hy-1.8 spi tft display quotation

Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735  colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.

The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.

The schematics for this project is fairly easy as the only thing we will be connecting to the Arduino is the display. Connect the display to the Arduino as shown in the schematics below.

Due to variation in display pin out from different manufacturers and for clarity, the pin connection between the Arduino and the TFT display is mapped out below:

We will use two example sketches to demonstrate the use of the ST7735 TFT display. The first example is the lightweight TFT Display text example sketch from the Adafruit TFT examples. It can be accessed by going to examples -> TFT -> Arduino -> TFTDisplaytext. This example displays the analog value of pin A0 on the display. It is one of the easiest examples that can be used to demonstrate the ability of this display.

The second example is the graphics test example from the more capable and heavier Adafruit ST7735 Arduino library. I will explain this particular example as it features the use of the display for diverse purposes including the display of text and “animated” graphics. With the Adafruit ST7735 library installed, this example can be accessed by going to examples -> Adafruit ST7735 library -> graphics test.

Next, we move to the void setup function where we initialize the screen and call different test functions to display certain texts or images.  These functions can be edited to display what you want based on your project needs.

Uploading the code to the Arduino board brings a flash of different shapes and text with different colors on the display. I captured one and its shown in the image below.

That’s it for this tutorial guys, what interesting thing are you going to build with this display? Let’s get the conversation started. Feel free to reach me via the comment section if you have any questions as regards this project.

hy-1.8 spi tft display quotation

Now learning arduino tft, got a cheap 1.8 tft spi display from ebay, trying the arduino TFTDsiplayText example with potentiometer, and all my "goal" is the white screen.

hy-1.8 spi tft display quotation

This 128x160 resolution LCD TFT is equipped with a powerful backlight, providing visibility in bright lighting conditions including the direct sun. The sunlight readable display comes with 3/4-wire SPI interface and offers a 6:00 optimal view. This 2.8V Liquid Crystal Display has a built-in ILI9163V controller, FFC connection, is RoHS compliant and does not come with a touchscreen.

Choose from a wide selection of interface options or talk to our experts to select the best one for your project. We can incorporate HDMI, USB, SPI, VGA and more into your display to achieve your design goals.

Equip your display with a custom cut cover glass to improve durability. Choose from a variety of cover glass thicknesses and get optical bonding to protect against moisture and debris.

hy-1.8 spi tft display quotation

In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.

The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.

This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.

The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.

In which “Hello, World!” is the text you want to display and the (x, y) coordinate is the location where you want to start display text on the screen.

The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:

Note: some people find issues with this display when trying to read from the SD card. We don’t know why that happens. In fact, we tested a couple of times and it worked well, and then, when we were about to record to show you the final result, the display didn’t recognized the SD card anymore – we’re not sure if it’s a problem with the SD card holder that doesn’t establish a proper connection with the SD card. However, we are sure these instructions work, because we’ve tested them.

In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.

hy-1.8 spi tft display quotation

Recently, I had the idea to make a digital picture frame—one of these kinds which load images from SD cards and show each image for some time. I was remembering myself that I already own a small TFT display, the KMR-1.8 SPI, that works out of the box with an Arduino Uno. When I digged up my KMR-1.8 SPI, I realized that it has also an in-built SD card reader. Moreover, I looked up the Internet and found ready-to-use libraries for the in-built SD card reader as well as showing images on the TFT display. For these reasons, I thought making such an digital picture frame will turn out very easy.

When I started to implement my first lines of codes and started to connect my Arduino Uno to the KMR-1.8 SPI, I ran into two major problems. First, the colors of my image file did not match to the colors displayed by the KMR-1.8 (red and blue were interchanged). Second, my first prototypes stopped to work after about 5 minutes. The application started to freeze and showed the same image forever instead of displaying the next image after a chosen time.

