a-si active matrix tft lcd h-ips quotation
IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.
The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.
A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.
Figures 3a–d show optical and SEM (scanning electron microscopy) images of the fabricated CL and CLSE pixel structures. Each structure has the same pixel size (80 μm × 240 μm) and minimum pattern size (5 μm). As shown in Fig. 3d, the white line patterns are the ITO interdigitated pixel and common electrodes. They are well connected to the source electrode and gate line via through holes, and the common electrodes at both ends cover the underlying data lines to prevent electrical noise from being applied to the LC layer. As will be shown later, this noise shield electrode (SE) is what makes the black matrix above the data line unnecessary
Optical and SEM (scanning electron microscopy) images of fabricated (a, b) CL and (c, d) CLSE pixel structures. The five white line patterns in (d) are the ITO interdigitated pixel and common electrodes. (e) Images from the normal direction and from 50 degrees to the left and right of a 2.3-inch-diagonal display incorporating the IPS TFT-LCD panel. (f) The three-black matrix (BM) patterns (top: BM covering both gate and data lines, middle: BM covering only the data lines, and bottom: without BM) and (g) optical images of pixels without BM (left: LC on and off voltages supplied to every other data line, right: LC off voltage supplied to all data lines).
Figure 3e shows images from the normal direction and from 50 degrees to the left and right of a 2.3-inch-diagonal display incorporating the IPS TFT-LCD panel fabricated in our laboratory, (f) the three black matrix (BM) patterns (top: BM covering both gate and data lines, middle: BM covering only the data lines, and bottom: without BM), and (g) optical images of panel areas without the BM (left: LC on and off voltages supplied to every other data line, right: LC off voltage supplied to all data lines). As can be seen in the image from the normal direction, the brightness and contrast of the display area with the top BM and middle BM patterns are almost the same, but the contrast of the display area without the BM is relatively lower because of the lower darkness level of the LC off pixels indicating “HITACHI”. As shown in Fig. 3g, this is due to light leaking through the aperture between the data line and adjacent common lines. Therefore, in the CL structure, the BM on the drain line is necessary to obtain a high contrast ratio by shielding light leakage. This is the same as in the conventional structure. On the contrary, there is no light leakage along the gate line through the gaps between the gate line and edges of the pixel/common electrodes, as is clearly shown in Fig. 3g. This is a unique advantage of the CL structure because the conventional structure must shield these gaps with the BM to prevent light leakage. The suppression of light leakage along the gate line in the CL structure is due to the driving scheme (see Fig. 2b,a for a comparison with the conventional structure). During the holding period (tOFF) in the conventional structure, regardless of the pixel voltage, Vp (including Vp = 0), nonzero Vgp and Vgc are always applied to keep the TFT off, and these voltages are applied to the LC layer, inducing light leakage as reported in
Figure 4a shows the gate voltage (Vg) dependence of the panel brightness, while the inset shows that of the TFT current (transfer characteristics). The gray curves are for the conventional IPS TFT-LCD with the TFT before enhancement, the common line, and the matrix BM (MBM) shown at the top of Fig. 3f. The blue curves are for the proposed CL structure with the enhanced TFT and the stripe BM (SBM) shown in the middle of Fig. 3f. In this case, enhanced TFT characteristics were obtained by using an MNOS TFT without back-channel oxidation that was enhanced by the BTS process. In both structures, the threshold voltages for panel brightness, defined by extrapolating the straight part of the brightness curves, reflect those of the TFT transfer curves defined as Vg at a drain current of 10−12 A, and they are well matched to be 4 V and 9 V, respectively. The maximum brightness for the CL structure is 137% higher than that for the conventional structure, which is due to the increase in the aperture ratio from 38 to 52% that results from the elimination of the common line and the BM covering the gate line.
(a) Dependence of panel brightness and TFT current on gate voltage for the conventional pixel structure of 38% aperture ratio (AR) with matrix black matrix (MBM) over both drain and gate lines and proposed CL pixel structure of 52% AR with strip black matrix (SBM) over only the drain lines. Transfer characteristics before and after bias temperature stress (BTS) treatment are shown in the inset. (b) Charging and (c) holding characteristics of enhanced TFT of the CL structure with gate as a common line. Vg and Vd in the TFT ON state are 30 V and +/−7 V, respectively.
