twisted nematic tn lcd panel technology in stock

A TN panel is an abbreviation for Twisted Nematic. It is an LCD display technology that is still being manufactured and used in electronic devices today.

Although newer, better display technologies have developed over the years, TN panels are still bought due to their affordability (see top budget monitors) and great gaming features. In this article, I"ll explain what a TN panel is and how it works.

TN stands for Twisted Nematic display. It is a type of LCD screen used in various electronic devices, including laptops, computer monitors, TVs, gaming systems, tablets, and mobile phones.

Many studies have been done on panel-type LCD vs. IPS displays. It"s true that the quality of the image is not as good as ISP panels because of the way TN displays are made, plus they are cheaper to produce.

TN displays have a high refresh rate than other display technologies. This makes them popular with gamers who want to get a higher refresh rate (see 120hz monitors). With a TN panel monitor, images will be updated quickly, which reduces blurriness and ghosting during fast motion.

A TN display has a better response time which makes it well suited for gaming. When playing games, you can"t afford to have a bad response time. In other words, the time taken from pushing a button to seeing action on your screen should be as low as possible. A faster response time ensures that you enjoy fast-paced games without any hassles.

TN displays typically have a low response time of below 5 MS. This means that a TN monitor will show more detail in faster-moving scenes compared to a VA monitor.

TN display is a good choice in a work monitor for small businesses needing to get up and running quickly. It"s less expensive, has great gaming features, and is easy to get. However, TN displays have a lower quality of color and contrast.

TN displays are enough for most people, especially if they"re going to use them for the office. For high performance and a display of good colors, you might want to consider a VA display. While more expensive, they"re also brighter and crisper than TN panels. And if you have the budget for it, an ISP screen is the way to go. They have the highest quality of color and contrast available on the market today—perfect if you"re trying to convey complex imagery in your storefront.

TN screens still make up a significant portion of the market, but they have fallen out of favor due to their poor color and viewing angle performance (see ultra-wide monitors) and lower contrast ratio.

The main problem with TN panels is viewing angles. When you move your head even slightly off-center, you can see a huge difference in color between what you"re looking at directly and what appears when you look at the screen from an angle. For example, if you"re viewing a white background, then move your head even slightly down or up, you"ll see that the background starts to take on another color.

Because of these limitations, TN displays are not as popular with graphic designers and similar professions as other flat-panel technologies such as IPS (in-plane switching) and AHVA or Advanced Hyper-Viewing Angle.

The low contrast ratio is something you can experience every time you use an old laptop or a monitor with this type of panel. If you put two colors right next to each other, like black and white, it will be extremely hard for your eyes to distinguish between them; the color difference will be almost imperceptible.

An LCD panel uses a combination of polarizers, color filters, and liquid crystals to produce an image. The backlight shines through red, green, and blue filters.

If you have an old or even new monitor or laptop (see what they are still good for here), it"s likely using a TN panel. Here are the TN panel features.

They are an older type of LCD technology. They were the first to be used in computer monitors but have been superseded by the superior IPS and VA technologies.

Panel type TN has a high refresh rate which is not an issue if you want to play games, watch movies because there"s no ghosting effect taking place on the screen. The best TN panels can reach refresh rates as high as 240 Hz.

The limited viewing angles. These types of panels can be hard to use when sitting at an angle, and the image quality takes a hit if you"re not sitting directly in front of the monitor.

Unimpressive color gamut makes TN screens inappropriate for professional graphic designers, architects and photographers who need accurate color representation.

TN panels have a poor contrast ratio, which means they can"t display deep blacks. In other words, the darkest parts of the picture will look gray. This is especially troubling when it comes to darker games and movies since the details of dark scenes will be lost in shadows.

If you"re looking for the highest possible resolution, TN panels aren"t the best option. They have a maximum resolution of 1920 x 1080, compared with 4K or 5K for IPS and VA panels.

Yes, TN panels can damage the eyes. Most people don"t feel comfortable using a TN panel for a long time unless it comes with eye care technologies such as anti-flicker and blue light filters. If you like to watch movies on a computer all day, the IPS panel is recommended.It emits blue light. The reason we need to avoid blue light is that it wouldmake our eyes uncomfortable and cause headaches. You may have experienced this when you were playing computer games in the past: the screen was bluish and made your eyes uncomfortable. So if you worry about eye safety, please choose an IPS panel instead of a TN panel.

The viewing angle of most TN panels ranges from 170/160 degrees. If you sit directly in front of the display with your head leveled, you will experience this viewing angle. But if you were to rotate your head so that your line of sight is at an angle greater than 170 degrees, then colors will begin to drift and distort on a TN panel.

The color quality of TN panels is not that good. They do not produce crisp colors, so this type of monitor is not suitable for users who work on graphics or images.

I"ve had a TN monitor for over 2 years now, and I really complain about its colors. It"s just that they don"t have a good color range as IPS panels, especially in the reds, but if you"re not an artist, you"ll hardly notice it.

The TNs have the worst contrast ratio, while IPS displays have the best. TN Panels have lower contrast ratios of around 1,000:1 to 2,000:1. This is not that great for movies or TV shows, but it"s still acceptable.

If you are planning to use your computer in a very bright light environment, you should choose the IPS ones, which have better visibility in a lot of light conditions than TN panels.

Response time is the time taken for a pixel to change from one color to another. A TN panel has a response time of fewer than 5 milliseconds (ms). A lower response time like this is better because fast-moving images will appear smoother and more natural.

