically termed as the fourth state of matter. It permits the display to be very thin and thus supports numerous applications.

When we talk about LCD then its principle of working is such that light energy is not produced by LCD, despite light energy generated by an external source is controlled in order to have light or dark appearance at some particular areas.

Here, a layer of liquid crystal is placed between 2 polarizing films. When light emitted by an external source falls on the layer of liquid crystal then their combination generates a coloured visible image that is displayed on the screen.

An external potential is provided to the liquid crystal. This potential changes the orientation of the molecules. After this polarized light is passed to the crystal that generates bright and dark spots at the screen of the display.

One of the excellent property of LCD over CRT is its antiglare property. LCD screen more efficiently reduces the glare generated by light as compared to CRT.

CRT is more dominant to flickering as it possesses a low refresh rate that causes a drop in image brightness that is easily recognized by naked eyes.As against, flickering is not that much higher in LCD due to its high refresh rate.

CRT and LCD both have their separate advantages and disadvantage over the image formation technique. But LCD has replaced CRT very efficiently in the recent era. Despite LCD is more costly than CRT but due to its better image display and almost negligible flickering property, it is widely used.

distinguish between crt and lcd monitors quotation

CRTs are analog devices controlled by the varying voltages in the signal. There are also two controls for each of the three "beams" coming off the electron gun: bias and gain. When the three bias controls and gain controls are lumped together, you have contrast and brightness. All of these together control the floor and ceiling of the amplification (black and white luminance) as well as how quickly the luminance of the display increases from black to white. These are the controls most users know.

LCDs are digital devices and are a completely different animal. When run digitally, there is no bias or gain and in some instances...no contrast adjustment. The only variation is the intensity of the backlight. This is how LCDs connected to a computer through a DVI or ADC cable will operate. Unfortunately, digital interfaces for displays did not exist when LCDs were first introduced, so manufacturers tried to graft on analog controls since an analog signal was being used. This has caused mixed results. In most cases, setting brightness and/or contrast too high on an LCD with an analog connection will introduce clipping of the lighter tones.

Our goal is to achieve the highest contrast ratio and luminance without introducing clipping. We are measuring the luminance of a white patch and a very light gray patch and checking to see if there is an appropriate difference between them. We have found that some displays (usually laptops) will not produce a large enough luminance difference between the two patches regardless of the contrast setting. You can do this test visually. The alternating patches will be displayed continuously. If you can see them change with contrast all the way up, you can proceed. If not, turn the contrast down until you can see the difference and then proceed.

LCDs respond rather slowly to contrast and brightness adjustments and may take some time to stabilize. Since they change over time, this can cause the luminance of two sequential measurements to be greater or smaller, thus causing the indicator to move. That"s why we recommend waiting for the indicator to stabilize. When the indicator stabilizes, the display probably has as well.

distinguish between crt and lcd monitors quotation

First, we will provide a brief technical overview of functional principles as they relate to visual stimulus presentation. Detailed descriptions and parameter measurements are already available from the existing literature; however, our intention here is to equip readers with limited technical expertise with the necessary knowledge to set up computer experiments with LCD monitors. Thus, we keep our explanations relatively short and simplified.

LCD monitors work differently: Each pixel consists of liquid crystal threads that can be twisted or arranged in parallel by an electrical current applied to them. This leads to a polarization effect that either allows or prevents light passing through. A white light source located behind this crystal array uniformly and constantly illuminates the array. To display a black pixel, the crystal threads are twisted by 90° such that no light will pass through. A white pixel is achieved by aligning the crystals such that maximum light is allowed to pass through, until a different, non-white color needs to be displayed (see the lower panel of Fig. 1 for an LCD pixel’s brightness over time). This is a static process, not a pulsed one as in CRTs.

In theory, the difference in presentation methods, namely a strobing versus a static image, should be of no consequence if the light energy that falls onto the retina remains the same over the time period of one single frame. As the Talbot-Plateau law states2 is equally well detectable as a light flash presented for 60 ms at 40 cd/m2. This suggests that temporal integration can be easily described by energy summation”. Thus, in principle, LCD and CRT monitors should be able to yield comparable results.

However, due to the differences in technology, the visual signals produced by the two display types have different shapes (i.e., a different light energy-over-time-curve; see Fig. 1). Moreover, default luminance as well as visual-signal response times (in addition to other parameters, see below) differ between most CRT and LCD monitors

Table 1 reports the parameters we considered in setting up the CRT and LCD monitors. Certainly, most of them are commonly considered when setting up a computer experiment; nevertheless we deemed it important to mention them here explicitly, as their neglect might have unintended consequences. We used a 17” Fujitsu Siemens Scenicview P796-2 CRT color monitor previously used in several published studies including studies with masked presentation conditions

We tested various monitor user settings, refresh rates, resolutions and luminance settings (see materials available at https://osf.io/g842s/) with regard to the emitted light energy–over-time-curve and therefore response characteristics (i.e., onset and offset of full screen and centrally presented stimuli). Measurements were conducted with a photodiode setup, using both an oscilloscope (model “Agilent MSOX 3012 A”) and a self-developed microcontroller setup as measurement devices. Stimuli were black and white squares.