To estimate the charging and holding characteristics of the MNOS-enhanced TFT in the panel, the gate TFT ON and OFF time dependences of the panel brightness were measured (Fig. 4b,c). The charging characteristics in Fig. 4b are plotted as a function of tON at tOFF = 16.6 ms, Vg = 30 V, and Vd = ± 7 V. The holding characteristics in Fig. 4c are plotted as a function of tOFF at tON = 34 μs. 95.1% charging at tON = 34 μs and 95.3% holding at tOFF = 16.6 ms indicate that the enhanced TFT has sufficient charging and holding performance to drive a standard VGA (640 × 480 pixels) panel (the number of scanning lines is estimated as tOFF/tON = 16.6/0.034 = 488).
To confirm the driving conditions for the CL structure without the BM along the gate line (with the SBM), the tOFF dependence of the contrast ratio (CR) in the CL panel was further investigated as shown in Fig. 5a, where CR is plotted as a function of tOFF for the CL panels with the matrix BM (MBM) and the strip BM (SBM). The inset shows the brightness in the bright (Vd = 7 V) and dark (Vd = 0 V) states of the CL panel with the SBM as a function of tOFF and an optical image of the panel with tOFF = 6.4 ms. The SBM and MBM panels keep CR higher than 240 with tOFF > 16.6 ms, the frame period of a display panel without flicker being noticeable to the human eye. both panels decrease CR when tOFF is less than 16.6 ms; the CR of the SBM panel decreases faster than the CR of the MBM panel. As shown in the inset, the decrease in CR was due to the increase in dark-state brightness with decreasing tOFF as light leakage increases along the gate line. This light leakage is induced by the voltage Vgp = Vgc = VgON = 30 V applied only for 34 μs during the TFT ON (charging) state, which is 1/488th the duration, tOFF = 16.6 ms, of the TFT OFF (holding) state with Vgp = Vgc = VgOFF = 0 V, but the ratio increases with decreasing tOFF and becomes effective enough to switch on LC layer and induce light leakage. However, it should be stressed again that the CL panel with the normal holding (TFT OFF) time of 16.6 ms does not suffer from the light leakage along the gate line, so the aperture ratio can be increased by removing the BM along the gate line.
(a) Contrast ratio (CR) for CL panels with matrix BM (MBM) and stripe BM (SBM) plotted as a function of tOFF. The inset shows the brightness in the bright (Vd = 7 V) and dark (Vd = 0 V) states of the CL panel with the SBM as a function of tOFF and an optical image of the panel with tOFF = 6.4 ms. Vd (= VLC) dependence of (b) brightness and (c) contrast ratio of the CLSE panel. Insets of (b): optical images indicating the elimination of the BM from the CLSE structure (upper left) and the MBM in the conventional structure (lower right). Insets of (c): CLSE panel composed of different areas with three different pixel structures and aperture ratios (ARs), i.e., CLSE structure without BM (60%), CL structure with SBM (52%), and conventional structure with MBM (38%).
Figure 6 indicates the effect of bias temperature stress (BTS) on the TFT characteristics. As the stressing time, tS, of the positive gate stress voltage, Vst = + 77 V, increases from 0 to 3600 s, the transfer (Id-Vg) curve shifts in the positive direction (Fig. 6a). Vth is defined as Vg at which Id = 10−12 A and ΔVth is defined as the Vth shift from the initial value via BTS. As shown in Fig. 6b, ΔVth increases logarithmically with increasing tS: ΔVth = 2.17 + 4.93 × log (tS). The mechanism behind the gate-stress-induced Vth shift is electron tunnel injection from the a-Si:H semiconductor into the SiOx gate insulator. For confirmation, ΔVth of MNOS TFTs with different SiOx thicknesses is plotted as a function of the electric field applied to the SiOx layer in Fig. 6c. Here, the thickness of the SiOx was varied (5, 10, 20, 50 nm), while the SiN thickness was fixed at 200 nm. The electric field applied to SiOx, Eox, was calculated using the following equation,
Effect of bias temperature stress (BTS) on TFT characteristics. (a) The transfer (Id–Vg) curve shifts in the positive direction with positive gate bias stress of Vst = + 77 V over the duration of 0–3600 s. (b) ΔVth, defined as the Vth shift from the initial value via BTS, increases logarithmically with increasing tS, following ΔVth = 2.17 + 4.93 × log (tS). (c) ΔVth of MNOS TFTs with different SiOx thicknesses from 5 to 50 nm as a function of the electric field applied to the SiOx layer.