The refresh rates of TN panels range from 60Hz and 144Hz. This represents an improvement over older TN panels, which had refresh rates of only 60Hz. The refresh rate is the number of times per second that a screen can refresh the image it displays.

If you"re looking to upgrade your setup for gaming, TN panels are the way to go. They"re the most responsive of all panel technologies, with high refresh rates.

Good gaming monitors have a low response time. The lower the number, the better. In LCD TN panels, response times are typically around 1ms, making them ideal for gaming.

The best TN panel for gaming has very high refresh rates. Some models can reach up to 240Hz refresh rates, which means that they can display content at up to 240 frames per second (fps). This is great for gamers who want high responsiveness and smooth graphics without suffering from screen tearing or image stuttering due to visual lag.

TN (Twisted Nematic) monitors were the first type of LCD monitors to make their way to the mainstream. TN Panels are generally cheaper than IPS models and look great from straight-on, which is great if you"re using your monitor to read emails or surf the web.

IPS or In-Plane Switching monitors have better viewing angles than TN models, so you can see accurate colors from almost any angle. Because of this feature, they tend to be more expensive than TN monitors.

Suppose you want a monitor for general office use, solid gaming performance, and don"t care too much about color accuracy and viewing angles. In that case, a TN panel monitor will be ideal for you.

The response time of TN panels tends to be faster than VA panels. TN panel monitors typically have a response time of 1-5ms, while a VA panel monitor"s response time typically ranges from 5-20ms.

In general, TN panels are suitable for gamers because they offer a greater level of responsiveness when playing fast action games such as first-person shooters, while VA panels are better suited for general use.

A TN panel can be adjusted to perform better. Do not change anything unless you know what you are doing; otherwise, twerking your display to perform better is easy.

The default color settings on TN panels aren"t very good, which is why you"ll often see extremely saturated or inconsistent colors. There are ways to adjust the settings to get a much more accurate picture that will please your eyes and make your screen more suitable for photo and video editing.

The answer is YES. I did good research and found that the majority of laptops use either TN or IPS panels. In the past, TN panels were favored for their simplicity and lower cost. They tend to be less expensive because they have fewer color reproduction capabilities and typically have a shorter lifespan.

IPS panels are generally more expensive because they have a longer lifespan and offer better color reproduction capabilities. However, TN displays still dominate the laptop market because they are cheaper to make and offer more responsive performance.

No, all laptop TN panels do not have the same quality. Their difference can be attributed to their features such as color gamut, refresh rates, viewing angles, and response time. Some offer good features, good image quality, and some TN panels don"t look very good at all.

twisted nematic tn lcd panel technology in stock

So, why would anyone ever buy a TN panel? For starters, they’re cheap. They don’t cost a lot to produce, so they’re often used in the most budget-friendly options. If you don’t value color reproduction or need excellent viewing angles, a TN panel might be fine for your office or study.

TN panels also have the lowest input lag—typically around one millisecond. They can also handle high refresh rates of up to 240 Hz. This makes them an attractive option for competitive multiplayer games—especially eSports, where every split-second counts.

IPS technology was developed to improve upon the limitations of TN panels—most notably, the poor color reproduction and limited viewing angles. As a result, IPS panels are much better than TNs in both of these areas.

In particular, IPS panels have vastly superior viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you’ll notice very little shift in color when you view one from a less-than-ideal perspective.

IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you’ll find on VAs.

While high refresh rates were typically reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the 27-inch 1080p ASUS VG279QM uses an IPS panel and supports 280 Hz.

Previously, TNs exhibited less input lag than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.

Despite the gap being closed, you’ll still pay more for an IPS panel with such a low response time than you would for a TN with similar specs. If you’re on a budget, expect a response time of around four milliseconds for a good IPS monitor.

One last thing to be aware of with IPS panels is a phenomenon called “IPS glow.” It’s when you see the display’s backlight shining through it at more extreme viewing angles. It’s not a huge problem unless you view the panel from the side, but it’s something to keep in mind.

VA panels are something of a compromise between TN and IPS. They offer the best contrast ratios, which is why TV manufacturers use them extensively. While an IPS monitor typically has a contrast ratio of 1000:1, it’s not unusual to see 3000:1 or 6000:1 in a comparable VA panel.

In terms of viewing angles, VAs can’t quite match the performance of IPS panels. Screen brightness, in particular, can vary based on the angle from which you’re viewing, but you won’t get the “IPS glow.”

VAs have slower response times than TNs and the newer Nano IPS panels with their one-millisecond response rates. You can find VA monitors with high refresh rates (240 Hz), but the latency can result in more ghosting and motion blur. For this reason, competitive gamers should avoid VA.

Compared to TNs, VA panels do offer much better color reproduction and typically hit the full sRGB spectrum, even on lower-end models. If you’re willing to spend a bit more, Samsung’s Quantum Dot SVA panels can hit 125 percent sRGB coverage.

For these reasons, VA panels are seen as the jack of all trades. They’re ideal for general use, but they either match or fall short in most other areas except contrast ratio. VAs are good for gamers who enjoy single-player or casual experiences.

When compared to CRT monitors, all LCD panels suffer from some form of latency issue. This was a real problem when TN panels first appeared, and it’s plagued IPS and VA monitors for years. But technology has moved on, and while many of these issues have been improved, they haven’t been eliminated entirely.

Uneven backlighting is another issue you’ll find on all panel types. Often this comes down to overall build quality—cheaper models slack on quality control to save on production costs. So, if you’re looking for a cheap monitor, be prepared for some uneven backlighting. However, you’ll mostly only notice it on solid or very dark backgrounds.

