tft display using can brands

MTA introduced their Giotto and Giotto K displays, two off-the-shelf products already programmed with basic software that can be implemented by OEMs using software tools that allow for detailed customization. The customizable displays use an Android-based software.
Giotto is a TFT touch screen display while Giotto K is a product that combines a TFT display with a side keyboard, for customers who prefer a more traditional approach in interacting with the display. Both products can be used as stand-alone devices or in addition to other dashboards or instrument panels. The manufacturer equipped the displays with an anti-reflective and anti-fingerprint glass. Special treatments, eliminating the air between the glass and the plastics, improve the performance under outdoor environments, increase ruggedness and durability, eliminate condensation, extend the temperature range and minimize light reflection. The materials and design solutions chosen come with an IP66-degree of protection.
The 12 V or 24 V powered products use the Jacinto 6 processor by Texas Instruments that ensures power-up time of less than five seconds. The displays are equipped with up to eight analog/digital inputs, up to two frequency inputs, two video inputs for cameras connection, two USB ports, one loudspeaker, and two power outputs. The two CAN interfaces enable integration into the in-vehicle network architecture.

Focus Displays offers a wide range of standard full color TFT displays. 64 million unique colors, high brightness, sharp contrast, -30C operating temperature, and fast response time are all good descriptions of a TFT display. This is why TFT technology is one of the most popular choices for a new product.
Thin Film Transistor (TFT) display technology can be seen in products such as laptop computers, cell phones, tablets, digital cameras, and many other products that require color. TFT’s are active matrix displays which offers exceptional viewing experiences especially when compared to other passive matrix technologies. The clarity on TFT displays is outstanding; and they possess a longer half-life than some types of OLEDs and range in sizes from less than an inch to over 15 inches.
CCFL’s are still available, but are becoming a legacy (obsolete) component. TFT displays equipped with a CCFL require higher MOQs (Minimum Order Quantities) than displays with LED backlights.
Backlight brightness (Luminance) is measured in nits. A nit being the amount of light that one candle delivers in a 1 square meter box. The intensity of the LED backlight can be critical when operating in low light or in direct sun light and is usually controlled by adjusting the DC voltage. In many applications this is accomplished through pulse-width modulation (PWM)
The majority of TFT displays contain a touch panel, or touch screen. The touch panel is a touch-sensitive transparent overlay mounted on the front of the display glass. Allowing for interaction between the user and the LCD display.
Some touch panels require an independent driver IC; which can be included in the TFT display module or placed on the customer’s Printed Circuit Board (PCB). Touch screens make use of coordinate systems to locate where the user touched the screen.
Resistive touch panels are the lowest cost option and are standard equipment on many TFT modules. They are more common on smaller TFT displays, but can still be incorporated on larger modules.
Resistive touch panels are constructed using flexible materials with an air gap between and are coated with a resistive layer. When an object applies pressure to the top layer, it makes contact with microdots located on the bottom layer. This allows the touch screen to find the location of the touch using X and Y coordinates.
Contrast ratio, or static contrast ratio, is one way to measure the sharpness of the TFT LCD display. This ratio is the difference between the darkest black and the brightest white the display is able to produce. The higher the number on the left, the sharper the image. A typical contrast ratio for TFT may be 300:1. This number ratio means that the white is 300 times brighter than the black.
TFT LCD displays are measured in inches; this is the measurement of the diagonal distance across the glass. Common TFT sizes include: 1.77”, 2.4”, 2.8”, 3”, 4.3”, 5”, 5.7”, 5.8”, 7”, 10.2”, 12.1 and 15”.
As a general rule, the larger the size of the glass the higher the cost of the display, but there are exceptions to this rule. A larger display may be less expensive than a smaller display if the manufacture produces higher quantities of the larger displays. When selecting your color display, be sure to ask what the cost is for one size smaller and one size larger. It may be worth modifying your design requirements.
TFT resolution is the number of dots or pixels the display contains. It is measured by the number of dots along the horizontal (X axis) and the dots along the vertical (Y axis).
The higher the resolution, the more dots per square inch (DPI), the sharper the display will look. A higher resolution results in a higher cost. One reason for the increase in cost is that more driver chips are necessary to drive each segment.
Certain combinations of width and height are standardized and typically given a name and a letter representation that is descriptive of its dimensions. Popular names given to the TFT LCD displays resolution include:
Transmissive displays must have the backlight on at all times to read the display, but are not the best option in direct sunlight unless the backlight is 750 Nits or higher. A majority of TFT displays are Transmissive, but they will require more power to operate with a brighter backlight.
Transflective displays are readable with the backlight off provided there is enough ambient light. Transflective displays are more expensive than Transmissive also there may be a larger MOQ for Transflective. However, Transflective displays are the best option for direct sunlight.
Drivers update and refresh the pixels (Picture Elements) of a display. Each driver is assigned a set number of pixels. If there are more pixels than a single driver can handle, then an additional drivers are added.
