arduino lcd displays garbage pricelist
The lcd.clear function is slow and can lead to screen flicker especially if done every time through loop(). Overwrite old data with spaces, reset the cursor position and print the new data and only update the screen when the data changes will help prevent flicker.
Hi, i have and LCD 16x2 connected to my Leonardo. I works properly with all the examples son the connection is ok. But I add the LCD to another sketch and it"s just showing garbage, and i have no idea why. I just want to show "Writing:" in the first row, and the variable nombrearchivo in the second row. All of this works using serial, so my only problem is the LCD.
Hello, guys! I am new to Arduino and I am trying to make digital thermometer. Everything works, but problem appears with Lcd screen. I searched through various topics on forums, but none of them seem to solve my problem.
4 - I"m calling lcd.begin(16,4) at the setup, however I was still having an offset when trying to change lines, hence why I had to cobble up those offsets. Maybe I"m missing something here, as I"m pretty sure this shouldn"t be needed.
A simple thing to try that has helped me in the past. Before you do a block of updates to the LCD, use lcd.noDisplay() and then turn it on again at the end with lcd.display(). Thgis stops the display updating immediately but changes the memory buffer of the display. It makes no difference to the perception of updates on the display but fixed my (occasional) odd character apprearing on the screen.
When you get some caps, get a bunch of the .1uF caps, they make good bypass caps. You"re right, filtering is a good thing. You aren"t switching any brushed DC motors are you? Depending upon your wiring and the stuff around it, any of the wires running to the LCD could be carrying noise in. Are you using any of the pins for other purposes, or anything where you might be accidentally leaving on in the wrong state (input vs. output). I don"t know if you have any ISRs, but it could be that one is running and expecting some pin to bin in a specific state, but main level code occasionally changes it right before the interrupt fires. Just food for thought.
I am trying to build an Exposure Meter with Arduino Uno. The project is supposed to take values for several parameters as input and give the results for four other parameters based on the inputs given. My code ios given here.
Now the problem is after setting the values when I go in the output options the LCD shows some garbage display before showing the desired output. I seek help to eliminate this problem
I am current considering use of this display but have not ordered it yet. I am a little hesitant due to the number of users reporting problems with these displays.
I had a project that needed some live data display, and looking for the cheapest low-power solution for our loggers lead me to the Nokia 5110 LCD. Once you get the backlight current under control, you can power the entire display from a digital pin, and if you use shiftout for soft SPI you can then get rid of the Reset and CS control lines. This brings the display down to any four wires you can spare on your build (incl. the power pin) and a ground line. This is much more manageable than what you see with the standard hookup guides if your mc is I/O limited like our pro-mini based loggers:
This LCD (I have the old-old kind) is absolutely my favorite. Yes, it has a board-to-glass connector that ranges from bad to abysmal, but it offers such a simple interface and so many pixels for so little money (obviously less if you buy only the panel.) Here are some clever things I"ve discovered:
Will fully operate on as little as 2.0V. That"s power (Vdd) and i/o. It can be driven at 2MHz at these speeds; in fact, the LCD will work at even lower voltages but the contrast fades quickly and your microcontroller will likely approach its lower voltage limit too.
The LCD will work with the chip-select pin (SCE) tied to ground. This means that if it"s the only device on the SPI bus, don"t bother framing the i/o with a chip-select pin. If the bus is shared, frame the entire transaction, not every individual byte you send to the LCD. Interestingly, the display also seems to work fine with a floating Vdd pin - it must draw sufficient power just from i/o via clamping diodes; not surprising when you consider how low-power it is.
The Vout pin: Looks like you don"t have to worry about it on this product, but the bare LCD will generate positive 6-9V on that pin. This wasn"t totally clear to me from reading the datasheet.
(5) If you are using a PIC to run ths thing, and using the PIC"s USART or EUSART in a synchronous mode, be sure to note that the LCD controller expects the MSBit of each byte to be transmitted first on the serial line. The PIC 18F EUSART transmits the LSBit first. For now, I have lots of extra code space, so I"ve wasted a 256-byte section on a lookup table that reverses the bits in a byte. This way, I just write my initialization code normally, and I have a TransmitCommandByte() function that looks up every byte it sends so I don"t have to think about that.
Thank you! I"m not quite sure I do want an LCD yet, to be honest, I"m just considering the different options available. I"ll check out the Sharp component, thanks!
