micropython tft display libraries free sample

MicroPython is a lean and efficient implementation of the Python 3 programming language that includes a small subset of the Python standard library and is optimised to run on microcontrollers and in constrained environments.
Other places you can look for MicroPython Libraries: PyPi - This filter shows just the MicroPython libraries on PyPi. Note: You cannot pip install MicroPython libraries. See the MicroPython docs for more information on managing packages with MicroPython.
ucrypto - MicroPython package for doing fast RSA and elliptic curve cryptography, specifically digital signatures. ECDSA API design inspired from fastecdsa and implementation based on tomsfastmath.
MicroDNSSrv - A micro DNS server for MicroPython to simply respond to A queries on multi-domains with or without wildcards (used on Pycom modules & ESP32).
sensor-mqtt-homeassistant - An ESP8266/ESP32 MicroPython-based sensor platform for GPIO, DHT, analog, LED and more. Includes remote updates for .py code from web server and MQTT/Home Assistant integration.
Web MicroWebSrv - A micro HTTP web server that supports WebSockets, HTML/Python language templating and routing handlers, for MicroPython (used on Pycom modules & ESP32).
MicroWebSrv2 - The last micro web server for IoTs (MicroPython) or large servers (CPython), that supports WebSocket, routes, template engine and with really optimized architecture (mem allocations, async I/Os).
micropython-nano-gui - A tiny display-only GUI with a limited set of GUI objects (widgets) for displays whose display driver is subclassed from the framebuf class. With drivers for TFT, ePaper and OLED displays.
micro-gui - Derived from nano-gui and supporting the same displays and hosts, this provides for user input via push buttons or a navigation joystick and an optional rotary encoder.
micropython-rgbled - This wrapper module aims to reduce the work needed to work with NeoPixel (WS2812) and DotStar (APA102) RGB LED strips and matrixes.
MicroPython-SN74HCS264 - MicroPython Driver for SN74HCS264 8-Bit Parallel-Out Serial Shift Registers With Schmitt-Trigger Inputs and Inverted Outputs.
ADXL345_spi_micropython - Library for interacting through the SPI protocol with an "Analog Devices ADXL345" accelerometer from an MCU flashed with MicroPython.
Threading MicroWorkers - A micro workers class that easily manages a pool of threads to optimise simultaneous jobs and jobs endings, for MicroPython (used on Pycom modules & ESP32).
Code Generation micropy-cli - Micropy CLI is a project management/generation tool for writing MicroPython code in modern IDEs such as Visual Studio Code.
micropython-package-template - GitHub workflow supported MicroPython package template with deploys to the Python Package Index on a push to the main branch and test deploys to the Test Python Package Index on PRs.
IDEs BIPES - Web-based IDE for MicroPython with file manager, editor, code generation from blocks, IoT dashboard and Serial/USB/Bluetooth/WebREPL console on the web browser. Source: https://github.com/BIPES.

Place the Adafruit_ILI9341 library folder your arduinosketchfolder/libraries/ folder. You may need to create the libraries subfolder if its your first library. Restart the IDE