A primary job of the driver is to refresh each pixel. In passive TFT displays, the pixel is refreshed and then allowed to slowly fade (aka decay) until refreshed again. The higher the refresh frequency, the sharper the displays contrast.
The controller does just what its name suggest. It controls the drivers. There is only one controller per display no matter how many drivers. A complex graphic display with several thousand pixels will contain one controller and several drivers.
The TFT display (minus touch screen/backlight) alone will contain one controller/driver combination. These are built into the display so the design engineer does not need to locate the correct hardware.
Response Time is the measurement of time it takes for a pixel/segment to change from black (OFF state) to white (ON state) and then back to black again. In other words, how fast the picture can be changed. A slow response time can result in the blurring of the picture in games, movies and even cad type programs.
If you do not see a Thin Film Transistor (TFT) Display module that meets your specifications, or you need a replacement TFT, we can build a custom TFT displays to meet your requirements. Custom TFTs require a one-time tooling fee and may require higher MOQs.
Ready to order samples for your TFT design? Contact one of our US-based technical support people today concerning your design requirements. Note: We can provide smaller quantities for samples and prototyping.

A TFT, or Thin-Film Transistor, utilizes a display that allows for each pixel to be controlled by a transistor and separately address each position. The components of a TFT LCD module are a TFT LCD panel, one or more COG or COB driver ICs, a backlight, and an interface. An interface is a shared boundary across which two separate components of a computer system exchange information. As TFT displays have started being mass produced, production has improved, and the price has become more affordable.
There are now a number of TFT display interface technologies. The best interface to choose relies on particular end-product considerations. The last several years have seen the development of numerous TFT display interfaces, including LVDS (Low-Voltage Differential Signaling), parallel, SPI (Serial Peripheral Interface), and I2C or I2C (also known as I squared C) display, and others.
An SPI or Serial Peripheral Interface enables data exchange between two devices. Compared to parallel ones, it has the benefit of more intuitive and simple wiring. Since there is substantially less contact or crosstalk in the cable, SPI also allows for longer cables. The disadvantage of SPI is that it is slow and only allows for writing to the TFT LCD panel. SPI is typically used in smaller TFT LCD screens because of this. But perhaps your project might require a built-in LCD controller, for which an MCU Parallel interface might be a good fit.
An MCUPI or an MCU Parallel interface is usually pretty simple and usually requires display RAM. There are two common types that are found; the first is 6800, and the other is 8080. 8080 is nRD and nWR, 6800 is RD/nWR and E. A unique sort of parallel interface is the RGB interface. There is no need for display RAM. The MCU directly updates the TFT screen by delivering Red, Green, and Blue sub-pixel data (16/18/24 bits) and timing signals. The RGB interface offers a high-speed connection but requires more data cables and has more complicated controls.
A high-speed serial interface between a host CPU and a display module called MIPI Display Serial Interface allows for the integration of displays to provide high performance, low power, and low electromagnetic interference (EMI) while also lowering the number of pins and retaining vendor compatibility. Designers can use MIPI DSI to provide transmission of stereoscopic content and to enable excellent color rendering for the most demanding picture and video situations.
Low-voltage differential signaling, or LVDS, is a high-speed, long-distance digital interface that transmits serial data (one bit at a time) through two copper wires that are 180 degrees apart from one another. This setup makes the noise easier to identify and filter, which lowers noise emissions. Focus LCDs offers a versatile display that uses this technology, E70RA-HW520-C. The monitor in question is a 7.0" TFT with 1024x600 pixels and a maximum color depth of 16.7M. The inbuilt gate and source driver ICs in this display can be programmed using a typical graphics controller.
There are then a diverse set of interfaces that can be considered for your display project; whether you decide to go with HDMI, LVDS, MIPI DSI, or the others mentioned, or simply can"t decide, feel free to contact Focus LCDs, where we can address use-case specific questions and provide additional details.

Asia has long dominated the display module TFT LCD manufacturers’ scene. After all, most major display module manufacturers can be found in countries like China, South Korea, Japan, and India.
However, the United States doesn’t fall short of its display module manufacturers. Most American module companies may not be as well-known as their Asian counterparts, but they still produce high-quality display products for both consumers and industrial clients.
In this post, we’ll list down 7 best display module TFT LCD manufacturers in the USA. We’ll see why these companies deserve recognition as top players in the American display module industry.
STONE Technologies is a leading display module TFT LCD manufacturer in the world. The company is based in Beijing, China, and has been in operations since 2010. STONE quickly grew to become one of the most trusted display module manufacturers in 14 years.
Now, let’s move on to the list of the best display module manufacturers in the USA. These companies are your best picks if you need to find a display module TFT LCD manufacturer based in the United States:
Planar Systems is a digital display company headquartered in Hillsboro, Oregon. It specializes in providing digital display solutions such as LCD video walls and large format LCD displays.