Advice for others: It took me quite a while to get this working on an ARM Cortex. Since there is no way to read from the LCD, it is very hard to know if SPI is working without doing everything perfectly. SO:
The problem I had was solid black display screen. No matter the combination of bias and contrast values that I set. The unit wasn"t totally defective, because under a strong lamp light you could see the display trying to show the letters and pictures that are in the tutorial for Arduino that I got from SFE.
The problem with these displays, and it seems to be common to all the manufacturers, is that the PCB material is too thin. After a month or two, the board slowly bows away from the glass display panel under pressure from the conductive rubber connector strip. Pressing on the top centre of the metal part of the display makes it work again, but only temporarily.
If the LCD module is soldered to another board and the two top screws installed and tightened carefully to pull the bow out of the module it seems to prevent (or solve) the problem.
The Arduino code works fine for me, but I can"t make any thing work with Pic. I found this code at http://www.sunbizhosting.com/~spiral/ , but can"t figure out what I"m doing wrong.
I"m using voltage dividers to supply 3V in the inputs of the LCD, because of the Arduino works in 5V. LCD Vcc and LED are powered from the 3.3V output of the Arduino. The LCD only displayed something when I used: R1=470K,R2=820K. I have tried several values to obtain 3V, but the LCD showed nothing. I don"t understand that.
I"m interfacing this LCD with ATMEGA 32. Its been more than a week that I"ve been trying to get it right. All I get is the LED dimming effect. Here is my initialization code..CE=1;
I have a similar board made by mib-instruments and bought from ebay years ago. It has been my standard spi test tool because it"s so easy to work with. http://www.ebay.com/itm/Nokia-5110-LCD-84x84-dot-martix-backlight-PCB-RED-/320684678723 (specs http://i1119.photobucket.com/albums/k636/mib_instruments/diy/LCDC2A0SPEC.jpg)
I wanted another one so i bought the sparkfun item but it doesn"t quite work: it flickers and blackens occasionally but my graphic never shows up. Is there a bulletproof arduino sketch I could use to test it?
These LCD"s need cleaning. I have an average failure rate of about 15-20% on delivery. The most common problem is that the contrast is too high, and there"s constant flickering / changing of contrast compared to the other 80% of them.
The solution is fairly simple, unclip the LCD from it"s board and clean the pads on the PCB with 99% IPA. Then remove the lcd back plate and contact bar. Sometimes the contact bar is stuck fairly well to the glass, peel off carefully. Clean the contacts on the LCD glass with IPA, if any residue from the contacts is left on, rub it off carefully with IPA / tissue.
Never mind, I had no problem running it at 5V directly from the Arduino with the contrast value bumped up to 45 or above. With 10K ohm resistors on the control lines as shown in the sample hookup, I get a blank screen. Also removing the backslash from the sample code got garbage characters, so I left it in.
Anyone taken these things apart yet? You know the flexible rectangular blocky thing that connects the contact pad on the board to the LCD itself? What are these called?
Got mine running last night and found two problems with the code, one of which was the backslash a couple of others have already noted. Second was that the LCDCharacter() writes two blank vertical lines, one before the character and a second after, when only one is needed. Without the extra blank you get at least one additional character on each line. I"ll probably also move the ASCII font table to PROGMEM space to save on RAM and then start to work on some big digits for a clock.
I"m using this LCD for a large Arduino UNO project, but I"m running out of SRAM memory space. I was wondering if I used PROGMEM on the LCD ASCII array if that would help. If so, does anyone know what the right code for this would be? After looking through a lot of PROGMEM examples, I"m not advance enough to really grasp everything that"s going on. Any help you can give would be a great help. Thanks in advance!
I used one of these LCDs with an Arduino to display GPS information. I wrote a few functions that can display large numbers (28 px high) if anyone is interested, this lets me display speed, heading etc. A writeup of my project is here: http://mechinations.wordpress.com/2014/04/07/gps-sailing/
These are great displays. I ran into a problem using them with the nRF24L01+ radio transciever, which requires the use of the SPI bus. If one attaches both the radio and the display MOSI and SCK pins to pins 13 and 11 as instructed in the hookup guide, the SPI traffic of the other device (in this case the nRF24L01+ radio) will prevent the display from functioning. The easy solution is to move the Nokia 5110 MOSI and SCK pins to any other digital pin. This should be made clear in the hookup guide, where it says there is no choice but to use the hardware SPI pins for the display. I found out that is not true at all. I hope his helps others with the same problem. Despite the occasional bad display these carry much more information that the comparably prices 16 x 2 LCD and use fewer pins too boot. What a deal!