LCD panels are also susceptible to dead or stuck pixels. Different manufacturers and jurisdictions have different policies and consumer laws covering dead pixels. If you’re a perfectionist, check the manufacturer’s dead-pixel policy before you buy. Some will replace a monitor with a single dead pixel for free, while others require a minimum number.

Office or study use: Your budget should be your primary concern here. VA is the do-it-all panel, with superior viewing angles to TN, but either would do the trick. You can save some money because you don’t need high refresh rates or ultra-low latency. They’re still nice, though. You’ll see a noticeable difference in smoothness just when moving the Windows cursor on a monitor with a 144 versus 60 Hz refresh rate.

Photo and video editors/Digital artists: IPS panels are still generally favored for their ability to display a wide gamut of colors. It’s not unusual to find VA panels that also cover a wide gamut (125 percent sRGB, and over 90 percent DCI-P3), but they tend to exhibit more motion blur during fast-paced action than IPS panels. If you’re serious about color accuracy, you’ll need to properly calibrate your monitor.

Programmers who mount monitors vertically: You might think TN panels are great for programmers, but that’s not necessarily the case. TN panels have particularly bad viewing angles on the vertical axis. If you mount your monitor in portrait mode (as many programmers and mobile developers do), you’ll get the worst possible viewing angles from a TN panel. For the best possible viewing angles in this scenario, invest in an IPS display.

Competitive online gamers: There’s no question TN panels are still favored in the eSports world. Even the cheapest models have fast response times and support for high refresh rates. For 1080p gaming, a 24-inch will do just fine, or you could opt for a 1440p, 27-inch model without breaking the bank. You might want to go for an IPS panel as more low-latency models hit the market, but expect to pay more.

Non-competitive, high-end PC gamers: For a rich, immersive image that pops, a VA panel will provide a higher contrast ratio than IPS or TN. For deep blacks and a sharp, contrasting image, VA is the winner. If you’re okay with sacrificing some contrast, you can go the IPS route. However, we’d recommend avoiding TN altogether unless you play competitively.

Best all-rounder: VA is the winner here, but IPS is better in all areas except contrast ratio. If you can sacrifice contrast, an IPS panel will provide fairly low latency, decent blacks, and satisfactory color coverage.

If you can, check out the monitor you’re interested in in-person before you buy it. You can perform some simple ghosting and motion blur tests by grabbing a window with the mouse and moving it rapidly around the screen. You can also test the brightness, watch some videos, and play with the onscreen display to get a feel for it.

twisted nematic tn lcd panel technology in stock

TN stands for twisted nematic. This is a type of LED (a form of LCD) panel display technology. TN panels are characterized as being the fastest and cheapest among the other main types of display panels, VA (vertical alignment)and IPS (in-plane switching). As such, they work great for gaming monitors and gaming laptops. However, TN panels also offer the worst viewing angles and color when compared to VA and IPS panels.

PerformanceFastest: low response times, highest refresh rates, minimal motion blur; Low input lagLongest response times typically; Higher refresh rates possibleSlower response times than TN, faster response times than VA; Gaming-quality refresh rates are rare

DisplayWorst viewing angles;Worst colorViewing angles typically better than TN, worse than IPS; Good color; Best contrast;Best image depthBest viewing angles; Best color

twisted nematic tn lcd panel technology in stock

The twisted nematic effect (TN-effect) was a main technology breakthrough that made LCDs practical. Unlike earlier displays, TN-cells did not require a current to flow for operation and used low operating voltages suitable for use with batteries. The introduction of TN-effect displays led to their rapid expansion in the display field, quickly pushing out other common technologies like monolithic LEDs and CRTs for most electronics. By the 1990s, TN-effect LCDs were largely universal in portable electronics, although since then, many applications of LCDs adopted alternatives to the TN-effect such as in-plane switching (IPS) or vertical alignment (VA).

TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display.

The twisted nematic effect is based on the precisely controlled realignment of liquid crystal molecules between different ordered molecular configurations under the action of an applied electric field. This is achieved with little power consumption and at low operating voltages. The underlying phenomenon of alignment of liquid crystal molecules in applied field is called Fréedericksz transition and was discovered by Russian physicist Vsevolod Frederiks in 1927.

The illustrations to the right show both the OFF and the ON-state of a single picture element (pixel) of a twisted nematic light modulator liquid crystal display operating in the "normally white" mode, i.e., a mode in which light is transmitted when no electrical field is applied to the liquid crystal.

In the OFF state, i.e., when no electrical field is applied, a twisted configuration (aka helical structure or helix) of nematic liquid crystal molecules is formed between two glass plates, G in the figure, which are separated by several spacers and coated with transparent electrodes, E1 and E2. The electrodes themselves are coated with alignment layers (not shown) that precisely twist the liquid crystal by 90° when no external field is present (left diagram). If a light source with the proper polarization (about half) shines on the front of the LCD, the light will pass through the first polarizer, P2 and into the liquid crystal, where it is rotated by the helical structure. The light is then properly polarized to pass through the second polarizer, P1, set at 90° to the first. The light then passes through the back of the cell and the image, I, appears transparent.