The company started in 1983 as a corporate spin-off from the American oscilloscope company Tektronix. In 2015, Planar Systems became a subsidiary of the Chinese manufacturer Leyard Optoelectronics.
Planar’s manufacturing facilities are located in Finland, France, and North America. Specifically, large-format displays are manufactured and assembled in Albi, France.
Another thing that makes Planar successful is its relentless focus on its customers. The company listens to what each customer requires so that they can come up with effective display solutions to address these needs.
Microtips also provides value-added services to all its clients. The company’s Electronic Manufacturing Services team gives product suggestions and shares insights on how clients can successfully manage their projects.
What makes Microtips a great display module TFT LCD manufacturer in the USA lies in its close ties with all its customers. It does so by establishing a good rapport with its clients starting from the initial product discussions. Microtips manages to keep this exceptional rapport throughout the entire client relationship by:
Displaytech is an American display module TFT LCD manufacturer headquartered in Carlsbad, California. It was founded in 1989 and is part of several companies under the Seacomp group. The company specializes in manufacturing small to medium-sized LCD modules for various devices across all possible industries.
The company also manufactures embedded TFT devices, interface boards, and LCD development boards. Also, Displaytech offers design services for embedded products, display-based PCB assemblies, and turnkey products.
Displaytech makes it easy for clients to create their own customized LCD modules. There is a feature called Design Your Custom LCD Panel found on their site. Clients simply need to input their specifications such as their desired dimensions, LCD configuration, attributes, connector type, operating and storage temperature, and other pertinent information. Clients can then submit this form to Displaytech to get feedback, suggestions, and quotes.
Clients are assured of high-quality products from Displaytech. This is because of the numerous ISO certifications that the company holds for medical devices, automotive, and quality management. Displaytech also holds RoHS and REACH certifications.
A vast product range, good customization options, and responsive customer service – all these factors make Displaytech among the leading LCD manufacturers in the USA.
Products that Phoenix Display offers include standard, semi-custom, and fully-customized LCD modules. Specifically, these products comprise Phoenix Display’s offerings:
Phoenix Display also integrates the display design to all existing peripheral components, thereby lowering manufacturing costs, improving overall system reliability, and removes unnecessary interconnects.
Clients flock to Phoenix Display because of their decades-long experience in the display manufacturing field. The company also combines its technical expertise with its competitive manufacturing capabilities to produce the best possible LCD products for its clients.
True Vision Displays is an American display module TFT LCD manufacturing company located at Cerritos, California. It specializes in LCD display solutions for special applications in modern industries. Most of their clients come from highly-demanding fields such as aerospace, defense, medical, and financial industries.
The company produces several types of TFT LCD products. Most of them are industrial-grade and comes in various resolution types such as VGA, QVGA, XGA, and SXGA. Clients may also select product enclosures for these modules.
Slow but steady growth has always been True Vision Display’s business strategy. And the company continues to be known globally through its excellent quality display products, robust research and development team, top-of-the-line manufacturing facilities, and straightforward client communication.
All of their display modules can be customized to fit any kind of specifications their clients may require. Display modules also pass through a series of reliability tests before leaving the manufacturing line. As such, LXD’s products can withstand extreme outdoor environments and operates on a wide range of temperature conditions.
Cystalfontz America is a leading supplier and manufacturer of HMI display solutions. The company is located in Spokane Valley, Washington. It has been in the display solutions business since 1998.
Crystalfontz takes pride in its ISO 9001 certification, meaning the company has effective quality control measures in place for all of its products. After all, providing high-quality products to all customers remains the company’s topmost priority. Hence, many clients from small hobbyists to large top-tier American companies partner with Crystalfontz for their display solution needs.
We’ve listed the top 7 display module TFT LCD manufacturers in the USA. All these companies may not be as well-known as other Asian manufacturers are, but they are equally competent and can deliver high-quality display products according to the client’s specifications. Contact any of them if you need a US-based manufacturer to service your display solutions needs.
We also briefly touched on STONE Technologies, another excellent LCD module manufacturer based in China. Consider partnering with STONE if you want top-of-the-line smart LCD products and you’re not necessarily looking for a US-based manufacturer. STONE will surely provide the right display solution for your needs anywhere you are on the globe.

TFT stands for thin-film transistor, which means that each pixel in the device has a thin-film transistor attached to it. Transistors are activated by electrical currents that make contact with the pixels to produce impeccable image quality on the screen. Here are some important features of TFT displays.Excellent Colour Display.Top notch colour contrast, clarity, and brightness settings that can be adjusted to accommodate specific application requirements.Extended Half-Life.TFT displays boast a much higher half-life than their LED counterparts and they also come in a variety of size configurations that can impact the device’s half-life depending on usage and other factors.TFT displays can have either resistive or capacitive touch panels.Resistive is usually the standard because it comes at a lower price point, but you can also opt for capacitive which is compatible with most modern smartphones and other devices.TFT displays offer exceptional aspect ratio control.Aspect ratio control contributes to better image clarity and quality by mapping out the number of pixels that are in the source image compared to the resolution pixels on the screen.Monitor ghosting doesn’t occur on TFT displays.This is when a moving image or object has blurry pixels following it across the screen, resembling a ghost.
