iic i2c 1602 lcd module blue screen library files for sale

This 16 character by 2 line display has a very clear and high contrast white text upon a blue background/backlight. It also includes a serial I2C/IIC adaptor board pre-soldered to the back of the LCD. This means it can be controlled with just 2 I2C serial data pins (SDA & SCL) and so requires far less digital IO pins when controlled from a microcontroller. In total the module only requires 4 wires including 5V power and GND. Contrast adjustment is also provided by the daughter board via a potentiometer. If you plan to use this with an Arduino board you can download a compatible library and example sketch from our support forum
These modules are currently supplied with a default I2C address of either 0x27 or 0x3F. To determine which version you have check the black I2C adaptor board on the underside of the module. If there a 3 sets of pads labelled A0, A1, & A2 then the default address will be 0x3F. If there are no pads the default address will be 0x27.
If pressure is applied to the I2C daughter board it is possible for it to bend and come contact with the LCD module. Please ensure when the LCD is installed in your application that no external object is applying pressure to the back of the module.

3 pin: V0 is LCD contrast adjustment side,it is the the weakest contrast when connect positive-supply, it is the highest contrast contrast when connect grounding power

The Arduino control board has 20 10 ports, add some sensors, SD cards, etc., and the relay module has more than 10 ports. The original 1602 screen needs 7 10 ports to be driven.

During the building of your projects for Arduino, you’ll often need to read the output data directly from a LCD display. In this lesson we will show how to mount a LCD display on your OSOYOO Basic Board using the I2C communication. Finally you will see how to program it with a simple example showing how to display text on the display.
The integration of an LCD display greatly facilitates the interactivity of the project you are developing, allowing the user to directly read some output parameters. These values can be either a simple text or numerical values read by the sensors, such as temperature or pressure, or even the number of cycles that the OSOYOO Basic Board is performing.
However, these displays have a small problem. When they are connected to a microcontroller (such as OSOYOO Basic Board for example), these displays require virtually many connection PINs occupying practically almost all available IO and leaving the multiprocessor few outputs for any other devices and sensors. This problem has been solved thanks to the communication on the I2C bus.
The LCD1602 display has an integrated microchip that manages this type of communication, and then all of the input and output information are limited to only two PINs (excluding power supply). I2C is a type of serial bus developed by Philips, which uses two bidirectional lines, called SDA (Serial Data Line) and SCL (Serial Clock Line). Both must be connected via pulled-up resistors. The usage voltages are standard as 5V and 3.3V.
The blue potentiometer on the I2C LCD1602 (see the figure below) is used to adjust the backlight for better display.And there is a jumper on the board, if you take away this jumper , the backlight will aways be off.
Then connect theI2C LCD 1602 Display module to the I2Cport of the Magic I/O shield (please move the switch on the board to 5V) with a 4-pinPNP cable as below:
Each device has an I2C address that it uses to accept commands or send messages. For Uno board, this address usually is 0x27. But sometimes the address might be changed 0x37,0x24 …., So let’s go and look for the one on your device.
To use the I2C protocol with an LCD display and OSOYOO Basic Board, there is a special library to be downloaded and included in the code. The name of this library is here) and extract the contents in the libraries folder of the Arduino IDE. You can do directly from the Arduino IDE, select Sketch > include Library > Add .ZIP libraryfrom the menu.
#include
In this experiment, the sketch will make a connection between OSOYOO Basic Board and I2C LCD display and then print a text on two lines. The first line will display “Hello all !” and second the “Welcome to www.osoyoo.com !” message.The circuit and the board / port type settings are same as above example.
#include
Compile and upload this sketch to the OSOYOO Basic Board, you should now see your I2C LCD1602 display the flowing characters: “Hello all !” and “Welcome to www.osoyoo.com”

desertcart is the best online shopping platform where you can buy XIE IIC/I2C 2004 LCD Module Blue Screen Provides Library Files FOR The ARDUINO from renowned brand(s). desertcart delivers the most unique and largest selection of products from across the world especially from the US, UK and India at best prices and the fastest delivery time.
desertcart ships the XIE IIC/I2C 2004 LCD Module Blue Screen Provides Library Files FOR The ARDUINO to and more cities in Bermuda. Get unlimited free shipping in 164+ countries with desertcart Plus membership. We can deliver the XIE IIC/I2C 2004 LCD Module Blue Screen Provides Library Files FOR The ARDUINO speedily without the hassle of shipping, customs or duties.
desertcart buys XIE IIC/I2C 2004 LCD Module Blue Screen Provides Library Files FOR The ARDUINO directly from the authorized agents and verifies the authenticity of all the products. We have a dedicated team who specialize in quality control and efficient delivery. We also provide a free 14 days return policy along with 24/7 customer support experience.
Yes, it is absolutely safe to buy XIE IIC/I2C 2004 LCD Module Blue Screen Provides Library Files FOR The ARDUINO from desertcart, which is a 100% legitimate site operating in 164 countries. Since 2014, desertcart has been delivering a wide range of products to customers and fulfilling their desires. You will find several positive reviews by desertcart customers on portals like Trustpilot, etc. The website uses an HTTPS system to safeguard all customers and protect financial details and transactions done online. The company uses the latest upgraded technologies and software systems to ensure a fair and safe shopping experience for all customers. Your details are highly secure and guarded by the company using encryption and other latest softwares and technologies.

This 2×16 character LCD Module with BLUE Backlight uses an I2C interface to communicate with the host microcontroller. This budget-conscious LCD is used on projects requiring the display of text, data, or ASCII characters of all types. Connect to Vcc, Gnd, SDA (serial data line), and SCL (serial clock line). This is a 5VDC device and will be found on the I2C bus at address 0x27 / 0x3F.