Our measurements revealed several interesting characteristics: First, luminance of the LCD monitor at default setting (i.e., maximum brightness) exceeded the CRT luminance at a ratio of 3.25:1. However, comparable average luminance can be (and was) achieved by downregulating the LCD monitor (the older CRT technology emits less energy even at maximum settings, see Table 2), without participants perceiving it as unnaturally dark. If one plans to upgrade from CRT to LCD monitors in an experimental laboratory, we therefore recommend measuring the CRT monitors’ brightness levels and matching them in the new LCD monitors’ user setup, if comparability with the old setup is needed. This will minimize hardware-dependent variability, thus contributing to better replicability. Please note that a brightness adaption is not a necessary precondition when employing LCD monitors; researchers should simply be aware that the brightness level can have an influence onto the resulting effects, especially in time-critical experiments with short and/or masked presentation. Thus, we recommend the adaptation for time-critical experiments in which researchers orient on existing empirical evidence gathered with CRT monitors. Furthermore, gray-to-gray response times varied slightly depending on the employed brightness levels2), so we suggest that researchers can rely on this more efficient method as an approximation.

For the empirical comparison of human performance with CRT and LCD monitors, we relied on these results and set the monitor settings accordingly (see Method section below).

Participants were administered a masked number priming task and a subsequent forced-choice prime discrimination task using both a CRT and an LCD monitor. In this well-established paradigm

Of central interest was the question whether both monitors would yield comparable masked priming effects. Monitors were set according to the parameters described in the previous section (see also Method section below). In order to obtain conclusive evidence, we decided for sequential hypothesis testing using Bayes factorshttps://osf.io/g842s/.

distinguish between crt and lcd monitors quotation

Key Difference: LCDs (Liquid Crystal Display) are displays that use liquid crystals sandwiched between two sheets of polarizing material. The images are displayed when electrical charge is applied to the crystals. CRTs (Cathode Ray Tube) are vacuum tubes that use electron guns and fluorescent screens to display images. CRTs and LCDs vary greatly and LCDs are replacing CRTs in today’s world. LCDs are lighter, slimmer and consume less power compared to CRTs. However, CRTs have a sharper image quality compared to LCDs.

LCDs (Liquid Crystal Display) are displays that use liquid crystals sandwiched between two sheets of polarizing material. The images are displayed when electrical charge is applied to the crystals. An LCD uses a select type of liquid crystal known as twisted nematics (TN), which are twisted in shape. Applying a current to these crystals causes them to unwind to a certain degree depending on the voltage. A LCD is in a layer formation, it starts with a mirror on the back for reflection, followed by a piece of glass that has a polarizing film on the bottom side, and a common electrode plane made of indium-tin oxide on top. After that is a layer of liquid crystals, followed by another piece of glass with an electrode and another polarizing film, which is at a right angle to the first one. The LCD is then hooked up to power source that provides a charge to the crystals and causes them to create an image on the screen. LCDs also have a backlight that makes the image visible to the user.

CRTs and LCDs vary greatly and LCDs are replacing CRTs in today’s world. LCDs are lighter, slimmer and consume less power compared to CRTs. LCDs also give off less radiation compared to CRTs. However, CRTs have a sharper image quality compared to LCDs. LCDs can face with the problems of dead pixels, where a pixel dies and leaves small dot on the screen that does not change; whereas CRTs can face with burn-in problems. Other differences are listed below:

Picture slightly less natural and "filmlike" than plasmas; slower refresh rate; limited viewing angle; blacks are brighter; susceptible to burn-out and image persistence; dead or stuck pixels may appear

distinguish between crt and lcd monitors quotation

What are the differences between CRT and LCD? CRT and LCD are both monitors we know well, but what are the differences between them? Let"s find out together:

2.LCD: The structure of LCD is to place a liquid crystal cell between two parallel glass substrates, a TFT (thin film transistor) is arranged on the lower substrate glass, and a color filter is arranged on the upper substrate glass.

1. CRT display: CRT displays display images by exciting phosphors on the inner surface of the screen by electron beams. Since the phosphors are lit and then quickly extinguished, the electron gun must continually cycle to excite the dots.

2.LCD: By changing the signal and voltage on the TFT to control the rotation direction of the liquid crystal molecules, so as to control the polarized light emission of each pixel or not, to achieve the purpose of display.