TFT displays are incredibly versatile.The offer a number of different interface options that are compatible with various devices and accommodate the technical capabilities of all users.
There are two main types of TFT LCD displays:· Twisted nematic TFT LCDs are an older model. They have limited colour options and use 6 bits per each blue, red, and green channel.
In-plane switching TFT LCDs are a newer model. Originally introduced in the 1990s by Hitachi, in-plane switching TFT LCDs consist of moving liquid pixels that move in contrast or opposite the plane of the display, rather than alongside it.
The type of TFT LCD monitor or industrial display you choose to purchase will depend on the specifications of your application or project. Here are a few important factors to consider when selecting an appropriate TFT LCD display technology:Life expectancy/battery life.Depending on the length of ongoing use and the duration of your project, you’re going to want to choose a device that can last a long time while maintaining quality usage.
Touch type and accuracy.What type of activities are you planning on using your device for? If it’s for extended outdoor use, then you should go with projected capacitive touch as this is more precise and accurate. Touch accuracy is important for industrial and commercial applications.
Image clarity.Some TFT displays feature infrared touchscreens, while others are layered. The former is preferable, especially in poor lighting conditions or for outdoor and industrial applications, because there’s no overlay and therefore no obstructions to light emittance.
The environmental conditions make a difference in operation and image clarity. When choosing a TFT for outdoor or industrial applications, be sure to choose one that can withstand various environmental elements like dust, wind, moisture, dirt, and even sunlight.
As a leading manufacturer and distributor of high-quality digital displays in North America, Nauticomp Inc. can provide custom TFT LCD monitor solutions that are suitable for a multitude of industrial and commercial indoor and outdoor applications. Contact us today to learn more.

Let us start with the basics first; refresh the knowledge about TN and LCD displays in general, later we will talk about TFTs (Thin Film Transistors), how they differ from regular monochrome LCD displays. Then we will go on to the ghosting effect, so we will not only discuss the technology behind the construction of the TFT, but also some phenomena, like the ghosting effect, or grayscale inversion, that are important to understand when using an LCD TFT display.
Next, we will look at different technologies of the TFT LCD displays like TN, IPS, VA, and of course about transmissive and transflective LCD displays, because TFT displays also can be transmissive and transflective. In the last part we will talk about backlight.
Let us start with a short review of the most basic liquid crystal cell, which is the TN (twisted nematic) display. On the picture above, we can see that the light can be transmit through the cell or blocked by the liquid crystal cell using voltage. If you want to learn more about monochrome LCD displays and the basics of LCD displays, follow this link.
What is a TFT LCD display and how it is different from a monochrome LCD display? TFT is called an active display. Active, means we have one or more transistors in every cell, in every pixel and in every subpixel. TFT stands for Thin Film Transistor, transistors that are very small and very thin and are built into the pixel, so they are not somewhere outside in a controller, but they are in the pixel itself. For example, in a 55-inch TV set, the TFT display contains millions of transistors in the pixels. We do not see them, because they are very small and hidden, if we zoom in, however, we can see them in every corner of each pixel, like on the picture below.
On the picture above we can see subpixels, that are basic RGB (Red, Green, Blue) colors and a black part, with the transistors and electronic circuits. We just need to know that we have pixels, and subpixels, and each subpixel has transistors. This makes the display active, and thus is called the TFT display. TFT displays are usually color displays, but there are also monochrome TFT displays, that are active, and have transistors, but have no colors. The colors in the TFT LCD display are typically added by color filters on each subpixel. Usually the filters are RGB, but we also have RGBW (Red, Green, Blue, White) LCD displays with added subpixels without the filter (White) to make the display brighter.
Going a little bit deeper, into the TFT cell, there is a part inside well known to us from the monochrome LCD display Riverdi University lecture. We have a cell, liquid crystal, polarizers, an ITO (Indium Tin Oxide) layer for the electrodes, and additionally an electronic circuit. Usually, the electronic circuit consists of one transistor and some capacitors to sustain the pixel state when we switch the pixel OFF and ON. In a TFT LCD display the pixels are much more complicated because apart from building the liquid crystal part, we also need to build an electronic part.
That is why TFT LCD display technologies are very expensive to manufacture. If you are familiar with electronics, you know that the transistor is a kind of switch, and it allows us to switch the pixel ON and OFF. Because it is built into the pixel itself, it can be done very quickly and be very well controlled. We can control the exact state of every pixel not only the ON and OFF states, but also all the states in between. We can switch the light of the cells ON and OFF in several steps. Usually for TFT LCD displays it will be 8-bit steps per color, so we have 256 steps of brightness for every color, and every subpixel. Because we have three subpixels, we have a 24-bit color range, that means over 16 million combinations, we can, at least theoretically, show on our TFT LCD display over 16 million distinct colors using RGB pixels.