LCD screens are useful and found in many parts of our life. At the train station, parking meter, vending machines communicating brief messages on how we interact with the machine they are connected to. LCD screens are a fun way to communicate information in Raspberry Pi Pico projects and other Raspberry Pi Projects. They have a big bright screen which can display text, numbers and characters across a 16 x 2 screen. The 16 refers to 16 characters across the screen, and the 2 represents the number of rows we have. We can get LCD screens with 20x2, 20x4 and many other configurations, but 16x2 is the most common.
In this tutorial, we will learn how to connect an LCD screen, an HD44780, to a Raspberry Pi Pico via the I2C interface using the attached I2C backpack, then we will install a MicroPython library via the Thonny editor and learn how to use it to write text to the display, control the cursor and the backlight.
2. Import four librariesof pre-written code. The first two are from the Machine library and they enable us to use I2C and GPIO pins. Next we import the sleep function from Time enabling us to pause the code. Finally we import the I2C library to interact with the LCD screen.from machine import I2C, Pin
3. Create an objecti2c to communicate with the LCD screen over the I2C protocol. Here we are using I2C channel 0, which maps SDA to GP0 and SCL to GP1.i2c = I2C(0, sda=Pin(0), scl=Pin(1), freq=400000)
4. Create a variableI2C_ADDR,which will store the first I2C address found when we scan the bus. As we only have one I2C device connected, we only need to see the first [0] address returned in the scan.I2C_ADDR = i2c.scan()[0]
5. Create an objectlcdto set up the I2C connection for the library. It tells the library what I2C pins we are using, set via the i2c object, the address of our screen, set via I2C_ADDRand finally it sets that we have a screen with two rows and 16 columns.lcd = I2cLcd(i2c, I2C_ADDR, 2, 16)
6. Create a loopto continually run the code, the first line in the loop will print the I2C address of our display to Thonny’s Python Shell.while True:
8. Write two lines of textto the screen. The first will print “I2C Address:” followed by the address stored inside the I2C_ADDR object. Then insert a new line character “\n” and then write another line saying “Tom’s Hardware" (or whatever you want it to say). Pause for two seconds to allow time to read the text.lcd.putstr("I2C Address:"+str(I2C_ADDR)+"\n")
9. Clear the screenbefore repeating the previous section of code, but this time we display the I2C address of the LCD display using its hex value. The PCF8574T chip used in the I2C backpack has two address, 0x20 and 0x27 and it is useful to know which it is using, especially if we are using multiple I2C devices as they may cause a clash on the bus.lcd.clear()
11. To flash the LED backlight, use a for loopthat will iterate ten times. It will turn on the backlight for 0.2 seconds, then turn it off for the same time. The “Backlight Test” text will remain on the screen even with the backlight off.for i in range(10):
12. Turn the backlight back onand then hide the cursor. Sometimes, a flashing cursor can detract from the information we are trying to communicate.lcd.backlight_on()
13. Create a for loopthat will print the number 0 to 19 on the LCD screen. Note that there is a 0.4 second delay before we delete the value and replace it with the next. We have to delete the text as overwriting the text will make it look garbled.for i in range(20):
Save and runyour code. As with any Python script in Thonny, Click on File >> Saveand save the file to your Raspberry Pi Pico. We recommend calling it i2c_lcd_test.py. When ready, click on the Green play buttonto start the code and watch as the test runs on the screen.

As we all know, though LCD and some other displays greatly enrich the man-machine interaction, they share a common weakness. When they are connected to a controller, multiple IOs will be occupied of the controller which has no so many outer ports. Also it restricts other functions of the controller. Therefore, LCD2004 with an I2C bus is developed to solve the problem.
I2C bus is a type of serial bus invented by PHLIPS. It is a high performance serial bus which has bus ruling and high or low speed device synchronization function required by multiple host system. I2C bus has only two bidirectional signal lines, Serial Data Line (SDA) and Serial Clock Line (SCL). The blue potentiometer on the I2C LCD2004 is used to adjust backlight to make it easier to display on the I2C LCD2004.
I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master, multi-slave, single-ended, serial computer bus invented by Philips Semiconductor (now NXP Semiconductors). It is typically used for attaching lower-speed peripheral ICs to processors and microcontrollers. Alternatively I²C is spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C).
I²C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with resistors. Typical voltages used are +5 V or +3.3 V although systems I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master, multi-slave, single-ended, serial computer bus invented by Philips Semiconductor (now NXP Semiconductors). It is typically used for attaching lower-speed peripheral ICs to processors and microcontrollers. Alternatively I²C is spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C).
3) Find the file LiquidCrystal_I2C which you just download. Click it open and then you"ll be prompted by "Library added to your libraries. Check "Import libraries"”. You also can see the libraries just imported have appeared on the list by Sketch->Include Library->LiquidCrystal_I2C.
If everything is correct,But the display just shows 16 black rectangles on Line 1.it may be the address of i2c is not 0x27,therfore you need to run the following code to read the address,then modify the 0x27 to which you read.

Have you been fed up with Black/White LCD screen? Do you want to try a colorful one? DFRobot I2C 16x2 Arduino LCD with RGB Backlight Display module will bring you a new experience about screen. It comes with RGB full color backlight, which has 16 million kinds of color. This I2C 16x2 LCD Screen is using an Gravity I2C communication interface. It means it only needs 2 communication lines for the communication and backlight control. The LCD can display 2x16 characters and support scrolling-displaying and cursor movement. Without tedious wiring and complicated codes, you can just utilize the specific Arduino library to accomplish all the design.
DFRobot Gravity I2C LCD1602 with RGB Backlight Display can display 2x16 characters and support functions like scrolling-displaying, cursor movement and backlight color adjustment
Ms.Josey
Ms.Josey