To display information with a twisted nematic liquid crystal, the transparent electrodes are structured by photo-lithography to form a matrix or other pattern of electrodes. Only one of the electrodes has to be patterned in this way, the other can remain continuous (common electrode). For low information content numerical and alpha-numerical TN-LCDs, like digital watches or calculators, segmented electrodes are sufficient. If more complex data or graphics information have to be displayed, a matrix arrangement of electrodes is used. Because of this, voltage-controlled addressing of matrix displays, such as in LCD-screens for computer monitors or flat television screens, is more complex than with segmented electrodes. For a matrix of limited resolution or for a slow-changing display on even a large matrix panel, a passive grid of electrodes is sufficient to implement passive matrix-addressing, provided that there are independent electronic drivers for each row and column. A high-resolution matrix LCD with required fast response (e.g. for animated graphics and/or video) necessitates integration of additional non-linear electronic elements into each picture element (pixel) of the display (e.g., thin-film diodes, TFDs, or thin-film transistors, TFTs) in order to allow active matrix-addressing of individual picture elements without crosstalk (unintended activation of non-addressed pixels).

In 1962, Richard Williams, a physical chemist working at RCA Laboratories, started seeking new physical phenomena that might yield a display technology without vacuum tubes. Aware of the long line of research involving nematic liquid crystals, he started experimenting with the compound p-azoxyanisole which has a melting point of 115 °C (239 °F). Williams set up his experiments on a heated microscope stage, placing samples between transparent tin-oxide electrodes on glass plates held at 125 °C (257 °F). He discovered that a very strong electrical field applied across the stack would cause striped patterns to form. These were later termed "Williams domains".

Although successful, the dynamic scattering display required constant current flow through the device, as well as relatively high voltages. This made them unattractive for low-power situations, where many of these sorts of displays were being used. Not being self-lit, LCDs also required external lighting if they were going to be used in low-light situations, which made existing display technologies even more unattractive in overall power terms. A further limitation was the requirement for a mirror, which limited the viewing angles. The RCA team was aware of these limitations, and continued development of a variety of technologies.

Another potential approach was the twisted-nematic approach, which had first been noticed by French physicist Charles-Victor Mauguin in 1911. Mauguin was experimenting with a variety of semi-solid liquid crystals when he noted that he could align the crystals by pulling a piece of paper across them, causing the crystals to become polarized. He later noticed when he sandwiched the crystal between two aligned polarizers, he could twist them in relation to each other, but the light continued to be transmitted. This was not expected. Normally if two polarizers are aligned at right angles, light will not flow through them. Mauguin concluded that the light was being re-polarized by the twisting of the crystal itself.

Wolfgang Helfrich, a physicist who joined RCA in 1967, became interested in Mauguin"s twisted structure and thought it might be used to create an electronic display. However RCA showed little interest because they felt that any effect that used two polarizers would also have a large amount of light absorption, requiring it to be brightly lit. In 1970, Helfrich left RCA and joined the Central Research Laboratories of Hoffmann-LaRoche in Switzerland, where he teamed up with Martin Schadt, a solid-state physicist. Schadt built a sample with electrodes and a twisted version of a liquid-crystal material called PEBAB (p-ethoxybenzylidene-p"-aminobenzonitrile), which Helfrich had reported in prior studies at RCA, as part of their guest-host experiments.

At this time Brown, Boveri & Cie (BBC) was also working with the devices as part of a prior joint medical research agreement with Hoffmann-LaRoche.James Fergason, an expert in liquid crystals at the Westinghouse Research Laboratories. Fergason was working on the TN-effect for displays, having formed ILIXCO to commercialize developments of the research being carried out in conjunction with Sardari Arora and Alfred Saupe at Kent State University"s Liquid Crystal Institute.

When news of the demonstration reached Hoffmann-LaRoche, Helfrich and Schadt immediately pushed for a patent, which was filed on 4 December 1970. Their formal results were published in Applied Physics Letters on 15 February 1971. In order to demonstrate the feasibility of the new effect for displays, Schadt fabricated a 4-digit display panel in 1972.

This work, in turn, led to the discovery of an entirely different class of nematic crystals by Ludwig Pohl, Rudolf Eidenschink and their colleagues at Merck KGaA in Darmstadt, called cyanophenylcyclohexanes. They quickly became the basis of almost all LCDs, and remain a major part of Merck"s business today.

Gerhard H. Buntz (Patent Attorney, European Patent Attorney, Physicist, Basel), "Twisted Nematic Liquid Crystal Displays (TN-LCDs), an invention from Basel with global effects", Information No. 118, October 2005, issued by Internationale Treuhand AG, Basel, Geneva, Zurich. Published in German

twisted nematic tn lcd panel technology in stock

The TN panel is the most widely used panel type on the market. The reason behind this is cheap production cost of this kind of panel and the excellent response time. This makes them perfect for gaming purposes with fast action ongoing on the screen.  Pixels of a TN panel can quickly change their state. This results in a smoother image. Although this technology is quite old it is still present on the market. You will see it present on all screen sizes ranging from 20 inch up to 28 inches. The monitor’s resolution can get as high as ultra high definition, 4k at 3840 x 2160 pixels on lower end monitor models.

I have already highlighted one of the advantages of the TN panel. The low cost of production won’t leave a deep hole in your bank account. Another advantage of this panel is its responsiveness. Current TN panels have a response time ranging between 2ms to 5ms. This is great, especially when playing games. Some Twisted Nematic panels have double of the usual refresh rate. Consequently instead of 60Hz, these are capable of running at 120Hz. This allows them to take advantage of “active 3D shutter technologies”. For this reason they are able to display twice the amount of information every second allowing to a much smoother gaming experience. At these values it is trying to compete with monitors having refresh rates of 144Hz.