Figure 7a shows the effect of back-channel oxidation (BCO) and passivation (PAS) on the Id-Vg characteristics of the MNOS TFT. The Id-Vg curve with Vth = 5.1 V is further enhanced to Vth = 10.9 V after BCO, although there is a slight degradation of the slope of the current increase in the sub-threshold region. The slope recovers after PAS without any change to the enhanced characteristics
(a) Effect of back-channel oxidation (BCO) and passivation (PAS) on Id–Vg characteristics of MNOS TFT. (b) Vth and Vth standard deviation, σVth, after BTS and after BCO without BTS treatments and (c) SiOX thickness as a function of position along gate-line, x.
The advantage of BCO over BTS is the uniformity of the enhanced characteristics; Fig. 7b shows the distribution of the enhanced Vth as a function of position along gate-line, x, for the MNOS TFTs connected with a 90-mm-long gate line in the TFT substrate after BTS and BCO treatments. The average value of Vth and the standard deviation, σVth, for pristine TFTs before BTS or BCO, are 5.1 V and 0.35 V, respectively. After BCO, Vth is uniformly enhanced, with an average Vth = 11 V and σVth = 0.4 V without increasing σVth. On the other hand, after BTS, Vth is nonuniformly enhanced with an average Vth = 9.3 V and σVth of 1.4 V. In particular, Vth increases linearly as a function of position along gate-line, x. As the gate SiOx thickness linearly decreases, from (54 nm) to (47 nm) with increasing x as shown in Fig. 7c, the increase in ΔVth after BTS with x is due to increase in the electric field applied to SiOx as shown in Fig. 6c and Eq. 1.
It has been shown that the Vth of the MNOS TFT is independent of the gate SiOx thickness when the thickness is more than 5 nm8a, Vth of the MNOS TFT with the BCO treatment becomes almost independent of the BCO SiOx thickness. As shown in the inset, the thickness of BCO SiOx composed of oxidized a-Si:H linearly increases with BCO processing time, and the Vth increase almost saturates at a BCO SiOx thickness greater than 5 nm. Therefore, the enhanced MNOS TFT after BCO has a uniformly high Vth that is robust to thickness fluctuations of the gate and BCO SiOx layers. BCO also has an advantage over BTS in terms of the stability of Vth as shown in Fig. 8b, which plots the annealing time dependence of Vth for BCO and BTS. In this experiment, the stoichiometry (x) of the gate SiOx was 1.78 for BTS and 1.78 and 1.9 for BCO. The annealing temperature in the N2 atmosphere was 200 °C. In the case of BTS, Vth decreased to the pristine value after approximately 5 h of annealing, while Vth decreased more slowly in the case of BCO. In particular, the annealing time required for Vth to fall to 7 V was 7.5 times longer than that of BTS. Increasing the stoichiometry (x) of the gate SiOx dramatically improved the BCO-enhanced Vth to as much as 11 V, which was stably maintained after 24 h of annealing at 200 °C.
(a) Dependence of Vth on thickness of back-channel oxidized (BCO) SiOX. The inset shows the SiOx thickness dependence on the BCO process time for RF powers of 200 W and 500 W. (b) Stability of Vth as a function of annealing time for three different TFTs with gate SiOx stoichiometry, x = 1.78 and bias temperature stress (BTS), x = 1.78 and BCO, and x = 1.9 and BCO. The temperature of annealing in the N2 atmosphere was 200 °C. (c) Band diagram of back-channel oxidized MNOS TFT. The red arrows show the electric dipoles at the SiOX/a-Si:H and a-Si:H/BCO SiOX interfaces.