Hello people, is there anyone that can tell me the height of this display. I mean the displays height 45x45 mm is the size but i wonder the thickness of it. Only the display not the pcb. I couldn"t find this info on the datasheet. Best Regards..
This is a great display for the money, certainly the best bang for the buck of you can live with B&W and lower res graphics. I have a lcd driver for Arduino I will post on http://www.marchdvd.com/5110 so take a look there it draws text aligned on pixels boundaries of 8 and draws lines and has invert video options.
I just started messing around with this LCD using a STM32F103 microcontroller running at 72MHz... it works great. The only problem I had, and I suspect others might have if they are using fast processors, is that you have to deliberately introduce the setup and hold time delays on the DC pin... if you don"t you will get spurious pixels written to the display. I used a delay of 10uS, although the spec says 100nS is fine.
Just a heads up to anyone trying to run the Arduino example. Make sure you plug Vcc into the 3.3V output on the arduino board. I also had to change the line
Can someone help me edit the code in the arduino example to display readings from a sensor, I"ve looked through all of the links and searched through the Internet but I couldn"t find an example anywhere, it would really help me if someone could tell me how to do this.
Has someone already been able to get this display to work with an Arduino Due? For some reason I cannot get it to work while it does work perfectly on my Mega. Any ideas why it may not work?
Added a driver for this display to the object-oriented arduino platform; Cosa. Please find example code at https://github.com/mikaelpatel/Cosa/blob/master/examples/Drivers/CosaPCD8544/CosaPCD8544.ino and source code at https://github.com/mikaelpatel/Cosa/blob/master/Cosa/IOStream/Driver/PCD8544.hh.
I just spent the last couple hours struggling with this LCD because of something very stupid of me. I was using an atmega328p in AVR-GCC and using hardware SPI. Thinking i didn"t need MISO I hooked it to DC. The LCD worked absolutely fine until I tried to set the x and y position in the ram. It started acting weird every time I tried it. Finally I put dc to another pin and BAM NO PROBLEMS. Looking back I feel pretty stupid but hopefully this post will save someone else the same mistake. Other than that great LCD for my projects
The Energia folks have an example program for this LCD and the TI Launchpad written using their Arduino style tooling. I"ve updated their example and added the ability to report back the temperature over a UART. It is a very simple hardware setup since both systems are 3.3v. http://joe.blog.freemansoft.com/2012/08/digital-thermometer-with-ti-lanchpad.html
2) I"m really struggling to find unformation on using this display with the Arduino. The example (pcdtest.pde) provided with the Adafruit libraries (Adafruit_PCD8544 and Adafruit_GFX) won"t even compile and the only library I have found that I can make any sense of using is the PCD8544 library from Google (http://code.google.com/p/pcd8544/downloads/detail?name=PCD8544-1.4.zip) and I can"t really uderstand how to do graphics with that.
I tried using the "LCDAssistant" package to create a logo from a graphic that I resized to a b&w jpg of 84x48 but every byte generated was 0x00 so that was not right. I tried fiddling with the settings (flying blind) but still got nowhere - does anybody know the settings for LCDAssistant and this display and has used it successfully?
One of the things that I test regularly is a commercial item that features a 16x4 (HD44780) display. Currently I have a 20x4 on a flying lead that I plug in to determine if a display failure is down the lcd display or the main board.
I am using arduino example and while i am getting proper images and text i also get some odd horizontal flickering. It looks like several horizantal lines across the screen on the background with image/text on foreground. I tried switching to only use digital pins on my arduino leonardo but i still see this behaviour. Any ideas?
Might I suggest you (SFE) source some of the Electronic Assembly"s LCD Dog-S series. I think they would be a step up from these at a reduced price. I don"t think that they website is up to date, but their part number is LED39x41-GR.
I finally got around to running this LCD on my 3310 PCB. It is working fine with one minor problem. The SF 3310 display hides to first line of bytes for some reason and I had to offset everything to compensate. The 5110 doesn"t do this as behaves as expected. I haven"t heard anyone else report this so maybe my initialization code is different.
Using a 3V source, my LCD often worked OK using bias 0x14 like the other examples, but sometimes it would appear gray and faded. The fading would lessen if I touched the panel lightly with my hand for a few seconds, then let go, so maybe it"s a temperature-dependent thing?
Ack! After two days of working nicely with 0x15 bias, I reset the board today, and the LCD appeared way over-dark. I changed the bias back to 0x14 and it looks perfect. What the heck?! I think there must be some temperature-sensing or temperature-dependence going on, so the same init values may produce good-looking results one day but not the next.