Although a lot of improvements were made for the Twisted Nematic panel, still it has some weaknesses. A good TN panel can provide great image quality with vibrant colors. The native contrast (“dynamic contrast mode turned of”) of a typical TN monitor is  1:1000. But the real problem relates to the viewing angles in comparison with other panels. These are advertised with 170 degrees horizontal  and 160 degrees vertical viewing angles. This is marginally lower than other panel technologies.

Since modern screens can get quite big, up to 28 inches, this will affect the overall usability of monitors and screens with this kind of panels. If you are not sitting straight in front of it, you will see color shifting when viewed from any other angle. This makes them unusable for image editing. Therefore, if you are on a budget, picking a TN panel monitor for photo or video editing is the worst decision you could make.

TN panels are only 6-bit, unlike most IPS/VA panels that are 8-bit. Consequently the Twisted Nematic panel is unable to display the full 16.7 million colors available in 24-bit true color. Hence they can mimic the 16.7 million colors of 8-but panels by using dithering and Frame Rate Control (FRC) methods.

The TN panels are widely available even today. Although it is quite an old panel technology it will be present on the market. Thanks to improvements it tries to compete with other panel technologies like IPS. Although not recommended for photo and video purposes, these panels offer some benefits when it comes to gaming. Nowadays most TN Film panels are manufactured with a Full-HD 1920 X 1080 resolution, although larger sizes became available. The new generation of monitors with TN panels offer Quad HD resolution also known as 2K (2560 X 1440 pixels) at a screen size of 27 inches. You can also see these TN panels on low cost 28 inch 4K models available on the market.

If you want to buy yourself a gaming monitor and you are on a budget the TN panels are a good option. The slightly narrower viewing angles and some color shifts will not be your major concern. In addition you will remain with some cash in your pocket to spend it on your favorite game.

twisted nematic tn lcd panel technology in stock

The Nematic phase is one of the two major phases of liquid crystals, the other being Smetic phase. The Nematic phase is closer to a liquid substance than to a solid substance.

The introduction of TN LCD technology in the 1970s was a breakthrough in display technology to help the commercialization of LCDs in electronic devices.

TN display technology uses nematic liquid crystal placed in the midst of glass substrates dusted with ITO (indium-tin-oxide). The ITO is in turn coated with layers that rub in a direction.

Polarized light manipulation is the underlying principle in TN display technology. As light enters the TN cell, there is a twist in the polarization state with the liquid crystal director.

TN liquid display crystal technology is easy to implement. This means inexpensive manufacturing requirements for industries and an affordable end product for consumers. This has made the use of TN LCD to serve as a good replacement for CRT and LED technologies. It is also a cheaper alternative to newer technologies like AMOLED and IPS.

TN technology does not need any current requirement to function. It operates with low voltages. For this, it can be operated with batteries and other low power sources.

The response time of a pixel is the time lapse required for a pixel to change from a state to another. The unit of measurement is milliseconds. The smaller, the better. The refresh rate, in contrast, is the frequency at which the image of a display is refreshed. It is measured in Hertz. The superior refresh rate and pixel response time give the Twisted Nematic LCD technology the capability to display faster images in a short period of time.

The viewing angle of TN LCD technology is low. A user has to look up from a 90-degree range for a maximum visual experience and good performance. In a lower angle range view, colors tend to be duller while images will be darker.

Unlike LCD’s IPS and VA panels, using TN panels produces poor color reproduction. This negative aspect of TN LCD may have resulted from the restricted viewing angle. The bad color reproduction also translates to inaccuracy in color production from the TN panels. This makes TN LCD not suitable for image-oriented works such as a graphic design, video editing, and photo editing.

Twisted Nematic LCD panels vary in quality from different producers. When a low-quality product is adopted, the other disadvantages will be more pronounced in the output of the implementation such as the color implementation and the viewing angle. Cheaper and poor quality TN panels can also bring out another demerit of susceptibility of dead pixels.

Its affordability and the change it brings into display technology are however being outshined by the incoming of superior display technologies such as IPS LCD, OLED and other latest development in display technology of today.

twisted nematic tn lcd panel technology in stock

Twisted nematic or TN LCD panel is a type of thin-film transistor liquid crystal display or TFT-LCD that is commonly used in an array of consumer electronic devices such as digital watches and calculators, as well as computer monitors and mobile phones.

However, further demands for better and wider display applications resulted in the emergence of newer display technologies such as plasma panel display or PDP technology, in-plane switching or IPS LCD technology and active-matrix organic light-emitting diode or AMOLED technology.

Nonetheless, it cannot be denied that the introduction of TN technology during the 1970s was a major technological breakthrough because it commercialized the use of LCD and made the use of digital electronic displays in consumer electronic devices affordable and practical.

Central to the technology behind twisted nematic or TN display panel is the use of nematic liquid crystal sandwiched between two plates of glass substrates coated with transparent indium-tin-oxide or ITO. This ITO surface are further coated with alignment layers that both rub in one direction.

Manipulation of polarised light is the underlying technological principle behind TN display. When light enters the TN cell, the polarisation state twists with the director of the liquid crystal material.

The inherent advantages of TN LCD panels made twisted nematic LCD technology a dominant and almost universal display technology used in portable electronics during the 1990s. Take note of the following advantages of TN LCD panels over other display technologies:

One of the key advantages of TN LCD panels stems from the easy implementation of twisted nematic technology. This translates to cheaper manufacturing requirements and simpler production processes, thus further translating into affordability of TN LCD panels and the corresponding consumer electronics products to end consumers.