What are the differences between CRT and LCD? The above are the differences between CRT and LCD. And LCD is gradually replacing CRT as the mainstream trend of the market.

distinguish between crt and lcd monitors quotation

We often get asked, “should I replace my old CRT with a new LCD? What is the difference?” There are several factors to consider including price, resolution, energy savings and disposal. Listed below are some of the top reasons why the LCD may be a better choice.Size and Weight: The color LCD is thinner and much lighter. It is much easier to install into tight areas. The CRT can weigh up to 50 pounds and needs additional bracing and heavier supports.

Price: At first glance, the CRT wins here. It is older technology and the price is cheaper. However you give up all the features mentioned in this list. Also disposal costs and higher energy costs may negate any price savings.

Power: Energy savings on the LCD can make a big difference in companies having multiple units in production. Savings can be as much as 1/3 over the older CRT.

Summary: Based on price alone, you may choose to stay with the CRT. However, you must consider the energy cost savings to operate an LCD vs. CRT, plus the added cost of disposal for CRTs. In many instances, the CRT may actually cost more in the long run. With its large, high resolution screen and compact housing for easy installation, the LCD offers many advantages over the older CRT technology.

distinguish between crt and lcd monitors quotation

Summary: Difference Between CRT and LCD is that CRTis a desktop/pc monitor that contains a cathode-ray tube. A cathode-ray tube (CRT) is a large, sealed glass tube.

Picture slightly less natural and “filmlike” than plasmas; slower refresh rate; limited viewing angle; blacks are brighter; susceptible to burn-out and image persistence; dead or stuck pixels may appear

distinguish between crt and lcd monitors quotation

"I"ve been staring at my computer for hours" is an often heard refrain, normally uttered in a zombie-like state. Of course, it"s actually the monitor you are "staring" at, but for many of us the monitor is the computer. The right monitor should offer good image quality and a sizable viewing area while comfortably fitting your desktop space. Picking a monitor which combines these traits means you"ll want to learn the basics about monitor features and technology. After a quick lesson, it"ll be easy to choose a monitor that makes everything from spreadsheets to space aliens eye-popping and easy to read.

The most prevalent type of monitor today is the cathode ray tube (CRT). Despite its rather sci-fi sounding name, a CRT is the same as the picture tube inside your TV. They work by firing beams of electrons at phosphor dots on the inside of a glass tube. The phosphors in a CRT are chemicals that emit red, green or blue light when hit by electrons. These monitors are capable of multiple resolutions, give the best look to full-motion video and provide better control over colour calibration for graphic artists.

On the down side, they hog a lot of room and weigh more than several sacks of potatoes. You can get more compact CRTs called short-depth or short-neck monitors which are a couple of inches shallower than regular CRTs. Unless space is a primary consideration, most people buy a CRT display because they offer good performance at an affordable price.

In the opposing corner are flat panel displays or LCDs (liquid crystal displays) commonly used in laptops and fast becoming popular as desktop monitors. Their major selling points are a slim profile and light weight. A CRT can be deeper than it is wide, whereas a LCD with a base is only about a handspan deep. No heavy lifting required with a LCD; they weigh less than half the average CRT. LCDs require half the power of CRTs and emit much less electromagnetic radiation which can interfere with other electronic devices.

In the screen of a LCD monitor, each pixel is produced by a tiny cell which contains a thin layer of liquid crystals. These rod-shaped molecules bend light in response to an electric current. It"s the same display technology that resides in your digital watch but more sophisticated.

LCDs tend to be clearer than CRTs which can suffer from convergence or focus difficulties. Their improved clarity means that even small LCDs can display higher resolutions than the corresponding sized CRT. They also make small text easier to read. Unlike CRTs, LCD monitors have only one optimal resolution. At lower resolutions, the screen is redrawn as a smaller area or all the pixels in the image are blown-up to fill the screen. The latter solution can make images look jagged and blocky so be sure the resolution of the LCD is the resolution you want to use.

Regardless of what type of monitor you"re considering, size is a priority. A bigger monitor offers easier to read text, better graphics and the ability to have more and larger windows open on your desktop. All monitor sizes are measured diagonally across the screen, but that number isn"t the true viewable area. The plastic frame around the monitor hides a certain amount of the screen so there is a difference between the quoted size and the actual viewable area. A monitor"s viewable area should be within an inch or so of the quoted size.

The standard monitor size used to be 15 inches, but 17-19 inch monitors have become the norm as prices have decreased. You can get a 17 inch CRT starting at $300. An adequate 19 inch CRT can be had for $400 but better quality will cost more. If you need a large screen for group presentations, a 29 inch monitor will cost a few thousand dollars. You can get a 29 inch PC/TV hybrid monitor for about $1000, but these monitors have low resolutions and are unable to produce high-quality images.

