lcd panel refresh rate price

It’s natural for anyone shopping desktop monitors to be swayed by size, shape, resolution and color quality. But depending on your business needs, you may also want to consider a less flashy feature: the monitor’s refresh rate.

Refresh rate is the frequency at which the screen updates with new images each second, measured in hertz (cycles per second). The content may look steady on the display, but what the viewer can’t see is how fast the content is changing — up to 360 times a second. The higher the refresh rate, the smoother the visual quality.

Super high monitor refresh rates aren’t all that important for office workers focused on lighter computing like word processing, spreadsheets and emails. But in more visual professions like creative production and game development, a high refresh rate for monitors is invaluable.

The standard refresh rate for desktop monitors is 60Hz. But in recent years, more specialized, high-performing monitors have been developed that support 120Hz, 144Hz and even 240Hz refresh rates, which ensure ultra-smooth content viewing, even for the most demanding visual processing needs.

Just buying a high refresh rate monitor doesn’t mean the display quality will magically improve. The monitor’s refresh rate reflects the maximum rate at which the display can change the visuals. What happens on the screen depends on the frame rate of the output — the number of video frames that are sent to the display each second.

A 120Hz monitor has obvious benefits, though, for modern gaming platforms that animate at 100 fps or higher. A high refresh rate helps the screen keep pace with the high-twitch inputs of players and translate them into super smooth actions on screen.

When refresh rate and frame rate are mismatched, it can result in something called screen tearing. If the computer’s graphic card is pushing out more frames than the monitor’s refresh rate can handle at a given moment, users may see two half-frames on the screen at once, bisected horizontally and slightly misaligned. In short, it doesn’t look good. Games are usually configured to automatically match the PC’s graphics capabilities to avoid tearing, but running high-action visuals more slowly than intended makes for a compromised viewing and playing experience.

Response time — the time it takes for a pixel to change color — also plays a role in refresh rate. A monitor can only refresh as quickly as the LCD display can make those rapid-fire color shifts.

Particularly for fast-paced visuals, higher refresh rates and faster pixel response times reduce ghosted visuals, and ideally eliminate them. With slower tech, a high-pace action sequence may come with trailing images that result in softer, even blurry on-screen visuals.

The appeal of high refresh rates is obvious for at-home gamers looking for a responsive, hyperrealistic playing experience. And this leisure use is part of a vast global industry. SuperData reported that the video gaming industry generated roughly $140 billion in 2020, up 12 percent from $120 billion in 2019. Statista estimates there are now more than 3 billion gamers worldwide.

In the U.S. alone, the video game industry employs 220,000 people across all 50 states, according to the Entertainment Software Association. That’s a lot of game developers, graphic artists and playtesters working in front of monitors, most of them in need of optimal visual quality and speed at their workstations. While 60Hz refresh rates may work fine for people in finance and human resources — and even the clerical side of gaming companies — people on the visual and testing side need at least 120Hz to do their jobs well.

And it’s not just gaming. While the film industry has long produced movies at 24 fps, that frame rate is a relic of times when there were different technical restraints on cameras and projection, so a faster frame rate required more expensive film. The 24 fps standard has stuck around largely because that’s what the public is used to. Today, filmmakers are increasingly pushing frame rates as high as 120 fps.

High-performance monitors with high refresh rates come with obvious visual improvements, but monitor upgrades in general bring a broader range of business benefits.

High refresh rate monitors with high response times also tend to come with other premium features, such as full support for USB-C connections. With a single cable, the user can connect their PC to a monitor that functions as a USB hub for peripheral devices. This negates the need for expensive and often clunky docking stations, and can significantly reduce the number of cables at each workstation. In addition to tidier, streamlined workspaces, this also reduces the demand for IT support. With fewer connectors and devices, you tend to get fewer problems.

Around the workplace, anyone in a visually creative role will see immediate benefits from a higher refresh rate. And while those in non-visual roles probably won’t see any difference, the key may be futureproofing.

When IT and information systems (IS) teams plan capital purchases, they need to look several years ahead for potential technical requirements down the road. While high-refresh monitors may have a defined user community right now, it’s likely more use cases and worker needs will develop. Monitors with low refresh rates can’t get better, but higher-refresh monitors can serve your display needs both now and in the future.

lcd panel refresh rate price

Displays with a 360 Hz refresh rate and a 2.8 ms frame time are the best gaming monitors with high refresh rates you can get today. But that will soon change. Two leading makers of LCD panels are developing display panels that feature a 480 Hz refresh rate and a 2.1 ms frame time (as well as lower overall latency). These panels will be ready sometimes in 2022, so actual displays will arrive in 2023.

Both AU Optronics and LG Display are working on LCD panels with a 480 Hz refresh rate, according to two reports by TFTCentral (1, 2). LG Display is reportedly working on multiple 480 Hz panels with the first one being a 24.5-inch with a 1080p(1920x1080) resolution. The unit is projected to be ready for mass production sometime in Q4 2022, so if everything goes well, the commercial displays based on the panel will be available in the first half of 2023. AU Optronics is also developing a 1080p panel with a 480 Hz refresh rate and aims to start mass production in 2022, but there are no further details.

Not a lot of information is available about AUO"s and LG Display"s 480 Hz panels now, which is not particularly surprising given that they are so far out. Today"s ultra-high-performance 360Hz displays use a TNpanel, though the brand new 390 Hz LCDs use AUO"s AHVA (IPS-like) panels.

To handle a panel with an extremely wide variable refresh rate range — think about 30Hz ~ 480Hz — a very high-performance display controller logic will be needed. This set of chips (or one highly integrated chip) will have to include a very high-performance image processing unit, an appropriate overdrive processor, a very fast TCON (timing controller), and a general-purpose processor that will manage operation of the said units.

For example, modern 360HzG-Syncdisplays use logic specifically designed by Nvidia. In fact, the logic behind high-end displays is just as important as the panel and the backlighting, which is why development of expensive monitors takes so long.