Note that the introduction and subsequent popularity of twisted nematic technology quickly pushed out other display technologies such as monolithic LED and cathode-ray tube or CRT for most electronics.

Furthermore, because TN LCD panels are easy and cheap to manufacture, not only did they replace LED and CRT display but they have also continued to remain an affordable alternative to modern display technologies such as IPS and AMOLED.

Twisted nematic technology does not require a current to flow to operate. It also runs under low operating voltages. These advantages collectively correspond to low and efficient power consumption, thus making TN LCD panels suitable for use with batteries and low-powered devices.

The power consumption advantage of TN LCD panels has ushered in the era for low-powered and lightweight LCD, thus paving the way for the invention and production of compact and lighter consumer electronics and non-consumer electronic instruments.

Compared against IPS LCD panels, TN LCD panels have shorter response time and higher refresh rate. Pixels in a typical TN LCD panel change their state as fast as two milliseconds compared against the five milliseconds response time of a typical IPS LCD panel. Furthermore, high-end TN LCD panels even have double the usual refresh rate of 120Hz instead of 60Hz.

The better pixel response time and refresh rate advantages of TN LCD panels can enable them to display twice as much information every second. These make TN LCD panels suitable for use in high-end gaming. In fact, some hardcore gamers prefer a TN computer monitor to a VA or IPS monitor due to its responsiveness and better refresh rate.

The disadvantages of twisted nematic LCD technology have prevented it from catapulting into more modern and wider applications however. Take note of the following limitations and disadvantages of TN LCD panels:

A notable disadvantage of TN LCD panels is a narrow viewing angle. A user needs to look at a TN panel from a straight up 90-degree angle to maximize its visual performance.

When viewed from other angles, colors will appear duller and images will appear darker on a TN panel. User familiar with different types of LCD can easily discern if a panel is a TN panel through these color shifts and image distortion.

Nonetheless, the restricted viewing angle compels a user to remain sitting dead straight up in front of a TN LCD panel. Doing so can be problematic in larger TN LCD panels in which changing viewing angle is sometimes unavoidable.

Apart from the inherent dull color reproduction in twisted nematic LCD technology, especially when compared against vertical alignment or in-plane switching LCD technologies, the problem with the limited viewing angle also produces poor representation of colors.

Poor color reproduction also means that color inaccuracy is another disadvantage of TN panels. This is the reason why TN panels are not suitable for use in color critical tasks such as graphic design, photo manipulation, and video editing, among others.

Note that the quality of TN LCD panels depends on manufacturers. Low-end TN LCD panels have the tendency to exhibit extreme instances of other disadvantages such as poor viewing angle and poor color reproduction.

Take note of cheap feature mobile phones as an example. The TN LCD panels used in these products can exhibit extreme color shifts even at slight change in viewing angle.

Images in low-end TN LCD panels can also be indiscernible when viewed under direct sunlight. Note than another disadvantage of TN LCD panels is susceptibility to dead pixels. This becomes more pronounced in cheaper and low-end panels.

Twisted nematic LCD technology was a breakthrough innovation that paved the way for an array of relatively inexpensive electronic devices that use digital electronic display. TN panels remain a very popular LCD option because of their advantages that revolve around inexpensive manufacturing and simpler production that translate further to cheaper price points for end consumers.

However, TN panels are becoming noticeable archaic due to the popularity of other display technologies such as in-plane switching or IPS LCD technology and active-matrix organic light-emitting diode or AMOLED technology. Both technologies are becoming more prominent in modern consumer electronics such as smartphones and tablet computers.

Of course, the associated cost efficiency of producing and using TN panels, in addition to other advantages such as low power consumption and better response time and refresh rates, still make them an ideal display option for use in inexpensive computer monitors, as well as for other portable electronics such as digital watches and calculators.

twisted nematic tn lcd panel technology in stock

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.

There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.

Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.

Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.

Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.

Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.

LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.

VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.

Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.

There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.

OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.

As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

twisted nematic tn lcd panel technology in stock

By far the most common types of display panels used on PC monitors are TN, IPS and VA. We"re sure you"ve heard these terms before if you"ve researched monitors to purchase, and to be clear, the type of panel is a key piece of information that reveals a lot about how the monitor will behave and perform.

TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.

VA, stands for vertical alignment. As the name suggests, this technology uses vertically aligned liquid crystals which tilt when a voltage is applied to let light pass through. This is the key difference between IPS and VA: with VA, the crystals are perpendicular to the substrates, while with IPS they are parallel. There are several VA variants, including Samsung"s SVA and AU Optronics AMVA.

IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the crystals to modify the amount of light let through, IPS crystals are essentially rotated, which has a range of benefits.

There are many IPS variants on the market, with each of the three big LCD manufacturers using a different term to describe their IPS-type technology. LG simply calls their tech "IPS" which is easy for everyone. Samsung uses the term PLS or plane-to-line switching, while AU Optronics uses the term AHVA or advanced hyper viewing angle. AHVA shouldn"t be confused with regular VA displays, it"s an annoying and confusing name in my opinion, but AHVA is an IPS-like technology. Each of LG"s IPS, Samsung"s PLS and AUO"s AHVA are slightly different but the fundamentals are rooted in IPS.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a vertical alignment and tilt. Now let"s get into some of the performance characteristics and explore how each of the technologies differ and in general, which technology is better in any given category.