A LCD is about double the cost of a CRT with a comparable viewing area. The minimum size you should consider for a LCD is 15 inches with prices starting at $600. Larger LCDs go up in price from there with an 18 inch monitor costing around $3000. Buying a flat panel display will definitely leave your wallet flatter too.

A factor for both CRTs and LCDs is resolution. The number of pixels horizontally and vertically defines a monitor"s resolution in pixels or dots per inch (ppi or dpi). The greater the resolution, the more information or image you"ll be able to view at once. The average user will find a resolution of 1024x768 more than sufficient for everyday work. You can achieve this resolution on CRT monitors 17 inches and larger or LCDs 15 inches and larger. Keep in mind that CRTs can display multiple resolutions, but LCDs are optimized at only one resolution.

Monitors can come with a variety of extras. Some have built-in speakers or jacks for microphones and headphones. Other monitors have dual inputs so you can connect two computers to the same monitor. With the advent of USB (Universal Serial Bus), some monitors have USB hubs at the back, allowing you to connect more peripherals. You can also get accessories like anti-glare filters and specialized mounting stands that help minimize glare and provide a comfortable working position.

To keep your utility bill down, you should look for a monitor that is Energy Star compliant. Energy Star is a program developed by the US Environmental Protection Agency (EPA) to make energy-saving office equipment like computers and monitors. An Energy Star monitor automatically goes to sleep or powers down after a period of inactivity. This feature can save 60-80% of power during idle times. All you have to do to wake up the monitor is touch the keyboard or mouse.

The majority of monitors are certified as "low emission" since they meet standards like MPR II or TCO. These guidelines were developed in Sweden (the acronyms are Swedish too) by a number of organizations to set limits for electric and magnetic field emissions. The newer TCO standards are the strictest. So if you"re concerned about emissions look for MPR II or TCO certification, not just the words "low emission."

If you"ve decided to get a new CRT then it should have a sufficiently high refresh rate. This refers to how often the screen is redrawn per second. With low refresh rates you can get screen flicker and eye strain. Aim for a rate of 75 Hz for a monitor up to 17 inches in size and 85 Hz for any larger monitor. LCDs are basically flicker free so refresh rates aren"t important.

Another consideration for CRTs is dot pitch. This is the distance in millimeters between phosphors of the same colour. The smaller the dot pitch, the sharper the image. Opt for a dot pitch of 0.26 mm or smaller. You can measure dot pitch both horizontally and vertically, but monitor specs usually quote horizontal dot pitch. Occasionally, the dot pitch is measured diagonally. By multiplying diagonal dot pitch by 0.866, you can calculate horizontal dot pitch.

One of the main disadvantages of LCDs when compared to CRTs is their limited viewing angle. When viewing a LCD straight on it looks fine. But the screen will appear washed-out if you move your head over to the side and look at it from an extreme angle. Low-end LCDs can have viewing angles of only 100 degrees which won"t give everyone crowded round your desk a clear view. For a standard 15 inch LCD try to get a 140 degree viewing angle. Up that by 20-40 degrees when shopping for an 18 inch LCD.

The brightness of LCD monitors is another important factor. LCD monitors have several backlights that provide illumination. Brightness is measured in units called nits. The majority of LCDs produce 150-200 nits which is fine for most users. The backlights in a LCD are good for 10 to 50 thousand hours of operation.

Since they"re fairly fragile and more likely to break, backlights usually come with only a one year warranty. This warranty is separate from the one for the screen so you might want to extend the backlight warranty to match the duration of your screen warranty.

LCDs can provide a range of options for positioning a display. The common way to view a screen is landscape mode (longer than wide). Some LCDs let you pivot the screen 90 degrees so you can view it in portrait mode (taller than wide) which is great if you"re growing tired of scrolling so often. You should also check out whether the screen can both tilt and swivel. Easy adjustment is important if you"ll be doing presentations. You can even mount some LCDs on the wall like a picture.

If space and aesthetics are important to you, then a flat panel is the way to go. Compared to CRT displays they use very little power, emit less heat and radiation, take up a smaller amount of space and are easy on the eyes.

If space is not an issue, it"s probably better to get a good quality 19" CRT monitor than an entry-level 15" flat panel. As well, if you use your computer a lot for graphics and games, a CRT offers a sharper and more detailed display.

The best thing you can do is spend some time at an electronics store and put a flat panel through its paces. Open up Word and start typing, read the text and view images and video if possible.

If you"re an apple enthusiast, you"re in luck. The Apple flat panels are top of the line and display incredibly clear images, text and video. The price is steep but the results are worth it.