There exists various versions of so-called “1.8 TFT displays” from different manufacturers. Not all of them are 100% compatible to each other. Therefore, if you own a TFT display and want to use my tutorial to make it work, please check if your TFT display really matches the version I used in this tutorial:

The source code relies on three header files (and libraries): SPI.h (Link), SD.h (Link) and TFT.h (Link). Please make sure that all of them are correctly installed before trying out my source code (In Arduino IDE: Tools -> Manage Libraries…).

I overcame the first problem by not using the default initialization method (“TFTscreen.begin();”) of the TFT library. Instead, I looked up whats inside the “begin”-method. I found a method called “initR” which has a parameter that allows to perform the initialization for a specific chip. Here, the parameter value “INITR_BLACKTAB” worked for me as the colors were then shown correctly. In addition, I call the method “setRotation” with parameter value “1” in order to be conform to the default initialization method. In the end, the code for the setting up the TFT library object looks like this:// ...

The code looks for image files (*.BMP) on the SD card and shows each image for 60 seconds. You can change the display time by setting “DELAY_IMAGE_SWAP” to a new value.

hy-1.8 spi tft display quotation

This 1.8-inch display breakout is the best way to add a small, colorful and bright display to any project. Since the display uses 4-wire SPI to communicate and has its own pixel-addressable frame buffer, it can be used with every kind of microcontroller. Even a very small one with low memory and few pins available!

The 1.8 display has 128×160 color pixels. Unlike the low cost Nokia 6610 and similar LCD displays, which are CSTN type and thus have poor color and slow refresh, this display is a true TFT! The TFT driver (ST7735) can display full 18-bit color(262,144 shades) using our library code. This 1.8 inch TFT LCD Color Screen Module SPI Interface has 128 x 160 resolution. it uses the SPI interface to communicate with the controller such as Arduino.

The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as an ultra-low-dropout 3.3V regulator and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic.

hy-1.8 spi tft display quotation

The TFT isn"t "plug & play" with the Raspberry, a patch has to be applied to the kernel to be able to interface via SPI with the ST7735R controller chip on the TFT. Once working, the display will act as a framebuffer device.

If you are planning on displaying the console on the TFT, then enabling these options in .config will allow you to change the font size and rotate the display later on.

If you build the st7735 driver pair as built-in, add these options to the end of the line in /boot/cmdline.txt. This will display the console on the TFT.

hy-1.8 spi tft display quotation

ER-TFT018-2 is 128x160 dots 1.8" color tft lcd module display with ILI9163C controller ,optional 4-wire resistive touch panel,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8-bit,9-bit,16-bit,18-bit parallel,3-wire,4-wire serial spi interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 1.8"TFT Touch Shield with Libraries, EXxamples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and Development Kit at the bottom of this page.

hy-1.8 spi tft display quotation

The 7-pin display modules do not need "just" SPI, but also CS (Chip Select), D/C (Data or Command), Reset, and optionally a PWM pin for controlling the backlight. As KurtE mentioned, this should work in theory, but the problem is existing library support. The CS pins need to be separate, but all can share the D/C and Reset pins (although you cannot then reset just one display; you can only reset them all if you need to). There is always the risk that the display modules don"t like sharing their lines among so many modules -- for example, if there are too many pull-up/down resistors in the lines, or even if the modules don"t like their D/C pins toggled when their CS is not selected.

The existing ST7735 libraries I looked at do not use a canvas, but send the pixel data resulting from drawing commands via SPI. Assuming 16-bit RGB color, each 128�128 frame needs 32768 bytes; 128�160 needs 40960 bytes. With a full canvas, it would be much easier to support the eight SPI displays, because then the SPI transfers could use DMA. If the library is the only one using that SPI bus, you could avoid the CS pin restrictions by reserving the hardware CS pin (i.e., keep it unused), and let the SPI library think it is using hardware CS pins, too.

There is at least one seller on eBay with RGB TFT display modules (of various sizes) that support I2c. These have some sort of microcontroller on board, and you can set different I2C addresses for each module, so you should be able to control several of these on the same I2C bus (without the I2C multiplexer). Instead of pixel data, you send the drawing or writing commands as text to the desired module, so no library per se is needed. They also cost about three or four times as much as the above 7-pin display modules.