Now that we know how the TFT LCD display works, we can now learn some practical things one of which is LCD TFT ghosting. We know how the image is created, but what happens when we have the image on the screen for a prolonged time, and how to prevent it. In LCD displays we have something called LCD ghosting. We do not see it very often, but in some displays this phenomenon still exists.
If some elements of the picture i.e., your company logo is in the same place of the screen for a long period of time, for couple of weeks, months or a year, the crystals will memorize the state and later, when we change the image, we may see some ghosting of those elements. It really depends on many conditions like temperature and even the screen image that we display on the screen for longer periods of time. When you build your application, you can use some techniques to avoid it, like very rapid contrast change and of course to avoid the positioning the same image in the same position for a longer time.
You may have seen this phenomenon already as it is common in every display technology, and even companies like Apple put information on their websites, that users may encounter this phenomenon and how to fix it. It is called image ghosting or image persistence, and even Retina displays are not free of it.
Another issue present in TFT displays, especially TN LCD displays, is grayscale inversion. This is a phenomenon that changes the colors of the screen according to the viewing angle, and it is only one-sided. When buying a TFT LCD display, first we need to check what kind of technology it is. If it is an IPS display, like the Riverdi IPS display line, then we do not need to worry about the grayscale inversion because all the viewing angles will be the same and all of them will be very high, like 80, 85, or 89 degrees. But if you buy a more common or older display technology type, like the TN (twisted nematic) display, you need to think where it will be used, because one viewing angle will be out. It may be sometimes confusing, and you need to be careful as most factories define viewing direction of the screen and mistake this with the greyscale inversion side.
On the picture above, you can see further explanation of the grayscale inversion from Wikipedia. It says that some early panels and also nowadays TN displays, have grayscale inversion not necessary up-down, but it can be any angle, you need to check in the datasheet. The reason technologies like IPS (In-Plane Switching), used in the latest Riverdi displays, or VA, were developed, was to avoid this phenomenon. Also, we do not want to brag, but the Wikipedia definition references our website.
We know already that TN (twisted nematic) displays, suffer from grayscale inversion, which means the display has one viewing side, where the image color suddenly changes. It is tricky, and you need to be careful. On the picture above there is a part of the LCD TFT specification of a TN (twisted nematic) display, that has grayscale inversion, and if we go to this table, we can see the viewing angles. They are defined at 70, 70, 60 and 70 degrees, that is the maximum viewing angle, at which the user can see the image. Normally we may think that 70 degrees is better, so we will choose left and right side to be 70 degrees, and then up and down, and if we do not know the grayscale inversion phenomena, we may put our user on the bottom side which is also 70 degrees. The viewing direction will be then like a 6 o’clock direction, so we call it a 6 o’clock display. But you need to be careful! Looking at the specification, we can see that this display was defined as a 12 o’clock display, so it is best for it to be seen from a 12 o’clock direction. But we can find that the 12 o’clock has a lower viewing angle – 60 degrees. What does it mean? It means that on this side there will be no grayscale inversion. If we go to 40, 50, 60 degrees and even a little bit more, probably we will still see the image properly. Maybe with lower contrast, but the colors will not change. If we go from the bottom, from a 6 o’clock direction where we have the grayscale inversion, after 70 degrees or lower we will see a sudden color change, and of course this is something we want to avoid.
To summarize, when you buy older technology like TN and displays, which are still very popular, and Riverdi is selling them as well, you need to be careful where you put your display. If it is a handheld device, you will see the display from the bottom, but if you put it on a wall, you will see the display from the top, so you need to define it during the design phase, because later it is usually impossible or expensive to change the direction.
We will talk now about the other TFT technologies, that allow us to have wider viewing angles and more vivid colors. The most basic technology for monochrome and TFT LCD displays is twisted nematic (TN). As we already know, this kind of displays have a problem with grayscale inversion. On one side we have a higher retardation and will not get a clear image. That is why we have other technologies like VA (Vertical Alignment), where the liquid crystal is differently organized, and another variation of the TFT technology – IPS which is In-Plane Switching. The VA and IPS LCD displays do not have a problem with the viewing angles, you can see a clear image from all sides.
Nowadays all TV sets, tablets and of course mobile phones are IPS or VA. You can turn them around and see the image clear from all sides. But, for monitor applications the TN technology is still widely used, because the monitor usually is in front of you and most of the time you look directly at it, from top, left or right side, but very rarely from the bottom, so the grayscale inversion viewing angle can be placed there. This technology still is very practical because it is affordable and has some advantages for gamers because it is very fast.