By far the biggest difference between the three technologies is in viewing angles. TN panels have the weakest viewing angles, with significant shift to color and contrast in both the horizontal and especially vertical directions. Typically viewing angles are rated as 170/160 but realistically you"ll get pretty bad shifts when viewing anywhere except for dead center. Higher-end TNs tend to be somewhat better but overall this is a big weakness for TNs.

VA and IPS panels are both significantly better, with IPS being the best overall for viewing angles. 178/178 viewing angle ratings are a realistic reflection of what you can expect with an IPS, you won"t get much shift in colors or contrast from any angle. VAs are good in this regard but not as good as IPS, mostly due to contrast shifts at off-center angles. With VAs and especially TNs having some color and contrast shifts when viewing at angles, they"re not as well suited to color-critical professional work as IPS panels, which is why you see most pro-grade monitors sticking to IPS.

In terms of brightness there"s no inherent differences between the technologies because the backlight, which determines brightness, is separate to the liquid crystal panel. However there are significant differences to contrast ratios, and this an area most people look at when determining which panel type they want.

Both TN and IPS panels tend to have a contrast ratio around 1000:1, although in my testing I have noted some differences. TN panels tend to have the lowest contrast ratios when calibrated, with an entry-level panel sitting between 700:1 and 900:1 and good panels pushing up to that 1000:1 mark. IPS has a larger range, I"ve seen some as low as 700:1 like TNs, however the very best tend to push up higher than TN, with 1200:1 as the upper range for desktop monitors and some laptop-grade displays reaching as high as 1500:1.

Neither TN nor IPS get to the range of VA though. Entry-level VA panels start with a contrast ratio of 2000:1 from those that we"ve tested, with the best easily exceeding 4500:1, although 3000:1 is a typical figure for most monitors.

TVs make extensive use of VA panels and there contrast ratios can be even higher. It"s not unusual to see over 6000:1. So if you want deep blacks and high contrast ratios, you"ll need to go with something VA.

While IPS panels tend to be a middle ground for contrast they do suffer from a phenomenon called "IPS glow," which is an apparent white glow when viewing dark imagery at an angle. The best panels exhibit minimal glow but it"s still an issue across all displays of this type.

Color quality is another difference many people cite between TN displays and other display panels in particular. And this can be split into two categories: color depth or bit depth, and color gamut.

In both of these regards, TN panels tend to fall on the weaker end of the scale. Many TN displays, in particular entry-level models, are only natively 6-bit and use frame rate control, otherwise called FRC or dithering, to achieve standard 8-bit output. 6-bit panels are prone to color banding, while native 8-bit panels have smoother color gradients and therefore better color output.

Not all TN panels are 6-bit. The top-end TNs are native 8-bit, but it"s safe to say most TNs will only be native 6-bit, even today. If you are after a native 8-bit display, you"ll need to go with either IPS or VA, where many more panels come native 8-bit.

As for native true 10-bit, typically you"ll need to look for an IPS panel, which make up the majority of native 10-bit panels. Some VA panels can do it, but they are rare. Most displays you purchase that claim to be 10-bit, are actually 8-bit+FRC, with only high-end professional-grade monitors offering a native 10-bit experience.

This is another area where VA and IPS provide a superior experience. The best TN panels tend to be limited to sRGB, or in the case of the worst entry-level panels, don"t even cover the entirety of the sRGB gamut. Wide-gamut TN panels do exist, but they are rare.

VA panels typically start with full sRGB coverage as a minimum, and depending on the panel can push higher. VAs that use a quantum dot film, typically from Samsung, offer higher gamuts, around the 125% sRGB or 90% DCI-P3 mark. Most of the wide gamut VA monitors we"ve tested fall between 85 and 90% DCI-P3 coverage, which is a decent result, though the best can approach 95% or higher.

With IPS panels, there is the largest variance. Entry-level IPS displays tend to offer 95% sRGB coverage or less, while the majority stick to full sRGB coverage. Then with high-end displays, usually for professionals, it"s not unusual to see full DCI-P3 and Adobe RGB coverage. Of all the wide gamut IPS displays I"ve tested, the lowest DCI-P3 coverage I"ve seen has been 93%, with over 95% a typical figure. This makes IPS the best technology for wide gamut work.

Throughout most of this discussion we"ve been talking about TN as the worst of the three technologies. So far, it has the worst color reproduction, contrast ratios and viewing angles. But it does have one key advantage, and that comes in the form of speed. TN panels have historically been the best for both refresh rates and response times, however that trend is slowly changing for the better.

Not long ago, we argued that only with a TN panel it was possible to hit 240 Hz, doing so at 1080p and later up to 1440p. Most recently, however we"ve seen IPS monitors hit the highest mark ever for a consumer-grade gaming monitor at 360Hz, and do so very convincingly. We"re sure other monitors will follow but as of writing, the Asus ROG Swift PG259QN can deliver both the fastest response times and an accurate color experience using an IPS panel.

More mainstream monitors using IPS panels tend to range from the regular 60Hz for productivity, up to 165 Hz and 240 Hz depending on the market they"re aimed at. VA panels top out at around 240 Hz at the moment.

Most IPS displays, especially high-grade options for professionals, as well as entry-level office monitors, are either 60 or 75 Hz. Meanwhile, a significantly larger number of VA panels across a wider range of sizes and resolutions are high-refresh, while the big selling point of TN is its super high refresh capabilities.

Another major consideration is response times, which govern the level of ghosting, smearing and overall clarity of a panel. Early IPS and VA panels were very slow, however this has improved a lot with modern panels, so the differences between the three technologies aren"t as pronounced as they once were. TN still holds an advantage here.