There are up to 1.3" single-color OLED displays using the SSD1306 controller. I have the white ones, and I like them quite a bit. Make sure you look at the four-pin ones. In the yellow/blue models, the pixels near the top are yellow, and the rest are blue, on a black background. So, each pixel is always the same color if lit: monochrome. The larger ones (0.96" and 1.3") are 128�64, the smaller (0.91") are 128�32.

Use eight identical I2C displays, and an I2C multiplexer like Adafruit sells (or a cheap eBay clone). You only need minimal changes to the Adafruit SSD1306 library, to fully support the I2C multiplexer. This is because the library only communicates with the display at init and display times. At init time, all displays need to be initialized (a new constructor function, that takes the heights of the up to eight displays into account, and drops the splash). A new variant of the .display() method takes an additional parameter, to choose the display to be updated with the current canvas; you can even update the same canvas to multiple displays. You can also add helpers so that the canvas is easy to load from a 1024- or 512-byte (128�64 or 128�32 bit) raw binary file on a microSD card (say, using Paul"s SD library), in case you want to display nice pre-drawn icons, and optionally add text/lines/bars on top. Drawing/writing text to the canvas is done using Adafruit GFX library. There is only one canvas, but you can send it to any display or displays. (You can obviously also keep the icons in Flash, but there isn"t that much room there.)

hy-1.8 spi tft display quotation

To give our Arduino the chance to tell sometimes what’s actually going on and do not always use the serial monitor, it is time to buy him a small display. Fortunately, there is a wide range of available shields and breakout boards. In this case, we use a 1.8 inch TFT color display with 128×160 pixels (HY-1.8 SPI, the name on the board), equipped with an SPI interface, which gives us the opportunity compared to displays with parallel interface, to have more free ports for other applications available.

Through the – in comparison to a pure character display – high resolution, we also have enough space to display various information about the status of our programs/circuits.

But now we continue with the practical part and wiring the display to the Arduino, in this case an Arduino Nano, which can be replaced by an other Arduino type. So we connect the pins as shown in the table below.

1afbgchdie1j5510101515202025253030353540404545505055556060afbgchdiejD12,MISOD11,MOSI,PWMD10,SS,PWMD9,PWMD8D7D6,PWMD5,PWMD4D3,PWMD2GNDRSTRX0TX0D13,SCK3,3VAREFA0A1A2A3A4,SDAA5,SCLA6A75VRSTGNDVIN1.8 SPI TFT 128*160HY-1.8 SPILED -LED +SD CSSD MOSISD MISOSD SCKCSSCKSDAA0RESETNCNCNCVCCGND

Now we need to download 2 libraries to control the display. This would on the one hand the Adafruit library for controlling the display chipset (ST7735) and also a ”graphics. After we have added them to the Arduino libraries, we upload the following sketch to our Arduino:// Grafiktest 1.8 Zoll TFT-Farb-Display (HY-1.8 SPI)

To give our Arduino the chance to tell sometimes what’s actually going on and do not always use the serial monitor, it is time to buy him a small display....

hy-1.8 spi tft display quotation

Note: ILI9163C Datasheets improperly (not traditional) refer to SPI as a Serial Interface. Please see timing diagram in 6.2.1 called "3-line Serial Interface Protocol"

The DT018ATFT does not support 4-Wire SPI (also known as "4-line Serial Interface Protocol", 8-bit data, which includes a separate D/C signal line). DT018ATFT does not support this since the signal in ILI9163C datasheet called "SPI4" is hard coded to 0. However, a custom version of the FPC can be tooled to expose the proper 4-Wire SPI signals - please contact us for more details.

The provided display driver example code is designed to work with Microchip, however it is generic enough to work with other micro-controllers. The code includes display reset sequence, initialization and example PutPixel() function.