These 480 Hz panels are designed for monitors aimed at professional gamers who want maximum performance to maximize their potential in various eSports competitions. The market of such displays is rather small, yet lucrative. Furthermore, such high-end displays serve the same purpose as other halo products — they promote the manufacturer"s brand.

lcd panel refresh rate price

A significant point is that the phosphors on a CRT screen have their "persistence" designed to support a particular fairly narrow range of refresh rates. The phosphors could be made to have really long persistence (seconds), so there would be no serious flicker down to even maybe a 5 second refresh interval, but then, since the phosphors can only be "turned on" and not "turned off", you wouldn"t be able to see motion much faster than that. (Some early CRT terminals used long-persistence phosphors, with the characters "drawn" on the screen instead of scanned. This didn"t provide very fast "refresh", but it only had to be as good as a 10 CPS Teletype.)

LCDs have the property that they can be turned on or off, at some relatively high rate, and once set one way or the other they have a relatively long persistence, on the order of a second or so. For this reason they can support a wide range of refresh rates.

LCDs are "scanned" via an X-Y matrix of wires, with a pixel at each point where two wires cross. Only one pixel can be manipulated at a time. The voltage on a pixel must be maintained long enough to "charge" the pixel, so that it will hold the charge until refreshed, and all pixels must be visited on each refresh cycle.

And, in addition to the charge time, the liquid inside needs time to mechanically reorient its crystal structure (though, at a physics level, this reorientation is tied at least partially to the "charge" time). Both of these factors place an upper limit on refresh rate.

lcd panel refresh rate price

The best — and easiest — way to know what refresh rates your system can support is by playing games and seeing how they perform. Use a frame rate monitoring utility like Fraps to display your current FPS (frames per second) as you play. Most frame rate monitoring utilities will have the ability to benchmark your average FPS , which keeps track of how your system performs over the course of a gameplay session.

Ideally, you’ll want the game’s frame rate to match the monitor’s refresh rate 1:1 for an ideal experience. For example, your system should be outputting 144 FPS to get the full benefit of a 144Hz monitor.

That said, you can still enjoy a higher refresh rate, even if it doesn’t reach the limits of what your display is capable of. Playing at 110Hz is better than playing at 60Hz, and you can always upgrade your CPU and GPU later to get to 144 FPS.

If your system struggles to run games higher than 60 FPS, it’s unlikely you’ll see much benefit from a high-refresh rate display, but it might be worth investing in one if your PC is capable of producing higher than 60 FPS.

lcd panel refresh rate price

Recently, we often have customers ask us about the refresh rate of led screen, most of them are for filming needs, such as XR virtual photography, etc. I would like to take this opportunity to talk about this issue To answer the question of what is the difference between a high refresh rate and a low refresh rate.

Refresh rate and frame rate are very similar. They both stands for the numbers of times a static image is displayed per second. But the difference is that the refresh rate stands for the video signal or display while the frame rate stands for the content itself.

The refresh rate of a LED screen is the number of times in a second that the LED screen hardware draws the data. This is distinct from the measure of frame rate in that the refresh rate for LED screens includes the repeated drawing of identical frames, while frame rate measures how often a video source can feed an entire frame of new data to a display.

The frame rate of video is usually 24, 25 or 30 frames per second, and as long as it is higher than 24 frames per second, it is generally considered smooth by the human eye. With recent technological advances, people can now watch video at 120 fps in movie theaters, on computers, and even on cell phones, so people are now using higher frame rates to shoot video.

Refresh rate can be divided into vertical refresh rate and horizontal refresh rate. The screen refresh rate generally refers to the vertical refresh rate, that is, the number of times the electronic beam repeatedly scanned the image on the LED screen.

In conventional terms, it is the number of times that the LED display screen redraws the image per second. The screen refresh rate is measured in Hertz, usually abbreviated as “Hz”. For example, a screen refresh rate of 1920Hz means that the image is refreshed 1920 times in one second.

What you see on the LED video wall is actually multiple different pictures at rest, and the motion you see is because the LED display is constantly refreshed, giving you the illusion of natural motion.

Because the human eye has a visual dwelling effect, the next picture follows the previous one immediately before the impression in the brain fades, and because these pictures are only slightly different, the static images connect to form a smooth, natural motion as long as the screen refreshes quickly enough.

A higher screen refresh rate is a guarantee of high-quality images and smooth video playback, helping you to better communicate your brand and product messages to your target users and impress them.

Conversely, if the display refresh rate is low, the image transmission of the LED display will become unnatural. There will also be flickering “black scan lines”, torn and trailing images, and “mosaics” or “ghosting” displayed in different colors. Its impact in addition to video, photography, but also because tens of thousands of light bulbs flashing images at the same time, the human eye may produce discomfort when viewing, and even cause eye damage.

A higher led screen refresh rate tells you the ability of a screen’s hardware to reproduce the screen’s content several times per second. It allows the motion of images to be smoother and cleaner in a video, especially in dark scenes when showing fast movements. Other than that, a screen with a higher refresh rate will be more suitable for the content with a more significant number of frames per second.

Typically, a refresh rate of 1920Hz is good enough for most LED displays. And if the LED display needs to display high speed action video, or if the LED display will be filmed by a camera, the LED display needs to have a refresh rate of more than 2550Hz.

The refresh frequency is derived from the different choices of driver chips. When using a common driver chip, the refresh rate for full color is 960Hz, and the refresh rate for single and dual color is 480Hz. when using a dual latching driver chip, the refresh rate is above 1920Hz. When using the HD high level PWM driver chip, the refresh rate is up to 3840Hz or more.

HD high-grade PWM driver chip, ≥ 3840Hz led refresh rate, screen display stable and smooth, no ripple, no lag, no sense of visual flicker, not only can enjoy the quality led screen, and effective protection of vision.

In professional use, it is critical to provide a very high refresh rate. This is especially important for scenes geared towards entertainment, media, sporting events, virtual photography, etc. that need to be captured and will certainly be recorded on video by professional cameras. A refresh rate that is synchronized with the camera recording frequency will make the image look perfect and prevent blinking. Our cameras record video usually at 24, 25,30 or 60fps and we need to keep it in sync with the screen refresh rate as a multiple. If we synchronize the moment of camera recording with the moment of image change, we can avoid the black line of screen change.

LED display refresh rate of not less than 3840Hz, the camera to capture the picture screen stability, can effectively solve the image of the rapid motion process of trailing and blurring, enhance the clarity and contrast of the image, so that the video screen delicate and smooth, long time viewing is not easy to fatigue; with anti-gamma correction technology and point-by-point brightness correction technology, so that the dynamic picture display more realistic and natural, uniform and consistent.

Therefore, with the continuous development, I believe the standard refresh rate of led screen will transition to 3840Hz or more, and then become the industry standard and specification.