A schematic band model for the MNOS TFT with the BCO treatment and the sectional structure of the interface between the a-Si:H and gate and BCO SiOx are shown in Fig. 8c. The uniformly high Vth that is independent of SiOx thickness is due to the dipoles generated at the channel and back-channel interfaces between a-Si:H and SiOx8 of reference
We can design and customize segment, character, graphic LCD Display for you with different size, shape, display icons. Welcome to contact us for details. We would like to help you develop your project.
TT169RAN11A is a color-active matrix LCD touch module, which includes amorphous silicon TFT (thin-film transistor) It is composed of a color TFT-LCD panel, driver IC, FPC, and a backlight unit. The module display area contains 240X280 pixels and can display up to 262K colors. This product accords with RoHS environmental criteria.
Display model TT800RGN02A is a color-active matrix thin-film transistor(TFT)liquid crystal display(LCD)that uses amorphous silicon TFT as a switching device. This TFT LCD has a 8 inch diagonally measured active display area with (800 horizontal by 1280 vertical pixels)resolution.
A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.
In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.
The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.
Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.
The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.
The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.
Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.
TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.
Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:
External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.
The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.
New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.
Backlight intensity is usually controlled by varying a few volts DC, or generating a PWM signal, or adjusting a potentiometer or simply fixed. This in turn controls a high-voltage (1.3 kV) DC-AC inverter or a matrix of LEDs. The method to control the intensity of LED is to pulse them with PWM which can be source of harmonic flicker.
The bare display panel will only accept a digital video signal at the resolution determined by the panel pixel matrix designed at manufacture. Some screen panels will ignore the LSB bits of the color information to present a consistent interface (8 bit -> 6 bit/color x3).
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.
IPS (in-plane switching) is a screen technology for liquid-crystal displays (LCDs). In IPS, a layer of liquid crystals is sandwiched between two glass surfaces. The liquid crystal molecules are aligned parallel to those surfaces in predetermined directions (in-plane). The molecules are reoriented by an applied electric field, whilst remaining essentially parallel to the surfaces to produce an image. It was designed to solve the strong viewing angle dependence and low-quality color reproduction of the twisted nematic field effect (TN) matrix LCDs prevalent in the late 1980s.
The TN method was the only viable technology for active matrix TFT LCDs in the late 1980s and early 1990s. Early panels showed grayscale inversion from up to down,Vertical Alignment (VA)—that could resolve these weaknesses and were applied to large computer monitor panels.
Shortly thereafter, Hitachi of Japan filed patents to improve this technology. A leader in this field was Katsumi Kondo, who worked at the Hitachi Research Center.thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.Super IPS). NEC and Hitachi became early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and in-plane switching subsequently remain the dominant LCD designs through 2006.
In this case, both linear polarizing filters P and A have their axes of transmission in the same direction. To obtain the 90 degree twisted nematic structure of the LC layer between the two glass plates without an applied electric field (OFF state), the inner surfaces of the glass plates are treated to align the bordering LC molecules at a right angle. This molecular structure is practically the same as in TN LCDs. However, the arrangement of the electrodes e1 and e2 is different. Because they are in the same plane and on a single glass plate, they generate an electric field essentially parallel to this plate. The diagram is not to scale: the LC layer is only a few micrometers thick and so is very small compared with the distance between the electrodes.
In practice, other schemes of implementation exist with a different structure of the LC molecules – for example without any twist in the OFF state. As both electrodes are on the same substrate, they take more space than TN matrix electrodes. This also reduces contrast and brightness.
Unlike TN LCDs, IPS panels do not lighten or show tailing when touched. This is important for touch-screen devices, such as smartphones and tablet computers.