Apart from the different organization of the liquid crystals, we also organize subpixels a little bit differently in a VA and IPS LCD displays. When we look closer at the TN display, we will just see the subpixels with color filters. If we look at the VA or IPS display they will have subpixels of subpixels. The subpixels are divided into smaller parts. In this way we can achieve even wider viewing angles and better colors for the user, but of course, it is more complicated and more expensive to do.
The picture above presents the TN display and grayscale inversion. For IPS or VA technology there is no such effect. The picture will be the same from all the sides we look so these technologies are popular where we need wide viewing angles, and TN is popular where we don’t need that, like in monitors. Other advantages of IPS LCD displays are they give accurate colors, and wide viewing angles. What is also important in practice, in our projects, is that the IPS LCD displays are less susceptible to mechanical force. When we apply mechanical force to the screen, and have an optically bonded touch screen, we push the display as well as squeeze the cells. When we have a TN display, every push on the cell changes the image suddenly, with the IPS LCD displays with in-plane switching, different liquid crystals organization, this effect is lesser. It is not completely removed but it is much less distinct. That is another reason IPS displays are very popular for smartphones, tablets, when we have the touchscreens usually optically bonded.
If we wanted to talk about disadvantages, there is a question mark over it, as some of them may be true, some of them do not rely on real cases, what kind of display, what kind of technology is it. Sometimes the IPS displays can have higher power consumption than others, in many cases however, not. They can be more expensive, but not necessarily. The new IPS panels can cost like TN panels, but IPS panels definitely have a longer response time. Again, it is not a rule, you can make IPS panels that are very fast, faster than TN panels, but if you want the fastest possible display, probably the TN panel will be the fastest. That is why the TN technology is still popular on the gaming market. Of course, you can find a lot of discussions on the internet, which technology is better, but it really depends on what you want to achieve.
Now, let us look at the backlight types. As we see here, on the picture above, we have four distinct types of backlight possible. The most common, 95 or 99 per cent of the TFT LCD displays on the market are the transmissive LCD display type, where we need the backlight from the back. If you remember from our Monochrome LCD Displays lecture, for transmissive LCD displays you need the backlight to be always on. If you switch the backlight off, you will not see anything. The same as for monochrome LCD displays, but less popular for TFT displays, we have the transflective LCD display type. They are not popular because usually for transflective TFT displays, the colors lack in brightness, and the displays are not very practical to use. You can see the screen, but the application is limited. Some transflective LCD displays are used by military, in applications where power consumption is paramount; where you can switch the backlight off and you agree to have lower image quality but still see the image. Power consumption and saving energy is most important in some kind of applications and you can use transflective LCD displays there. The reflective type of LCD displays are almost never used in TFT. There is one technology called Low Power Reflective Displays (LPRD) that is used in TFT but it is not popular. Lastly, we have a variation of reflective displays with frontlight, where we add frontlight to the reflective display and have the image even without external light.
Just a few words about Low Power Reflective Displays (LPRD). This kind of display uses environmental light, ambient light to reflect, and produce some colors. The colors are not perfect, not perfectly clear, but this technology is becoming increasingly popular because it allows to have color displays in battery powered applications. For example, a smartwatch would be a case for that technology, or an electrical bike or scooter, where we can not only have a standard monochrome LCD display but also a TFT LCD color display without the backlight; we can see the image even in
strong sunlight and not need backlight at all. So, this kind of TFL LCD display technology is getting more and more popular when we have outdoor LCD displays and need a low power consumption.
On the picture above, we have some examples of how transmissive and reflective LCD displays work in the sunlight. If we have a simple image, like a black and white pattern, then on a transmissive LCD display, even with 1000 candela brightness, the image probably will be lower quality than for a reflective LCD display; if we have sunlight, we have very strong light reflections on the surface of the screen. We have talked about contrast in more detail in the lecture Sunlight Readable Displays. So, reflective LCD displays are a better solution for outdoor applications than transmissive LCD displays, where you need a really strong backlight, 1000 candela or more, to be really seen outdoors.
To show you how the backlight of LCD displays is built, we took the picture above. You can see the edge backlight there, where we have LEDs here on the small PCB on the edge, and we have a diffuser that distributes the light to the whole surface of LCD screen.
In addition to the backlight, we have something that is called a frontlight. It is similar to backlight, it also uses the LEDs to put the light into it, but the frontlight needs to be transparent as we have the display behind. On the example on the picture above we can see an e-paper display. The e-paper display is also a TFT display variation, but it is not LCD (liquid crystal), it is a different technology, but the back of the display is the same and it is reflective. The example you see is the Kindle 4 eBook reader. It uses an e-paper display and a frontlight as well, so you can read eBooks even during the night.

This new range of TFT LCD displays with unique characteristics come with the standard interfaces including MiPi, SPI, RGB, DisplayPort and eDP. However, to aid our customers and increase our flexibility of interfacing we are also offering proprietary interface boards which allow you to simply interface via the HDMI / USBC inputs. If you would like more information on this interface board, then please just contact us.