One thing we should be aware of is that, unlike grayscale, there is a certain risk of too high a refresh rate. When the refresh rate gets higher, it demands more and more quality of LEDs. If the quality of the LED is not good, it will not be able to withstand the impact of high refresh rates and will be easily damaged. Normally, we should set the refresh rate below the maximum value set at the factory, such as 3840Hz, if the refresh rate is too high, it will affect the life of the LED.

Whether you want to use an indoor or outdoor advertising LED screen for branding, video presentations, broadcasting, or virtual filming, you should always choose an LED display screen that offers a high screen refresh rate and synchronizes with the frame rate recorded by your camera if you want to get high-quality images from the screen, because then the painting will look clear and perfect.

lcd panel refresh rate price

High-end smartphones increasingly boast blazing-fast 90Hz, 120Hz, and even faster refresh rate displays. This sounds great on paper and it’s yet another way that smartphones attempt to differentiate themselves from one another. But should you buy a phone because of this latest display tech trend? It honestly depends.

The benefits of high refresh rate phones and even how they work are not always well understood. While games and content can look a lot smoother, whether it’s worth the extra battery consumption depends greatly on the user and the handset. With that in mind, here’s everything you need to know about display refresh rates.

Displays aren’t static. Content and motion appear smooth on your phone’s screen because every pixel constantly updates to display the latest content from your handset’s processor. But this doesn’t happen randomly. Panels update their content at regular intervals, known as the refresh rate.

The refresh rate measures the period of time between a phone’s display updates. In other words, how often and quickly the content on the screen refreshes. Measured in Hertz (Hz), the refresh rate counts the number of times the display fully refreshes every second. A 60Hz display refreshes 60 times per second, 90Hz is 90 times per second, 120Hz is 120 times per second, and so on. So a 120Hz display refreshes twice as fast as a 60Hz panel and 4x faster than 30Hz.

Faster update times also mean lower latency because the pixels refresh more often. For example, it takes 16.6 ms to fully refresh a 60Hz display, 11.1ms for 90Hz, and just 8.3ms for a 120Hz rate. Refresh rate isn’t the only factor in round-trip display latency, but it’s the most significant contributor.

Your smartphone’s screen doesn’t refresh all at once each cycle, though. Instead, each horizontal row of pixels refreshes in turn until the whole display updates at the required rate. You can see this in action if you film a display in slow motion, and it’s the reason why displays flicker if you view them through your smartphone camera’s viewfinder. In other words, your display is constantly updating and refreshing, but it takes the cycle time to complete one full refresh.

A quick note on touch sample rate — a related but different metric. Also measured in Hz, the sample rate tells you how many times per second the touchscreen looks for input from the user’s finger. A higher-touch sample rate means less lag between input (touch or swipe) and action, which is especially important for fast-paced games.

Higher refresh rate displays make moving content look and feel smoother and snappier. Even swiping through your emails and interacting with Facebook’s UI or your web browser can look smoother than the standard 60Hz rate. Although that’s not a game-changer for day-to-day smartphone use, it’s undoubtedly nicer to look at and there are also more meaningful benefits to be found in fast motion content, such as video and gaming.

However, most video content plays back at the industry standard 24 frames per second or 24Hz. As such, display processing needs to either adapt the frame rate to the content or upscale the content to the frame rate. 120Hz displays are great because they can playback content at 60Hz, 30Hz, and 24Hz with even frame divisions. Other refresh rates require processing when scaling 24Hz video. Poor quality processing can induce judder into your videos, which obviously isn’t good.

Faster displays make a big difference when it comes to gaming too. Higher frame rates and faster response times can have a noticeable impact because visual latency is lower and gameplay appears smoother. PC gamers regularly swear by 120Hz and even 144Hz displays. Now mobile gamers can benefit too, albeit on a much smaller screen. However, high frame rate gaming requires a beefy, energy-hungry processor too. This ensures that the graphics frame rate keeps up with the high display refresh rate. The game you’re playing also needs to support high refresh rates too. A 120Hz display won’t benefit from a game capped at 30 frames per second.

Unfortunately, high refresh rates reduce battery life. During our test on the OnePlus 7 Pro, we noted 200 fewer minutes of browsing time when using the 90Hz mode versus the more standard 60Hz. We also recorded a 9% drop in battery life when switching the Galaxy S20 Ultra between 60Hz and 120Hz modes. However, newer handsets with more efficient displays provide decent battery life, thanks to adaptive 90Hz and 120Hz refresh rates. This is helping to lessen the trade-offs associated with early high refresh rate panels.

Higher refresh rates have a negative impact on screen on time, but manufacturers have come up with some clever technologies to limit their impact on battery life. Variable refresh rate AMOLED panels powered by low-temperature polycrystalline oxide (LTPO) backplane technology is leading this revolution.

Implementations vary, but a combination of LTPO and software changes allows for dynamic refresh rates from 120Hz down to 1Hz, although in reality lowering refresh rates to 60, 24, and 10Hz is more common. The idea is simple in principle, reducing the number of display updates when viewing static content, such as images and web pages, improves battery life while still benefiting from the smoothness of very high refresh rates when scrolling through content.

Examples of LTPO variable refresh rate phones that can hit 10Hz and lower include the Samsung Galaxy S22 series, Oppo Find X3 Pro, OnePlus 10 series, and others. Samsung also employs a novel technology in its Galaxy S22 and S22 Plus phones. The display refresh rate drops as low as 48Hz but communication between the processor and display falls as low as 10Hz to save on some more power.

90Hz and 120Hz displays are now a mainstay in modern smartphones, not just in the ultra-premium market. These panels are increasingly available in affordable mid-tier handsets as well.

That said, refresh rate is a small part of a smartphone’s display specifications. You shouldn’t buy a fast display if the color is awful, after all. Ultimately, aspects like color gamut, contrast, white point and color temperature, HDR capabilities, and resolution have an equally significant impact on your phone’s screen quality. That said, high refresh rates are now an essential factor in modern mobile displays and are increasingly hard to ignore when picking up a new phone.

lcd panel refresh rate price

The refresh rate of a display is the number of times per second that the image refreshes on the screen. For example, a 60Hz display will update the screen 60 times per second.