Toward the end of 2010 Samsung Electronics introduced Super PLS (Plane-to-Line Switching) with the intent of providing an alternative to the popular IPS technology which is primarily manufactured by LG Display. It is an "IPS-type" panel technology, and is very similar in performance features, specs and characteristics to LG Display"s offering. Samsung adopted PLS panels instead of AMOLED panels, because in the past AMOLED panels had difficulties in realizing full HD resolution on mobile devices. PLS technology was Samsung"s wide-viewing angle LCD technology, similar to LG Display"s IPS technology.
"TFT Technology: Enhancing the viewing angle". Riverdi (TFT Module Manufacturer). Archived from the original on 23 April 2016. Retrieved 5 November 2016. However, [twisted nematic] suffers from the phenomenon called gray scale inversion. This means that the display has one viewing side in which the image colors suddenly change after exceeding the specified viewing angle. (see image Inversion Effect) External link in |quote= (help)
tech2 News Staff (19 May 2011). "LG Announces Super High Resolution AH-IPS Displays". Firstpost.com. Archived from the original on 11 December 2015. Retrieved 10 December 2015.
Baker, Simon (30 April 2011). "Panel Technologies: TN Film, MVA, PVA and IPS Explained". Tftcentral.co.uk. Archived from the original on 29 June 2017. Retrieved 13 January 2012.
T. Arai, H. Iiyori, Y. Hiromasu, M. Atsumi, S. Ioku, and K. Furuta,“Aluminium-Based Gate Structure for Active Matrix Liquid Crystal Displays,” IBM Journal of research and Development, Vol. 42, No. 3/4, pp. 491–499,1998.
N. Fisekovic, T. Nauta, N.J. Cornelissen, and J. Bruinink, “Improved Motion- Picture Quality of AM-LCDs Using Scanning Backlight,” Proceedings of International Display Workshops, pp. 1637–1640, 2001.
K. Fujimori, Y. Narutaki, and N. Kimura, “High-Transmissive Advanced TFT LCD Technology,” Sharp Technical Journal, No. 4, 2003. (sharpworld.com/corporate/info/rd/index.html).
H. Gleskova and S. Wagner, “DC-Bias Stressing of a-Si:H TFTs Fabricated at 150°C on Polyimide Foil,” IEEE Transactions on Electron Devices, Vol. 48, No. 8, p. 1667, 2001.
J. Hirakata, A. Shingai, Y. Tanaka, K. Ono, and T. Furuhashi, “Super-TFT-LCD for Moving Picture Images with the Blink Backlight System,” SID Digest, Vol. 32, No. 1, pp. 990–993, 2001.
M.D. Jacunski, M.S. Shur, and M. Hack, “Threshold Voltage, Field Effect Mobility and Gate-to-Channel Capacitance in Polysilicon TFT’s,” IEEE Transactions on Electron Devices, Vol. 43, No. 9, pp. 1433–1440, 1996.
Y. Kanemori, M. Katayama, N. Nakazawa, H. Kato, K. Yano, and Y. Fukuoka, “10.4 in.-Diagonal Color TFT-LCDs without Residual Images,” SID Digest, pp. 408–411, 1990.
K. Karim, A. Nathan, M. Hack, and W. Milne, “Drain Bias Dependence of Threshold Voltage Stability of Amorphous Silicon TFTs,” IEEE Electron Device Letters, Vol. 25, No. 4, pp. 188–190, 2004.
S.-J. Kim, Y.-C. Sung, and O.-K. Kwon, “Pre-Emphasis Driving Method for Large Size and High Resolution TFT-LCDs,” SID Digest, Vol. 34, No. 1, pp. 1354–1357, 2003.
A.G. Lewis, D.D. Lee, and R.H. Bruce “Polysilicon TFT Circuit Design and Performance,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 12, pp. 1833–1842, 1992.
B.-W. Lee, K. Song, D.-J. Park, Y. Yang, U. Min, S. Hong, C. Park, M. Hong, and K. Chung, “Mastering the Moving Image: Refreshing TFT-LCDs at 120 Hz,” SID Digest, Vol. 36, No. 1, pp. 1583–1585, 2005.
Z. Li, S. Venugopal, R. Shringarpure, D.R. Allee, and L.T. Clark, “An Analytical Lifetime Model for Digital a-Si:H Circuits,” SID Digest, Vol. 37, No.1, pp. 270–273, 2006.