Another major development, available on most of the new range, is the full active LED dimming backlighting which is a technology improvement on edge lit displays. This new technology allows you to control certain parts of the screen and to optimize colours and shades.
You can still dim our edge-lit backlight products, by sending the right signals, but all the LEDs dim at once. This is what we call global dimming. Local dimming is drastically different from traditional edge-lit backlights in that the backlight is an array of LEDs pointing at the user like a direct backlight, but the difference is that each LED is individually controlled. The video input signal is received by our board and then it splits it.
You can achieve true HDR (High-dynamic-range) and can exceed HDR1000* specs. The dynamic contrast ratio is virtually unlimited and as you can see can reach 10 Million to one (10M:1) and you can achieve peak brightness that’s daylight readable but have the colour and brightness depth of an OLED display. We are seeing great interest in these displays in areas such as broadcast, medical and automotive industries as they value the quality of the image and performance that standard TFTs cannot offer.

... and dusty conditions. Plus, the protective glass serves to protect the display against sharp foreign objects, meaning the screen is still operable even with deep scratches on the surface.
The Shenzhen TopWay Technology Co.,LTd manufactured the LMT104 SDH01 with an intense brightness LED back light. It consists of a high reliability design for industrial application. The product can generate with 10.4", 800 x RGB x 6000 ...
TOPWAY Color TFT Modules are designed to provide robust and easy to install display products for industrial applications. For many years in business, the broad design experience and the full range of iconic products made ...
... information systems(HIS) or electronic health record(EHR). It ranges from all-in-one computer, mobile tablets, diagnostic monitors, electronic paper display, and telemedicine. All our medical grade products are certified ...
KAMA series consists of the versatile display and touch monitor products applying to retail, healthcare, public services, and any kind of commercial equipment in need of human machine interface. The form factor covers ...
KAMA series consists of the versatile display and touch monitor products applying to retail, healthcare, public services, and any kind of commercial equipment in need of human machine interface. The form factor covers ...
VMD 3002 is a robust 10.4-inch TFT LCD monitor with enhanced brightness, projected capacitive touchscreen, and high performance loud speaker. It is designed with a single cable to consolidate ...
VMD 1001 is a 7-inch TFT LCD monitor with 4 wire resistant touch screen sensor. With the high brightness display and automatically brightness control, it is designed ...
VMD 2002 is an 8-inch TFT LCD monitor with 4 wire resistant touch screen sensor. With the high brightness display and automatically brightness control, it is designed ...
Model Name:AMG-19OPDX01T7Screen Size:19"Active Display Area (mm):376.32(H)x301.06(V)Pixel Pitch (mm):0.294(H)x0.294(V)Display Mode:Normally whiteDisplay Resolution (pixel):1280x1024Contrast Ratio:1000:1Touch screen(optional):PCAP ...
The HANNspree HP248WJB is a 23.8-inch Full HD monitor featuring an integrated 5Mpixel webcam, microphone array and stereo speakers for video conferencing and live-streaming. The TFT panel delivers ultra-wide ...
... daisy chainable HS272PDB monitor has both a DisplayPort input and a DisplayPort output. The DisplayPort output connects to the next downstream display. This cabling arrangement, with one DisplayPort cable between each ...
Hengstar embedded open display products adopt industrial process, with standard DC 12V power input, 9 ~ 36V optional, working temperature support - 30 ~ ...
... . This compact display is less than 8” wide and weighs only 1 kg, and the same model is available in screen sizes up to 21.5". This touchscreen monitor can be connected to any computer including a rugged ...

The use of TFT (thin film transistor) LCD display has gained popularity over the years, with the advent of high technology such as laptop computers, iPads, televisions, and other gadgets. A TFT LCD module uses complex and advanced technology that allows it to provide the screen a homogenous illumination, making the quality of images better. Aside from gadget users, businesses and companies can also benefit from this technology that can help with productivity.
TFT LCD monitors are less bulky. They can easily be carried and moved around. In fact, they can be mounted on walls. This means that they don’t occupy a lot of space, allowing you to utilize and organize a workstation better. You can make room for more important tasks.
You can save money on electric bills with a TFT LCD screen. Because it uses millions of pixels that provide accurate illumination on less electricity, it’s more energy-efficient than CRT monitors. It consumes 78% less energy. Given this, companies can make better use of their resources.
The visual that a TFT LCD display produces is sharper than a CRT monitor. Every pixel in a TFT LCD is active, preventing flickers and distortions. This means that you can get a clearer picture, which is necessary for work. Blurry images on a screen can affect a person’s productivity. This is also good for helping avoid headaches, eyestrain, and nausea that are caused by too much exposure to computers that produce low quality images.