Overall, the refresh rate determines how smoothly motion appears on your screen. For example, if you’re playing a game that has a lot of fast-moving action, a higher refresh rate can help improve your overall gaming experience to keep up with the action. A higher refresh can also help you get a better experience with smoother motion when you"re browsing the web or using a digital pen to write or draw.

A higher refresh rate can also reduce battery life because it uses more power. So if you"re using a laptop or tablet and want to save some battery, you could lower the refresh rate. However, that might also reduce the overall experience when you"re using your device.

Note:You might see the word “dynamic” next to some refresh rates that are listed. Dynamic refresh rates will increase the refresh rate automatically when you’re inking and scrolling, and then lower it when you’re not doing these types of things. This helps to save battery and provide a smoother experience.

lcd panel refresh rate price

Hardware vendors understand how the experience changes with different display specs and features and have flooded the market with a plethora of options. But which features and specs are most valuable for how you use your monitor? For example, should you get 4K, 1440p, 1080p or just plain HD resolution—and what"s the difference anyway? How much do refresh rates and response times matter? Are things like flicker-free, low blue light mode, G-Sync and FreeSync crucial? And how should your priorities change if your focus is gaming versus professional applications versus general use?

Why you can trust Tom"s HardwareOur expert reviewers spend hours testing and comparing products and services so you can choose the best for you. Find out more about how we test.Determine your monitor’s main purpose: gaming, professional or general use. Generally, gamers should prioritize fast refresh rates and low response times, professionals should prioritize color accuracy and general use users have less specific needs but will often opt for a monitor with a high-contrast VA panel.The higher the resolution, the better the picture. A monitor’s resolution tells you how many pixels a monitor has in width x height format. 1920 x 1080 (also known as 1080p, Full HD (FHD) and HD) is the minimum you need. But you"ll get sharper images with QHD and even sharper with 4K.Size matters too.Pixel density has a big impact on monitor quality, and our sweet spot is 109 pixels per inch (ppi). A larger monitor will have low pixel density if it"s a lower resolution. For viewing from typical desktop distances, 32 inches is plenty ‘big." It’s not hard to find a 32-inch gaming or general use monitor at 4K resolution for under $1,000.Refresh rates: bigger is better. This tells you the number of times your monitor updates with new information per second and is measured in hertz (Hz). Bigger numbers equal better, smoother, less choppy images. Refresh rate is especially important for gamers, who"ll want a monitor with at least 75 Hz (most monitors designed for gaming offer at least 120 Hz), combined with the lowest response time you can find. If you’re not gaming, a 60 Hz refresh rate should do.Response times: Shorter is better, but it"s not a big priority unless you’re gaming. Response time tells you how long a monitor takes to change individual pixels from black to white or, if its GTG response time, from one shade of gray to another. Longer response times can mean motion blur when gaming or watching fast-paced videos. For gaming monitors, the highest response time you’ll likely see is 5ms, while the fastest gaming monitors can have a 0.5ms response time.Panel tech: For image quality, TN < IPS < VA. TN monitors are the fastest but cheapest, due to poorer image quality when viewing from a side angle. IPS monitors have slightly faster response times and show color better than VA panels, but VA monitors have the best contrast out of all three panel types. For more on the difference between panel types, see the dedicated section below.Consider a curved monitor.Curved monitors are supposed to make your experience more immersive with a large field of view(opens in new tab) and are said to be less eye-straining. However, they can be prone to glare when viewing from certain angles (light sources are coming from various angles instead of one). Effective curved monitors are usually ultrawide and at least 30 inches, which both point to higher costs.

Images on an LCD panel are comprised of millions of tiny dots. Each pixel consists of three sub-pixels, one for each primary color. A monitor’s resolution provides a screen’s length x width in pixels. The more pixels you can pack into each square-inch of a monitor, the more realistic and smooth the image. A higher resolution (QHD or better) is important if you want a monitor that"s bigger than 27 inches.

For the best picture, more pixels are better. But when gaming, those pixels can also slow you down if you don’t have a beefy enough graphics card. Most video interfaces don’t support refresh rates faster than 60 Hz for 4K/UHD or 5K signals. That"s starting to change (for a premium), but you still need a very expensive graphics card to play at 4K and push past 60 frames per second (fps). The GeForce RTX 3080 can usually get there, as can the GeForce RTX 3090, but good luck finding one!

If you want ultimate speed that"s also not too taxing on your GPU, FHD (1920 x 1080) delivers the highest frame rates (you won"t find gaming monitors today with lower resolution). But avoid stretching that resolution past 27 inches, as you may notice a dip in image quality, with pesky individual pixels being visible.

There are three major LCD technologies used in today’s PC monitors: twisted nematic (TN(opens in new tab)), vertical alignment (VA(opens in new tab)) and in-plane switching (IPS)(opens in new tab). Each has several variations that offer different advantages. We won’t get into the intricacies of how these differing panels work. Instead, the chart below explains how each impacts image quality and the best use cases for each panel.

PerformanceFastest: low response times, highest refresh rates, minimal motion blur; Low input lagLongest response times typically; Higher refresh rates possibleSlower response times than TN, faster response times than VA; Gaming-quality refresh rates are rare

While that graph should be enough to make a quick decision on panel type, if you want to dive deeper, consider the following:Contrast is the most important factor in image quality and reliability (5,000:1 is better than 1,000:1). As such, we consider VA panels to offer the best image quality among VA, IPS and TN.We’ve reviewed plenty of TN screens that can hold their own in the color department with more expensive IPS and VA displays. While the general perception is that TN offers less accurate color and contrast than VA and IPS panels, there’s a chance you won’t notice the difference. Many gaming monitors use TN panels for their speed. We’ve found that color quality differs by price more than it does by panel tech.

Competitive gamers should prioritize speed, which calls for high refresh rates (144 Hz or more), as well as the lowest response time and input lag (see our gaming monitor reviews(opens in new tab)) possible. This will likely limit you to 25 or 27 inches, possibly with lower pixel density and without extended color or HDR.

But maybe you"re a casual gamer who won"t notice the difference between 60 fps or 144 fps. You can settle for 75 Hz or even 60 Hz coupled withFreeSync or G-Sync(more on that below) and prioritize things like strong image quality, pixel density and 30 inches or larger. If your budget allows, this could also allow for more saturated color or even HDR.

Ideally, you want a monitor with at least a 75 Hz, combined with the lowest response time you can find. Refresh rate is particularly important for gamers, so most gaming monitors have a refresh rate of at least 120 Hz, (the fastest availabile is 360 Hz), and you’ll want a maximum response time of 5ms.