Most TN panels have a rated transition time of 1ms, or even lower with some recent releases. Actual grey to grey averages we"ve measured for TN panels tend to be in the 2-3 ms range when overdrive is factored in, which makes TN the fastest technology.

IPS panels are next in terms of speed, though as tends to be the case with IPS, there is a wide variance between the best and worst of this type. High-end IPS monitors, typically those with high refresh rates, can have a transition time as fast as 3ms. Compared to the best TN panels, this still makes IPS slower. However entry-level IPS panels or those without overdrive sit closer to the 10ms range, while mid-tier options tend to occupy the 5 to 7 ms bracket.

VA panels are consistently the slowest of the three types, but again, high-end gaming monitors have been pushing this further on every generation. The absolute fastest VA panel we"ve measured so far has a 4ms response time which is very impressive, though more typical numbers are between 8 and 10 ms for gaming monitors. VA panels also tend to be less consistent with their transitions; some individual transitions can be fast, while others very slow, whereas IPS panels tend to hover more around their overall grey to grey average.

While a lot of people are unlikely to spot the difference between an 8ms VA panel and a 5ms IPS, TN panels overall tend to be noticeably clearer in motion, but that gap is closing with every generation. The slowness of VA panels also limits their real world refresh rate: a 144 Hz panel that only manages a 9ms response time, is actually delivering an image most equivalent to a 110 Hz panel. Whereas most 144 Hz IPS panels can transition faster than the 6.94ms refresh window, leading to a true 144 Hz experience. So that"s something to consider.

As a quick summary, TN panels are the fastest and have the highest refresh rates, however they have the worst viewing angles by far, as well as weak color performance and typically the lowest contrast ratios. TNs are typically used for ultra-fast gaming displays, as well as budget class displays, for both desktop monitors and laptops.

IPS is a middle-ground technology. They typically have the best color performance and viewing angles, mid-tier response times and refresh rates, along with mid-tier black levels and contrast ratios. Due to its top-end color output, IPS panels are the go-to choice for professionals, but you"ll also find them in entry-level displays, office monitors, most laptops and a handful of gaming monitors.

VA panels are the slowest of the three, but have the best contrast ratio and black levels by far. Color performance isn"t quite at the level of IPS, but they still offer a significantly better experience than TN in this regard.

With response times for the best modern VAs approaching the level of a typical IPS, along with broad support for high refresh rates, VA monitors are commonly used for gaming monitors. Entry-level VAs also tend to be superior to entry-level TN and IPS panels, though you won"t find VA used in laptops.

There"s no right answer to which monitor technology is best, because all have their strengths and weaknesses which is why all three coexist on the market today. However if you want our recommendation, we tend to gravitate towards VA panels for most buyers, especially gamers and those after something entry-level. Creative professionals should be looking exclusively at IPS monitors, while those after something dirt cheap or ultra high refresh for competitive gaming should opt for TN, although superior latest-gen IPS and VA offerings are finally matching or even beating the best of TN in some regards.

twisted nematic tn lcd panel technology in stock

When most people go shopping for a gaming monitor, their primary concerns are resolution and refresh rate. Those are certainly important considerations, but if you’ve ever had to put up with dull colors, murky blacks or terrible viewing angles, you’ll understand that panel types are important too.

TN, or Twisted Nematic panels, are the oldest variety of LCD panels, but they’re still quite common even today. They’re cheap to produce, and they have very low input lag, which makes them appealing for gamers. They also support refresh rates of up to 240Hz, another plus for fast-paced environments.

The problem with TN panels is that they have very poor color reproduction. While modern TN panels are far better than earlier models, it’s still relatively rare to find a TN panel with close to full sRGB reproduction. Even if they do have good color reproduction when you’re looking at them straight on, their viewing angles are limited, and they look washed out when viewed from the sides.

If you’re on a budget, enjoy playing competitive shooters or strategy games where reaction times matter, a TN panel could be fine for you. But if you want something that doubles as a media player, the average TN monitor might disappoint.

Fortunately, our GFT27CXB monitor is far from “average.” We engineered our TN panel to do what most TN panels simply cannot: deliver stunningly accurate colors. And with its 99% sRGB gamut, colors are rich and vibrant. And it’s fully customizable, with space to store up to 3 unique user profiles. So you get amazing color. But you also get full HD resolution with lightning-fast speeds up to 240hz refresh rate and 1ms response times.

IPS, or In-Plane Switching, monitors are almost the exact opposite of TN panels. They offer much wider viewing angles than TN panels as well as better black reproduction. The trade-off is that they’re more expensive. They have a history of slower refresh rates, too, although that has been changing lately. Today’s IPS panels can reach max. refresh rates as high as 200-240Hz.

There are some IPS monitors with very good refresh rates and response times, but they’re on the pricier side. You can expect to pay more than $500 for an IPS monitor with a 1ms response time. If you’re looking for a more budget-friendly IPS monitor, then you’ll have to settle for response times of 4ms or slower. IPS panels are also prone to backlight issues. Color reproduction is better than on TN panels, even at extreme angles, but the backlight can sometimes be seen.

Our REAPER series monitor—starting with the RFI25CBA—has been designed to overcome this particular issue. It’s been engineered to reduce the amount of backlight bleed-through on its IPS panel. The monitor also features an MRPT Mode to produce extremely clear moving pictures with excellent color while significantly reducing backlight issues.

VA, or Vertical Alignment,