New functions have been added to draw smooth (antialiased) arcs, circles, and rounded rectangle outlines. New sketches are provided in the "Smooth Graphics" examples folder. Arcs can be drawn with or without anti-aliasing (which will then render faster). The arc ends can be straight or rounded. The arc drawing algorithm uses an optimised fixed point sqrt() function to improve performance on processors that do not have a hardware Floating Point Unit (e.g. RP2040). Here are two demo images, on the left smooth (anti-aliased) arcs with rounded ends, the image to the right is the same resolution (grabbed from the same 240x240 TFT) with the smoothing diasbled (no anti-aliasing):
An excellent new compatible library is available which can render TrueType fonts on a TFT screen (or into a sprite). This has been developed by takkaO, I have created a branch with some bug fixes here. The library provides access to compact font files, with fully scaleable anti-aliased glyphs. Left, middle and right justified text can also be printed to the screen. I have added TFT_eSPI specific examples to the OpenFontRender library and tested on RP2040 and ESP32 processors, the ESP8266 does not have sufficient RAM due to the glyph render complexity. Here is a demo screen where a single 12kbyte font file binary was used to render fully anti-aliased glyphs of gradually increasing size on a 320x480 TFT screen:
Support has been added in v2.4.70 for the RP2040 with 16 bit parallel displays. This has been tested and the screen update performance is very good (4ms to clear 320 x 480 screen with HC8357C). The use of the RP2040 PIO makes it easy to change the write cycle timing for different displays. DMA with 16 bit transfers is also supported.
Smooth fonts can now be rendered direct to the TFT with very little flicker for quickly changing values. This is achieved by a line-by-line and block-by-block update of the glyph area without drawing pixels twice. This is a "breaking" change for some sketches because a new true/false parameter is needed to render the background. The default is false if the parameter is missing, Examples:
New anti-aliased graphics functions to draw lines, wedge shaped lines, circles and rounded rectangles. Examples are included. Examples have also been added to display PNG compressed images (note: requires ~40kbytes RAM).
Frank Boesing has created an extension library for TFT_eSPI that allows a large range of ready-built fonts to be used. Frank"s library (adapted to permit rendering in sprites as well as TFT) can be downloaded here. More than 3300 additional Fonts are available here. The TFT_eSPI_ext library contains examples that demonstrate the use of the fonts.
Users of PowerPoint experienced with running macros may be interested in the pptm sketch generator here, this converts graphics and tables drawn in PowerPoint slides into an Arduino sketch that renders the graphics on a 480x320 TFT. This is based on VB macros created by Kris Kasprzak here.
The RP2040 8 bit parallel interface uses the PIO. The PIO now manages the "setWindow" and "block fill" actions, releasing the processor for other tasks when areas of the screen are being filled with a colour. The PIO can optionally be used for SPI interface displays if #define RP2040_PIO_SPI is put in the setup file. Touch screens and pixel read operations are not supported when the PIO interface is used.
An Arduino IDE compatible graphics and fonts library for 32 bit processors. The library is targeted at 32 bit processors, it has been performance optimised for RP2040, STM32, ESP8266 and ESP32 types, other processors may be used but will use the slower generic Arduino interface calls. The library can be loaded using the Arduino IDE"s Library Manager. Direct Memory Access (DMA) can be used with the ESP32, RP2040 and STM32 processors with SPI interface displays to improve rendering performance. DMA with a parallel interface (8 and 16 bit parallel) is only supported with the RP2040.
For other processors only SPI interface displays are supported and the slower Arduino SPI library functions are used by the library. Higher clock speed processors such as used for the Teensy 3.x and 4.x boards will still provide a very good performance with the generic Arduino SPI functions.
"Four wire" SPI and 8 bit parallel interfaces are supported. Due to lack of GPIO pins the 8 bit parallel interface is NOT supported on the ESP8266. 8 bit parallel interface TFTs (e.g. UNO format mcufriend shields) can used with the STM32 Nucleo 64/144 range or the UNO format ESP32 (see below for ESP32).
The library supports some TFT displays designed for the Raspberry Pi (RPi) that are based on a ILI9486 or ST7796 driver chip with a 480 x 320 pixel screen. The ILI9486 RPi display must be of the Waveshare design and use a 16 bit serial interface based on the 74HC04, 74HC4040 and 2 x 74HC4094 logic chips. Note that due to design variations between these displays not all RPi displays will work with this library, so purchasing a RPi display of these types solely for use with this library is NOT recommended.
A "good" RPi display is the MHS-4.0 inch Display-B type ST7796 which provides good performance. This has a dedicated controller and can be clocked at up to 80MHz with the ESP32 (125MHz with overclocked RP2040, 55MHz with STM32 and 40MHz with ESP8266). The MHS-3.5 inch RPi ILI9486 based display is also supported, however the MHS ILI9341 based display of the same type does NOT work with this library.
Some displays permit the internal TFT screen RAM to be read, a few of the examples use this feature. The TFT_Screen_Capture example allows full screens to be captured and sent to a PC, this is handy to create program documentation.
The library supports Waveshare 2 and 3 colour ePaper displays using full frame buffers. This addition is relatively immature and thus only one example has been provided.
The library includes a "Sprite" class, this enables flicker free updates of complex graphics. Direct writes to the TFT with graphics functions are still available, so existing sketches do not need to be changed.
The "Animated_dial" example shows how dials can be created using a rotated Sprite for the needle. To run this example the TFT interface must support reading from the screen RAM (not all do). The dial rim and scale is a jpeg image, created using a paint program.
The XPT2046 touch screen controller is supported for SPI based displays only. The SPI bus for the touch controller is shared with the TFT and only an additional chip select line is needed. This support will eventually be deprecated when a suitable touch screen library is available.
The library supports SPI overlap on the ESP8266 so the TFT screen can share MOSI, MISO and SCLK pins with the program FLASH, this frees up GPIO pins for other uses. Only one SPI device can be connected to the FLASH pins and the chips select for the TFT must be on pin D3 (GPIO0).
The library is based on the Adafruit GFX and Adafruit driver libraries and the aim is to retain compatibility. Significant additions have been made to the library to boost the speed for the different processors (it is typically 3 to 10 times faster) and to add new features. The new graphics functions include different size proportional fonts and formatting features. There are lots of example sketches to demonstrate the different features and included functions.
Configuration of the library font selections, pins used to interface with the TFT and other features is made by editing the User_Setup.h file in the library folder, or by selecting your own configuration in the "User_Setup_Selet,h" file. Fonts and features can easily be enabled/disabled by commenting out lines.
It would be possible to compress the vlw font files but the rendering performance to a TFT is still good when storing the font file(s) in SPIFFS, LittleFS or FLASH arrays.
Anti-aliased fonts can also be drawn over a gradient background with a callback to fetch the background colour of each pixel. This pixel colour can be set by the gradient algorithm or by reading back the TFT screen memory (if reading the display is supported).
The common 8 bit "Mcufriend" shields are supported for the STM Nucleo 64/144 boards and ESP32 UNO style board. The STM32 "Blue/Black Pill" boards can also be used with 8 bit parallel displays.
Unfortunately the typical UNO/mcufriend TFT display board maps LCD_RD, LCD_CS and LCD_RST signals to the ESP32 analogue pins 35, 34 and 36 which are input only. To solve this I linked in the 3 spare pins IO15, IO33 and IO32 by adding wires to the bottom of the board as follows:
If the display board is fitted with a resistance based touch screen then this can be used by performing the modifications described here and the fork of the Adafruit library:
If you load a new copy of TFT_eSPI then it will overwrite your setups if they are kept within the TFT_eSPI folder. One way around this is to create a new folder in your Arduino library folder called "TFT_eSPI_Setups". You then place your custom setup.h files in there. After an upgrade simply edit the User_Setup_Select.h file to point to your custom setup file e.g.:

2. I tested https://github.com/cheungbx/st7735-esp8266-micropython. However, I don"t know how to handle both MOSI and MISO, so there is no output on my LCD
1. first of all, the 1.4" 128*128 LCD can display logo image on it own"s gadget. In other word, the LCD screen is ok. And at the same time I measure that the VCC is 3.3V, CS is 3.3V
One more question, is there ST7735R module for micropython which supplies more functions like adafruit-circuitpython-st7735r does? I am using ESP32 for which I can"t find the proper circuitpython firmware

TFT_display_init() Perform display initialization sequence. Sets orientation to landscape; clears the screen. SPI interface must already be setup, tft_disp_type, _width, _height variables must be set.
compile_font_file Function which compiles font c source file to binary font file which can be used in TFT_setFont() function to select external font. Created file has the same name as source file and extension .fnt

It has been modified by Pimoroni to include support for their 160x80 SPI LCD breakout, and hopefully also generalised enough so that it will support other ST7735-powered displays.
PIL/Pillow has been removed from the underlying display driver to separate concerns- you should create your own PIL image and display it using display(image)

Cross-platform Has no external dependencies and can be compiled for any vendor"s any MCU or MPU, and (RT)OS to drive ePaper, OLED or TFT displays, or even monitors.
The NuMaker-HMI-MA35D1-S1 is an evaluation board for Nuvoton NuMicro MA35D1 series microprocessors, and consists of three parts: a NuMaker-SOM-MA35D16A81 SOM board, a NuMaker-BASE-MA35D1B1 base board and a 7” TFT-LCD daughter...

In this guide, you’ll learn how to use the 0.96 inch SSD1306 OLED display with an ESP32 or ESP8266 using MicroPython firmware. As an example, we’ll show you how to display a simple ‘Hello, World!’ message. Later, we’ll also show you how to use other useful functions to interact with the OLED display.
To follow this tutorial you need MicroPython firmware installed in your ESP32 or ESP8266 boards. You also need an IDE to write and upload the code to your board. We suggest using Thonny IDE or uPyCraft IDE:
The library to write to the OLED display isn’t part of the standard MicroPython library by default. So, you need to upload the library to your ESP32/ESP8266 board.
After initializing the OLED display, you just need to use the text() function on the oled object to write text. After the text() function, you need to call the show() method to update the OLED.
If you want to display sensor readings and they are stored in int or float variables, they should be converted to a String. To convert the data to a string you can use the str() function:
This quick guide showed you how to use the OLED basic functionalities: write text and draw pixels with the ESP32 and ESP8266 using MicroPython. Now, you can use the OLED in your own projects to display messages, or sensor readings.
If you want to learn more about programming the ESP32 and ESP8266 boards with MicroPython, take a look our eBook: MicroPython Programming with ESP32 and ESP8266.

EdgeLine is WYSIWYG editor for LVGL, that allows users create interface and then export C/Micropython code for using on target device. It is currently in beta stage in limited functionality and available for both Windows and Linux.
Ms.Josey
Ms.Josey