Lower resolution + good graphics card = faster refresh rates. Look at the on-screen display (OSD) above from the Acer Predator Z35(opens in new tab) curved ultrawide. Its resolution is low enough where a fast graphics card can hit a 200 Hz refresh rate with G-Sync enabled. If you’re buying a monitor for the long-term, remember that the graphics card your PC uses 1-3 years from now may be able to hit these speeds with ease.

Worried about input lag? Input lag is how long it takes your monitor to recognize output from your graphics card or when you’ve pushed a button on your keyboard or mouse and is something gamers should avoid. High refresh rates generally point to lower input lag, but input lag isn’t usually listed in specs, so check our monitor reviews(opens in new tab) for insight. Sites like DisplayLag(opens in new tab) also offer unbiased breakdowns of many monitors’ input lag.

Regardless, if your budget only has room for a low to mid-speed graphics card, you’ll certainly want a monitor with either G-Sync or FreeSync that works at a low minimum refresh rate.

So, should you opt for G-Sync or FreeSync? Here’s what to consider:Which hardware do you already have? If you’ve already nabbed a shiny new RTX 3080, for example, the choice is clear.Team Nvidia or Team AMD? If you"re not tied to either, remember that G-Sync and FreeSync offer comparable performance for the typical user. We learned this when we tested both against each other in ourNvidia G-Sync vs. AMD FreeSync(opens in new tab) faceoff.What"s the Adaptive-Sync"s lowest supported refresh rate? G-Sync monitors operate from a 30 Hz refresh rate up to the monitor’s maximum, but not all FreeSync ones do.FreeSync monitors usually support Adaptive-Sync up to a monitor’s maximum refresh rate, but it’s the lower limit you must note. We’ve reviewed screens that bottom out at as high as 55 Hz. This can be problematic if your graphics card can’t keep frame rates above that level. Low frame rate compensation (LFC), which G-Sync kicks in at below 30 Hz, is a viable solution but will only work if the max refresh is at least 2.5 times the minimum (example: if the maximum refresh rate is 100 Hz, the minimum must be 40 Hz for LFC to help).Many FreeSync monitors can run G-Sync.Nvidia has tested and certified some of these as G-Sync Compatible. Many non-certified monitors can also run G-Sync too, but performance is not guaranteed. See our article on how to run on G-Sync on a FreeSync monitor for more.

Overdrive reduces ghosting by speeding the rate at which pixels transition through higher voltages. When done correctly, the pixel reaches that level quickly, then changes for the next frame before voltage gets too high.

Both gaming and professional monitors are more than qualified to serve as general use displays. But if you want to avoid spending extra money on a specialized monitor, you need something that works well for every kind of computing, entertainment and productivity. Here’s how to decide what’s best for you:Contrast is king, so VA panels are too. We consider contrast the first measure of image quality, followed by color saturation, accuracy and resolution. When a display has a large dynamic range, the picture is more realistic and 3D-like. VA panels typically offer 3-5 times the contrast of IPS or TN screens. If you place a VA and IPS monitor next to each other with matched brightness levels and calibration standards, the VA screen will easily win in terms of image quality.Consider flicker-free if you"ll be staring at the screen for over 8 hours. They won’t flicker at any brightness level, so even those particularly sensitive to flickering will be pleased.Low blue light isn’t a buying point. Most operating systems, including Windows 10(opens in new tab), have modes for reducing blue light, based on the theory that blue light interferes with sleep. But although many monitors offer this feature, it"s not necessary. Low blue light can make a computer image less straining on your eyes, but so can accurate calibration. And since reducing blue brightness also affects all other colors, you may experience an unnatural look in graphics and photos. This is especially distracting in games and videos. There"s no need to prioritize low blue light, but it’s becoming harder to find monitors without it.

Professional users have special needs. If you’re a photographer, print proofer, web designer, special effects artist, game designer or someone that needs precise color control, this section’s for you. Here’s what to know:Monitors vendor-certified as color accurate cost more but are worth it. If you want a monitor that’s accurate out of the box, this is your best choice. It’s especially important for monitors without calibration capabilities. Professional monitors should come ready for work with no adjustment required. A DeltaE (dE)(opens in new tab) value of 2 or lower is a good sign. A dE under 3 is typically considered invisible to the human eye.You want calibration options. There are two ways to accomplish this: the on-screen display (OSD) and software. Check our reviews for monitor-specific calibration recommendations.Calibration options should include choices for different color gamuts, color temperatures and gamma curves. At minimum there should be sRGBand Adobe RGB standards, color temperatures ranging from 5,000 to 7,500K and gamma presets from 1.8 to 2.4. Monitors used for TV or movie production should also support the BT.1886 gamma standard.Flicker-free goes a long way if you’re spending eight hours or more in front of a computer screen. Many pro monitors today offer this.

What bit-depth do I need?Higher is better, and professionals need at least 10-bits. An 8-bit panel won’t cut it for most professional graphics work. If possible, opt for 12-bit. For more, see our article on the difference between 10 and 12-bit(opens in new tab).A deep color monitor won’t do you any good if your graphics card can’t output a 10- or 12-bit signal. Yes, the monitor will fill in the extra information, but only by interpolation. Just as with pixel scaling, a display can’t add information that isn’t there in the first place; it can only approximate. Many consumer-grade graphics cards are limited to 8-bit output.

lcd panel refresh rate price

One of such trade-offs that buyers often have to bear is choosing between a higher refresh rate or an AMOLED panel. But which is more important for a better experience: a fast 120Hz LCD panel or a 60Hz AMOLED one? Let"s find out.

How fast a screen can refresh affects how well it can simulate motion. In other words, it makes animations appear more natural and fluid as opposed to laggy and jittery. Earlier, the standard refresh rate for smartphones used to be 60Hz. But ever since OnePlus popularized high refresh rate displays, they have become common in the tech industry.

​​​​Today, even some budget models come with a 120Hz refresh rate, mostly Chinese phones. You can notice the difference between a 60Hz and a 90Hz/120Hz panel when gaming and scrolling through apps or social media.