Does anyone know whether this can be stripped of its backing so it can be used in transmission? I would love to use this as a modulator for a laser beam. Or if someone knows a similarly cheap transmission LCD that would be fine too.
For those of the arduino persuasion, I wrapped some simple methods up in a library based on this arduino page http://www.arduino.cc/playground/Code/PCD8544.
Stuck. Blank LCD. Added 0x20, changed Vop to 0xB3. Guessing connections may be the issue? 3.3v for LED and VCC. GND to GND. Remainder connected to Arduino via voltage dividers. What am I doing wrong?
This is a great little lcd. When I first wired it up, the backlight was shorted (accidentally) against my 5v rail, so i got some magic smoke, and burnt to LEDs but it re-soldered the offending joints and it works very well now. Something to note: the refresh and write times are much, much slower if you use 5 volt logic. I stuck in a logic level converter and it ran at least 5x faster.
You can also use FastLCD to convert your bitmaps - google it. It outputs BASIC code, but you just search and replace &h to 0x and you"re grand. It has the added advantage of being an editor for touching up output.
I recently obtained a virtually identical LCD from a Nokia 5160, and although its backlight LEDs are green, not white and conversely use different voltages, I had success hooking up the LEDs" Vcc pin to a PWM capable pin on the microcontroller, allowing me to control backlight intensity (I didn"t need a current limiting resistor for this either, but adding one will help reduce current drain on the controller).
Seems like the PCD8544 library does it"s own SPI bit managing and it really doesn"t like me using the SD library (also talks SPI) at the same time. I"ve made sure I"ve got all the SPI pins matching for both libraries (MISO, MOSI, Clock are the same and each device has it"s own Select), but it looks like the SD.begin() call just breaks the SPI bus for the 5110 and it becomes non-responsive. The LCD works just fine if I don"t initialize the SD library and the SD card works fine if I do initialize the SD card.
I"m pretty sure I tracked down the problem- the PCD8544 library uses software SPI while the SD library uses hardware SPI and I"m pretty sure the Arduino can"t do both over the same SPI clock/miso/mosi pins. Anyone know if this LCD will work with hardware SPI?
I"ve had issues with the LCD not showing anything intermittently. You got to make sure that all the connections are secure, and for the reset pulse, be sure to have a delay that"s 30-50 milliseconds long.
As much as I love SFE products and will continue to order from them, this is one product I would not recommend. The connection between the LCD unit itself and the carrier board is via those rubber polymer connectors. All the planets must line up properly for them to work. In this case, the carrier board was warped preventing the connection from working. You will find other such remarks in the comments area.
I"ve followed the linked-to Arduino example and I get nothing on the display. Should it just work without any other components? The link mentions a possible cap on VOUT but there"s no such pin. Googling has suggested my Duemilanove"s digital pins will be @5V but I need 3.3V?
Don"t do this. Each divider will be burning 20x the entire amount of current that the display needs to function, and the whole assembly will waste 100x the LCD"s needed power and many, many times more than even the atmega needs to run at full speed. This will kill battery life.
Either use higher resistor values, n-mosfets for level conversion (see this Sparkfun BOB for an example), or drive the whole system on 2.0V - 3.3V (don"t know how easy that is with an Arduino.)
Hi, I just bought this wonderful LCD but I"m having huge huge problems connecting it..could anyone please point me in the right direction? Since there are pins that aren"t metioned in the code, for example the 6 - DNK(MOSI)...
Does anyone know the diode rating and package size, also does anyone know where to get the rubber ferroius connector behind the LCD mine is defective. Has anyone come into issues with the breadboard the LCD is connected to, a few aren"t working for me.
Yes, we have noticed that the PCB was bowing and as a result the LCD now only works when we press down on the metal strip at the top. I hope that only a small number of these LCDs have this problem. We"re expecting a shipment to arrive today, I will be running more tests.
Edit: After leaving glue to dry overnight, LCD simply does not turn on anymore. All the connections are good, but absolutely nothing shows on the LCD now at all. Only the LEDs come on.
Did you get either of the LCDs to display anything, at any time? Is it possible that the connections were OK, but you were not initializing or driving them correctly? Or did they start to work at one point, and then fail at some later point?
Note that the backlight LED"s are soldered onto the breakout board, and have nothing to do with the circuitry of the controller and LCD. So just because the backlights are shining doesn"t tell you anything about the operability of the LCD itself.
It depends on the code that you are using to control the LCD. If you are using the Arduino example above, the pins are defined in the beginning of the code.