K. Ono, Y. Imajo, I. Mori, R. Oke, S. Kato, K. Endo, H. Ishino, and Y. Ooishi, “New IPS Technology Suitable for LCD-TVs,” SID Digest, Vol. 36, No. 1, pp. 1848–1851, 2005.
K. Suzuki, “Compensative Addressing for Switching Distortion in a-Si TFTLCD,” Proceedings of 7th International Display Research Conference, pp. 107–110, 1987.
K.H. Shin, J.Y. Ahn, K.D. Kim, H.H. Shin, and I.J. Chung, “Acceptable Motion Blur Levels of a LCD TV Based on Human Visual System,” SID Digest, Vol. 37, No. 1, pp. 287–290, 2006.
Y.-C. Sung and O.-K. Kwon, “Low-Cost TFT-LCDs with Pre-Emphasis Driving Method for Large-Size and High-Definition TVs,” IEEE Transactions on Consumer Electronics, Vol. 53, No. 4, pp. 1674–1681, 2007.
Y. Son, J. Kim, H. Cho, J. Hong, J. Na, D. Kim, D. Han, J. Hong, Y. Jeon, and G. Cho, “A Column Driver with Low-Power Area-Efficient Push-Pull Buffer Amplifiers for Active-Matrix LCDs,” Proceedings of IEEE International Solid- State Circuits Conference, pp. 142–143, 2007.
J.H. Souk and J. Lee, “Recent Picture Quality Enhancement Technology Based on Human Visual Perception in LCD TVs,” IEEE Journal of Display Technology, Vol. 3, No. 4, pp. 371–376, 2007.
J.H. Stessen and J.G.R. vanMourik, “Algorithm for Contrast Reserve, Backlight Dimming, and Backlight Boosting on LCD,” SID Digest, Vol. 37, No. 1, pp. 1249–1252, 2006.
E. Takeda, “Simplified Method of Capacitively Coupled Driving for TFTLCD,” Proceedings of 9th International Display Research Conference, pp. 580–583, 1989.
W.-C. Tsai, J.-Y. Lai, K.-Y. Tu, H.-T. Lin, and F.-Y. Gan, “A Novel Barrierless Cu Gate for TFT-LCD,” SID Digest, Vol. 37, No. 1, pp. 1181–1184, 2006.
E. Takeda, Y. Nan-no, Y. Mino, A. Otsuka, S. Ishihara, and S. Nagata, “Capacitively Coupled TFT-LCD Driving Method,” SID Digest, Vol. 31, No. 2, pp. 87–94, 1990.
J.-S. Yoo, “A Novel Polysilicon TFT with Lateral Body Terminal for Driving Circuit Application of AMLCDs,” ITE Technical Report, Vol. 23, No. 67, p. 27, 1999.
Y.-S. Son, H.-H. Son, Y.-S. Kim, H.-S. Oh, and G.-H. Cho, “A Gray-Level Dependent Pre-Emphasis Column Driver with Fast Settling for Active-Matrix LCD Applications,” IEEE Transactions on Circuits and Systems - Part II, pp. 1057–1061, 2007.
Microtech Technology Company Limitedestablished in 2001,offers professional design and manufacturing services for hundreds types of Liquid Crytal Display modules and Touch Panels-TN,FSTN,TFT,RTP,CTP.With the advantages of high contrast,fast response time,wide viewable angle and low power consumption,Microtech"s products are widely used in Industrial Equipment,Medical devices,Home Intelligent Devices,Digital cameras,Video Game Devices,Instruments etc.Since its establishment,the management has been following human-oriented strategy and developing reliance among customers.To comply with these beliefs and ISO 9001:2015 standards,Microtech keeps on recruiting capable professionals,adopting advanced technology,developing new products,improving process and enhancing quality.Based on its strong R&D capacity, outstanding product quality and professional service,Microtech has won the high reputation from both mainland and oversea customers,and established long-term strategic partner relationship with them.