But before you get too excited, note that the jump in performance, i.e., how smooth the animations feel, doesn"t keep increasing consistently. A jump from 60Hz to 90Hz is a 50% upgrade, whereas a jump from 90Hz to 120Hz is only a 33.33% upgrade. And a jump from 120Hz to 144Hz is a negligible 20% upgrade. That means that you"re going to get to the point of diminishing returns beyond 120Hz, which is the sweet spot for smartphone refresh rates.

Unlike a regular LCD, an AMOLED display provides more vivid image quality, consumes less power, and does a better job at reducing screen glare. This means that any content you consume on your phone—from games to movies to social media—will appear brighter and more colorful, all while saving your battery life.

Each pixel produces its own light on an AMOLED panel, unlike LCD or IPS panels that use a backlight to illuminate the screen. Because of this, the former can show darker colors and deep blacks more accurately since it can just turn a pixel off to represent an absence of light. On the latter, the same colors appear washed out or faded.

When using Dark Mode (or Night Mode) on an AMOLED panel, the workload of the display is reduced since a measurable portion of the screen is basically turned off. Only the pixels that show colors need to be illuminated, whereas the black pixels can remain shut off. As a result, you save battery life while viewing dark content on an AMOLED screen.

If you"re a gamer, a high refresh rate display will serve you better than an AMOLED one, making your gaming experience much smoother. However, note that the higher the refresh rate, the faster you will drain your battery. Also, keep in mind that many mobile games only support 60Hz, so the benefit of having a 90Hz or 120Hz screen may be redundant.

​​​​On the flip side, if you"re someone who consumes a lot of video content like movies, TV shows, YouTube videos, or TikTok clips, then having an AMOLED panel is clearly the better choice since it will improve the color accuracy and vividness dramatically.

As premium features become more common, they"re quickly making their way into budget phones. Having a high refresh rate AMOLED display is obviously better if you can find such a device in the budget category. But if you can"t, you have to trade one for the other.

Since budget phones come with weaker chips, the games you play may not always take advantage of that high refresh rate screen, making them a bit unnecessary apart from smoother scrolling of social media feeds. However, an AMOLED panel will continue to enrich your viewing experience no matter what.

lcd panel refresh rate price

It’s natural for anyone shopping desktop monitors to be swayed by size, shape, resolution and color quality. But depending on your business needs, you may also want to consider a less flashy feature: the monitor’s refresh rate.

Refresh rate is the frequency at which the screen updates with new images each second, measured in hertz (cycles per second). The content may look steady on the display, but what the viewer can’t see is how fast the content is changing — up to 360 times a second. The higher the refresh rate, the smoother the visual quality.

Super high monitor refresh rates aren’t all that important for office workers focused on lighter computing like word processing, spreadsheets and emails. But in more visual professions like creative production and game development, a high refresh rate for monitors is invaluable.

The standard refresh rate for desktop monitors is 60Hz. But in recent years, more specialized, high-performing monitors have been developed that support 120Hz, 144Hz and even 240Hz refresh rates, which ensure ultra-smooth content viewing, even for the most demanding visual processing needs.

Just buying a high refresh rate monitor doesn’t mean the display quality will magically improve. The monitor’s refresh rate reflects the maximum rate at which the display can change the visuals. What happens on the screen depends on the frame rate of the output — the number of video frames that are sent to the display each second.

A 120Hz monitor has obvious benefits, though, for modern gaming platforms that animate at 100 fps or higher. A high refresh rate helps the screen keep pace with the high-twitch inputs of players and translate them into super smooth actions on screen.

When refresh rate and frame rate are mismatched, it can result in something called screen tearing. If the computer’s graphic card is pushing out more frames than the monitor’s refresh rate can handle at a given moment, users may see two half-frames on the screen at once, bisected horizontally and slightly misaligned. In short, it doesn’t look good. Games are usually configured to automatically match the PC’s graphics capabilities to avoid tearing, but running high-action visuals more slowly than intended makes for a compromised viewing and playing experience.

Response time — the time it takes for a pixel to change color — also plays a role in refresh rate. A monitor can only refresh as quickly as the LCD display can make those rapid-fire color shifts.

Particularly for fast-paced visuals, higher refresh rates and faster pixel response times reduce ghosted visuals, and ideally eliminate them. With slower tech, a high-pace action sequence may come with trailing images that result in softer, even blurry on-screen visuals.

The appeal of high refresh rates is obvious for at-home gamers looking for a responsive, hyperrealistic playing experience. And this leisure use is part of a vast global industry. SuperData reported that the video gaming industry generated roughly $140 billion in 2020, up 12 percent from $120 billion in 2019. Statista estimates there are now more than 3 billion gamers worldwide.

In the U.S. alone, the video game industry employs 220,000 people across all 50 states, according to the Entertainment Software Association. That’s a lot of game developers, graphic artists and playtesters working in front of monitors, most of them in need of optimal visual quality and speed at their workstations. While 60Hz refresh rates may work fine for people in finance and human resources — and even the clerical side of gaming companies — people on the visual and testing side need at least 120Hz to do their jobs well.

And it’s not just gaming. While the film industry has long produced movies at 24 fps, that frame rate is a relic of times when there were different technical restraints on cameras and projection, so a faster frame rate required more expensive film. The 24 fps standard has stuck around largely because that’s what the public is used to. Today, filmmakers are increasingly pushing frame rates as high as 120 fps.

High-performance monitors with high refresh rates come with obvious visual improvements, but monitor upgrades in general bring a broader range of business benefits.

High refresh rate monitors with high response times also tend to come with other premium features, such as full support for USB-C connections. With a single cable, the user can connect their PC to a monitor that functions as a USB hub for peripheral devices. This negates the need for expensive and often clunky docking stations, and can significantly reduce the number of cables at each workstation. In addition to tidier, streamlined workspaces, this also reduces the demand for IT support. With fewer connectors and devices, you tend to get fewer problems.

Around the workplace, anyone in a visually creative role will see immediate benefits from a higher refresh rate. And while those in non-visual roles probably won’t see any difference, the key may be futureproofing.

When IT and information systems (IS) teams plan capital purchases, they need to look several years ahead for potential technical requirements down the road. While high-refresh monitors may have a defined user community right now, it’s likely more use cases and worker needs will develop. Monitors with low refresh rates can’t get better, but higher-refresh monitors can serve your display needs both now and in the future.

lcd panel refresh rate price

But there"s one area where details aren"t just cloudy, they"re sometimes downright dishonest, and that"s refresh rates. This simple specification should be an easily understood number, but for several reasons it"s not. It"s not even information that"s easily found, in many cases.