FWIW I have connected this LCD with a 5V power supply to a 5V Arduino board with no level conversion and it worked. Presumably this may reduce the lifetime of the LCD.
I am attempting to use this with a Duemilanove (ATmega328). Up til now, I have been powering it with the 3.3V line, including the LED. The datasheet for the LDC claims: "VDDmax = 5 V if LCD supply voltage is internally generated (voltage generator enabled)." The logic levels should be kept from 2.7V to 3.3V. Since the Duemilanove uses 5V logic levels, I am using a simple voltage divider on the communication line with no issues.
The maximum logic value of 3.3 volts made me cautious of driving the LCDs at the native 5 volts of my Teensy AVR. That said, running purely off 5 volts seems to do no harm to the LCD.
For those interested, I have taken a few measurements of the current draw of the LED backlight of my LCD. As I said earlier, powering the LED with 5V external has caused permanent damage to one, perhaps two of the four LEDs. So, use the following graph at your own risk.
Is there any more documentation available for the additions to the LCD? For example, the datasheet has no information (that I could find, at least) on the LED. Everything seems fine on 3.3V, but what is the current limit on the LED? (note: if it wasn"t for work, I would just mess around with it myself.)
Here is a PicBasic Pro example for the 3310, which should be compatible with the 5110. http://www.picbasic.co.uk/forum/content.php?r=174-Using-Nokia-3310-LCD
If anyone doesn"t have experience with this LCD, take a peak at the Arduino example link above to see just how easy it is to use. If you use plain C on your AVRs, I have sample code on http://tinkerish.com.
Frequently Asked Questions About MakerFocus 1.44 TFT LCD Screen, 1.44 inches TFT LCD Module, 128x128 SPI, Picture Graphic Color Screen, 51 STM32 Ar duino Routines to Replace 5110 OLED 5V for Ar duino in Guam
Where can I buy MakerFocus 1.44 TFT LCD Screen, 1.44 inches TFT LCD Module, 128x128 SPI, Picture Graphic Color Screen, 51 STM32 Ar duino Routines to Replace 5110 OLED 5V for Ar duino online at the best price in the Guam?
desertcart is the best online shopping platform where you can buy MakerFocus 1.44 TFT LCD Screen, 1.44 inches TFT LCD Module, 128x128 SPI, Picture Graphic Color Screen, 51 STM32 Ar duino Routines to Replace 5110 OLED 5V for Ar duino from renowned brand(s). desertcart delivers the most unique and largest selection of products from across the world especially from the US, UK and India at best prices and the fastest delivery time.
Is MakerFocus 1.44 TFT LCD Screen, 1.44 inches TFT LCD Module, 128x128 SPI, Picture Graphic Color Screen, 51 STM32 Ar duino Routines to Replace 5110 OLED 5V for Ar duino available and ready for delivery in Guam?
desertcart ships the MakerFocus 1.44 TFT LCD Screen, 1.44 inches TFT LCD Module, 128x128 SPI, Picture Graphic Color Screen, 51 STM32 Ar duino Routines to Replace 5110 OLED 5V for Ar duino to and more cities in Guam. Get unlimited free shipping in 164+ countries with desertcart Plus membership. We can deliver the MakerFocus 1.44 TFT LCD Screen, 1.44 inches TFT LCD Module, 128x128 SPI, Picture Graphic Color Screen, 51 STM32 Ar duino Routines to Replace 5110 OLED 5V for Ar duino speedily without the hassle of shipping, customs or duties.
Is it safe to buy MakerFocus 1.44 TFT LCD Screen, 1.44 inches TFT LCD Module, 128x128 SPI, Picture Graphic Color Screen, 51 STM32 Ar duino Routines to Replace 5110 OLED 5V for Ar duino on desertcart?
Yes, it is absolutely safe to buy MakerFocus 1.44 TFT LCD Screen, 1.44 inches TFT LCD Module, 128x128 SPI, Picture Graphic Color Screen, 51 STM32 Ar duino Routines to Replace 5110 OLED 5V for Ar duino from desertcart, which is a 100% legitimate site operating in 164 countries. Since 2014, desertcart has been delivering a wide range of products to customers and fulfilling their desires. You will find several positive reviews by desertcart customers on portals like Trustpilot, etc. The website uses an HTTPS system to safeguard all customers and protect financial details and transactions done online. The company uses the latest upgraded technologies and software systems to ensure a fair and safe shopping experience for all customers. Your details are highly secure and guarded by the company using encryption and other latest softwares and technologies.