In order to obtain an excellent quality management team and offer our customers professional & efficient service and satisfied products,We comprehensively carry out Zero Defect quality management,implement ISO9001:2008 standards training and organize the examination /enrollment of quality management personnel national professional qualification.Our Mission "Efficient and timely service is the key to our success.Our success is tied with our client"s success. We are dedicated to provide excellent service to our customer at the most competitive prices." To provide customer a value added LCD product by stringent quality control,comprehensive technical support,and utilization of latest technology.
With our motto "Quality and Services are vital to enterpriess",Microtech aims to produce high quality LCD module to meet the customers" specific needs in all-round way.Meanwhile we seek for continuous service improvement,increase our market share,strengthen our competitiveness,and ultimately,expand our market worldwide!
The M140NWF5 R3 is a Color Active Matrix Liquid Crystal Display with a back light system. The matrix uses a-Si Thin Film Transistor as a switching device. This TFT LCD has a 14.0 inch diagonally measured active display area with FHD resolution (1,920 horizontal by 1,080 vertical pixels array).
4DLCD-28320240-CTP-IPS is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color IPSTFT-LCD panel, driver IC, FPC and a backlight unit.
This is a Raw TFT Display, it features no processor and cannot be programmed directly. It needs to be coupled with a Processor and circuitry capable of driving this type of display. For complete modules ready to go, please refer to our Intelligent Display Module products.
The mechanism of stereoscopic is that a right-eye-image and a left-eye-image are observed by a right eye and a left eye, respectively. In general LCD-TVs, there are two approaches for realizing stereoscopic. One is a frame sequential driving, which is based on a time division of a right-eye-image and a left-eye-image. The other is a 3-D polarization filter on a surface of a LCD, which is based on a space division of those images. It is important for medical applications to reduce fatigue of surgeons. Hence, the space division technique has adopted by surgeons for the reason of some advantages, such as lightweight, flicker-less, and battery-less eyeglasses. However, this technique has two issues as described below.
The vertical resolution in 3D-LCDs based on the space division is half of that in 2D-LCDs in essence. Thus, the detail of image is much spoiled in the case that the resolution of LCD is low. Typical images output on a FHD-3D and an 8K-3D display are compared in Fig. 18. Edges of objects on the FHD-3D display are jagged, for this reason, the detail of structure is lost. This is the first issue, “reduction of vertical resolution.” By contrast, the 8K-3D display is enabled to avoid severe artifacting of edges of objects.
The cause of occurrence of 3-D crosstalk is shown in Fig. 20. In the situation of observation at right in front of a 3-D display, the light beam from a left-eye-pixel of an LCD reaches the left-eye of the observer through a filter for the left-eye. The light beam of a right-eye-pixel is also the same. Therefore, the observer can recognize 3-D images correctly. In contrast, in the situation of observation at any tilted angle, a part of the light beam from the left-eye-pixel reaches the right-eye of the observer through a filter for the right-eye. The origin of the 3-D crosstalk phenomenon is the mixture of the light beams.
Meanwhile, the debasement such as reduced resolution and 3-D crosstalk is not observed from the horizontally tilted angle at all. A wide viewing-angle characteristic, which is a merit of IPS-LCDs, can be obtained completely along the horizontal direction.
If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.
The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays. We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.
These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.
Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.
IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.
These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.
Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.
Winner. IPS TFT screens have around 0.3 milliseconds response time while TN TFT screens responds around 10 milliseconds which makes the latter unsuitable for gaming
Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.
Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.
Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.
This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.
TM097TDHG04-00 is a 9.7 inch diagonal a-Si TFT-LCD display screen product from TIANMA, with a built-in WLED backlight, without backlight driver, without touch screen.
West Marredpally, Hyderabad Flat No. 101, Matrix Synergy Apartment, 10-2-19, West Marredpally, West Marredpally, Hyderabad - 500026, Dist. Hyderabad, Telangana
2.4 Inch Touch Screen TFT Display Shield adds a touch up to your Arduino project with a beautiful large touchscreen display shield with built-in micro SD card connection. This TFT display is big (2.4 diagonal) bright and colorful! 240320 pixels with individual pixel control. It has way more resolution than a black and whiteread more...