Here"s the low down on what refresh rates are and why they"re important, why TV makers bend the truth, and how you can spot the lie and get the straight info to make a more informed TV purchase.

Expressed in Hertz (Hz), a TV"s actual refresh rate tells you how many times per second a new frame or image can be put up on screen. The human eye starts stitching these images together to create the illusion of smooth motion at rates as low as 24 frames per second, the frame rate traditionally used in film and movies.

Most TVs today offer one of two refresh rates: 60 Hz, which refreshes the display image 60 times per second, and 120 Hz, which refreshes 120 times per second. That 120Hz is actually the better of the two, since fast moving objects, like a slap shot in hockey, or a pass thrown in football, may look a little blurry or choppy, depending upon how the TV handles motion smoothing.

But there"s a difference between the display"s refresh rate (measured in Hz) and the source content frame rate (measured in frames per second or fps). When the refresh rate and the signal rate match, it"s perfect, and you"ll be seeing exactly what the creator intended. If there"s a mismatch, however, the TV will need to apply some video processing techniques to display content properly.

For a very long time, 30fps was the standard, and it"s still a common refresh rate for broadcast TV and older media like DVD and 1080p Blu-ray. But newer media often takes advantage of the newer capabilities to offer higher frame rates better suited to your TV. Gaming in particular has adopted higher frame rates, with the latest consoles offering 60Hz and 120Hz gameplay.

That"s great if you"re selling 120Hz TVs, but less so if you want to compete against those models with a 60Hz display. However, with the processing the TVs already have to do to match source frame rates to display refresh rates, TV manufacturers saw an opportunity to muddy the waters.

There are some very sophisticated approaches to this, but here"s the simple version: TV makers have figured out that they can mimic higher frame rates by adding an extra flicker. By pulsing the backlight on and off in between those 60 refreshes, the alternating pattern of new frames and blinked light provides the illusion of a higher frame rate… sort of.

As a result, you"ll often see TV specs list something called the "effective" refresh rate, which is double what the TV"s panel can actually do. Some brands will use different terminology, but the underlying reality is the same – there"s a difference between the actual refresh rate of the TV display panel and what you"re told in the product specs and marketing materials.

What that really means is that manufacturers can use that light pulsing trick to claim a higher number than the TV actually supports. If you play 120Hz content on a 60Hz display, but bump the effective rate up by flickering the backlight, it won"t magically display all 120 frames of content each second. Instead it will display 60, dropping half of the frames to match the actual refresh rate that the display can handle.

TVs will also use heavy handed motion smoothing techniques to give the illusion of smoothness that a higher frame rate would impart. It is also sometimes called the Soap Opera Effect, because it makes everything look a little blurry or smeared. (Learn how to turn it off in our guide to the 5 TV settings you should change now.)

The first red flag to watch for is "effective rate" when discussing frame rates. As a rule, the effective rate will be double what the panel can physically display, so the actual refresh rate is half that number: an effective rate of 240Hz is really 120Hz, and effective rate of 120Hz is really 60Hz, and so on.

Unfortunately, that particular spec may not always be easy to find. In addition to hiding behind the terms listed above, many times a TV"s refresh won"t even be listed on the manufacturer"s product page. Some will omit that specification altogether, while others will simply leave it blank.

The good news is that we"re watching out for you. We include the real refresh rate in the specs of every TV we review – whether it"s dug up from less accessible material, confirmed by a customer service tech or PR rep, or tested ourselves – so that you have the correct information for any TV we recommend.

lcd panel refresh rate price

The refresh rate (or "vertical refresh rate", "vertical scan rate", terminology originating with the cathode ray tubes) is the number of times per second that a raster-based display device displays a new image. This is independent from frame rate, which describes how many images are stored or generated every second by the device driving the display.

On cathode ray tube (CRT) displays, higher refresh rates produce less flickering, thereby reducing eye strain. In other technologies such as liquid-crystal displays, the refresh rate affects only how often the image can potentially be updated.

Non-raster displays may not have a characteristic refresh rate. Vector displays, for instance, do not trace the entire screen, only the actual lines comprising the displayed image, so refresh speed may differ by the size and complexity of the image data.

Raster-scan CRTs by their nature must refresh the screen, since their phosphors will fade and the image will disappear quickly unless refreshed regularly.

In a CRT, the vertical scan rate is the number of times per second that the electron beam returns to the upper left corner of the screen to begin drawing a new frame.vertical blanking signal generated by the video controller, and is partially limited by the monitor"s maximum horizontal scan rate.

The refresh rate can be calculated from the horizontal scan rate by dividing the scanning frequency by the number of horizontal lines, plus some amount of time to allow for the beam to return to the top. By convention, this is a 1.05x multiplier.1280 × 1024 results in a refresh rate of 96,000 ÷ (1024 × 1.05) ≈ 89 Hz (rounded down).

CRT refresh rates have historically been an important factor in videogame programming. In early videogame systems, the only time available for computation was during the vertical blanking interval, during which the beam is returning to the top corner of the screen and no image is being drawn.screen tearing.

Unlike CRTs, where the image will fade unless refreshed, the pixels of liquid-crystal displays retain their state for as long as power is provided, and consequently there is no intrinsic flicker regardless of refresh rate. However, refresh rate still determines the highest frame rate that can be displayed, and despite there being no actual blanking of the screen, the vertical blanking interval is still a period in each refresh cycle when the screen is not being updated, during which the image data in the host system"s frame buffer can be updated.

On smaller CRT monitors (up to about 15 in or 38 cm), few people notice any discomfort between 60–72 Hz. On larger CRT monitors (17 in or 43 cm or larger), most people experience mild discomfort unless the refresh is set to 72 Hz or higher. A rate of 100 Hz is comfortable at almost any size. However, this does not apply to LCD monitors. The closest equivalent to a refresh rate on an LCD monitor is its frame rate, which is often locked at 60 fps. But this is rarely a problem, because the only part of an LCD monitor that could produce CRT-like flicker—its backlight—typically operates at around a minimum of 200 Hz.

Different operating systems set the default refresh rate differently. Microsoft Windows 95 and Windows 98 (First and Second Editions) set the refresh rate to the highest rate that they believe the display supports. Windows NT-based operating systems, such as Windows 2000 and its descendants Windows XP, Windows Vista and Windows 7, set the default refresh rate to a conservative rate, usually 60 Hz. Some fullscreen applications, including many games, now allow the user to reconfigure the refresh rate before entering fullscreen mode, but most default to a conservative resolution and refresh rate and let you increase the settings in the options.

Old monitors could be damaged if a user set the video card to a refresh rate higher than the highest rate supported by the monitor. Some models of monitors display a notice that the video signal uses an unsupported refresh rate.

Some LCDs support adapting their refresh rate to the current frame rate delivered by the graphics card. Two technologies that allow this are FreeSync and G-Sync.

When LCD shutter glasses are used for stereo 3D displays, the effective refresh rate is halved, because each eye needs a separate picture. For this reason, it is usually recommended to use a display capable of at least 120 Hz, because divided in half this rate is again 60 Hz. Higher refresh rates result in greater image stability, for example 72 Hz non-stereo is 144 Hz stereo, and 90 Hz non-stereo is 180 Hz stereo. Most low-end computer graphics cards and monitors cannot handle these high refresh rates, especially at higher resolutions.

For LCD monitors the pixel brightness changes are much slower than CRT or plasma phosphors. Typically LCD pixel brightness changes are faster when voltage is applied than when voltage is removed, resulting in an asymmetric pixel response time. With 3D shutter glasses this can result in a blurry smearing of the display and poor depth perception, due to the previous image frame not fading to black fast enough as the next frame is drawn.

This gif animation shows a rudimentary comparison of how motion varies with 4Hz, 12Hz, and 24Hz refresh rates. Entire sequence has a frame rate of 24Hz.

The development of televisions in the 1930s was determined by a number of technical limitations. The AC power line frequency was used for the vertical refresh rate for two reasons. The first reason was that the television"s vacuum tube was susceptible to interference from the unit"s power supply, including residual ripple. This could cause drifting horizontal bars (hum bars). Using the same frequency reduced this, and made interference static on the screen and therefore less obtrusive. The second reason was that television studios would use AC lamps, filming at a different frequency would cause strobing.NTSC color coding) and 50 Hz System B/G (almost always used with PAL or SECAM color coding). This accident of chance gave European sets higher resolution, in exchange for lower frame-rates. Compare System M (704 × 480 at 30i) and System B/G (704 × 576 at 25i). However, the lower refresh rate of 50 Hz introduces more flicker, so sets that use digital technology to double the refresh rate to 100 Hz are now very popular. (see Broadcast television systems)

Similar to some computer monitors and some DVDs, analog television systems use interlace, which decreases the apparent flicker by painting first the odd lines and then the even lines (these are known as fields). This doubles the refresh rate, compared to a progressive scan image at the same frame rate. This works perfectly for video cameras, where each field results from a separate exposure – the effective frame rate doubles, there are now 50 rather than 25 exposures per second. The dynamics of a CRT are ideally suited to this approach, fast scenes will benefit from the 50 Hz refresh, the earlier field will have largely decayed away when the new field is written, and static images will benefit from improved resolution as both fields will be integrated by the eye. Modern CRT-based televisions may be made flicker-free in the form of 100 Hz technology.

Many high-end LCD televisions now have a 120 or 240 Hz (current and former NTSC countries) or 100 or 200 Hz (PAL/SECAM countries) refresh rate. The rate of 120 was chosen as the least common multiple of 24 fps (cinema) and 30 fps (NTSC TV), and allows for less distortion when movies are viewed due to the elimination of telecine (3:2 pulldown). For PAL at 25 fps, 100 or 200 Hz is used as a fractional compromise of the least common multiple of 600 (24 × 25). These higher refresh rates are most effective from a 24p-source video output (e.g. Blu-ray Disc), and/or scenes of fast motion.

As movies are usually filmed at a rate of 24 frames per second, while television sets operate at different rates, some conversion is necessary. Different techniques exist to give the viewer an optimal experience.

The combination of content production, playback device, and display device processing may also give artifacts that are unnecessary. A display device producing a fixed 60 fps rate cannot display a 24 fps movie at an even, judder-free rate. Usually, a 3:2 pulldown is used, giving a slight uneven movement.

While common multisync CRT computer monitors have been capable of running at even multiples of 24 Hz since the early 1990s, recent "120 Hz" LCDs have been produced for the purpose of having smoother, more fluid motion, depending upon the source material, and any subsequent processing done to the signal. In the case of material shot on video, improvements in smoothness just from having a higher refresh rate may be barely noticeable.

In the case of filmed material, as 120 is an even multiple of 24, it is possible to present a 24 fps sequence without judder on a well-designed 120 Hz display (i.e., so-called 5-5 pulldown). If the 120 Hz rate is produced by frame-doubling a 60 fps 3:2 pulldown signal, the uneven motion could still be visible (i.e., so-called 6-4 pulldown).

lcd panel refresh rate price

The best high refresh rate monitors are as important a piece of a competitive gaming setup as a great graphics card, mouse, or keyboard. If you want to see the smooth look of a game running at a high refresh rate like 144Hz or 240Hz, a high refresh rate monitor will deliver that experience, and you probably won"t be able to go back to anything lower.

What refresh rate should you be looking for in a potential upgrade? You can feel the difference between even 60Hz and 75Hz monitors, though you start to notice the benefits in-game around 120Hz. We consider the standard for gaming monitors is 144Hz, though 165Hz is common enough with overclocked panels. Beyond that, you have 240Hz and 360Hz, targeting competitive gamers, such as twitch shooter players. These usually come alongside lower resolutions and higher price tags, so you want to be sure you"ll need that snappy response before investing in a 240/360Hz gaming monitor. Don"t even get us started on 480Hz gaming monitors(opens in new tab)that are supposedly coming pretty soon.

Refresh rate is just one element of modern gaming monitors, though, and what else you desire is up to you. Should you go for an IPS or VA panel, for instance. And what about panel, size, shape, and resolution? Is the 16:9 aspect ratio still the most versatile and compatible, or is ultrawide the way? Do curved panels add anything? And what about resolution? 4K? Or does 1440p strike a better balance? Is 1080p obsolete?

We"ve tested each of these high refresh rate gaming monitors in this list to see whether their claims stand up and make sure no compromise has been made to post those sky-high refresh rate claims.

Refresh rate, resolution, black levels, panel size: pick two. That"s been the PC monitor buyer"s dilemma for several years