Adaptability is a reason why graphic and web designers prefer TFT LCD screens. Such technology fits dual monitor configurations. This means that a capable computer can have two monitors that you can use simultaneously. It can help speed up your work because you don’t have to switch between windows on one screen. You can view and work on a main document on one screen and use the other one for other tasks.
These are only some of the reasons to use a TFT LCD screen at work. If you believe that you can benefit from this technology, contact a reliable manufacturer to get the best product for you.

The adoption of LCD technology in vehicular displays has happened quite quickly and smart displays have by now pretty much replaced the mechanical dashboards of yesteryears in cars. In an interview with our team, Rei Tjoeng from Sharp Devices revealed some interesting information regarding automotive-grade LCDs, the recent trends, and specific characteristics that make some LCD displays different from the others available in the market.
A. Adoption of TFT in 2-wheeler cluster applications has increased in a big way. The global automotive industry is widely believed to be on the cusp of tremendous change in terms of manufacturing, sales, and the overall business model, owing to the rapid advances in new-age technologies such as autonomous driving, augmented reality, and big data.
Advanced driver-assistance systems (ADAS)—such as parking assistance, forward collision, lane-departure warnings, and blind-spot monitoring—are frequently hailed as the technologies that will usher us into an age of autonomous transportation, but drivers are still either untrusting or too trusting of these features. This has led to an evolution of sorts in the in-car user experience interfaces, and more so with the way automotive display makers are developing new products.
The future for ergonomic conformal displays, display-based dash, central console, in-door wing mirrors, and transparent displays that offer unobtrusive visual information during journeys is bright. Head-up displays are fast gaining popularity as an ideal interface for disseminating crucial information such as navigation messages, vehicle speed, and warnings.
A. Yes, reflective LCDs, which use ambient light to reflect in order to read. In 2W cluster applications, where TFT is exposed to direct sunlight, readability is a major issue. Sharp Reflective LCD is a solution as visibility is crystal clear without any glare and is available in colour too. Equipped with a backlight, it can be used at night also.
Normal TFT has to pump more power through the backlight, which results in more power consumption and backlight life also gets affected to a large extent. This reflective LCD consumes very little power and could be the best fit-in product for the EV segment.
Q. One of the first fears that come to one’s mind when we see a large tablet-like display in cars is of its breaking. But what is the actual risk of these screens breaking?
A. The market is now shifting to large-size TFT displays in the automotive segment. These displays are automotive-grade LCDs and are tested for shock, vibration, high and low temperature, etc. For more protection and safety, glass bonding is done over TFT. Glass bonding with a cover glass on the LCD protects it from shock, as the hardened adhesive behind the glass acts as a shock absorber. Shakes and shocks are less likely to damage the display and glass, making this an important benefit for transportation applications. In the unlikely event that the glass is damaged, shards of broken glass will remain stuck to the optical adhesive.
Q. Reflection or glaring sunlight sometimes makes it difficult to read the displays. Any innovation introduced recently, or underway, that may solve this issue?
A. The smartphone has become very popular in recent years and it is influencing the engineers’ design. We saw some EV companies use the smartphone LCD as the cluster or GPS display for their first-generation products. The smartphone LCD is nice but, unfortunately, it is not designed for automotive applications, especially not for 2-wheeler outdoor usage. When the 2-wheeler is under the sunshine, the driver can barely see anything from the smartphone LCD. And, also, the smartphone LCD’s lifetime becomes much shorter under the automotive application scenario.
A. Sharp Singapore has been in this region for many years. We understand our customers. First, our team will get the customer’s requirements from both the marketing and engineering sides. We will check the customer’s motherboard’s graphics capability, display interface, and other necessary technical details. We will propose the best suitable LCDs to the customer and explain the reason. We will explain what we observe from the market trend and help the customer to know the best options.
Q. Do you have some form of sampling programme for them to receive samples during their prototyping stages? Do you have development or evaluation kits for your LCD displays?
A. We have salespersons stationed in India at New Delhi and Bangalore. They are working closely with the customers’ design engineers. There are technical support persons in Singapore and Japan. Our Indian team can support the customer onsite and bridge as technical person effectively between India and Singapore.

Our new line of 10.1” TFT displays with IPS technology are now available! These 10.1” IPS displays offer three interface options to choose from including RGB, LVDS, and HDMI interface, each with two touchscreen options as capacitive or without a touchscreen.
The new line of 3.5” TFT displays with IPS technology is now available! Three touchscreen options are available: capacitive, resistive, or without a touchscreen.

By continuing to use AliExpress you accept our use of cookies (view more on our Privacy Policy). You can adjust your Cookie Preferences at the bottom of this page.

This awesome little display breakout is a great way to add a small, colorful and bright display to any project. Since the display uses 4-wire SPI to communicate and has its own pixel-addressable frame buffer, it can be used with every kind of microcontroller. Even a very small one with low memory and few pins available!
This 2.2″ display has 320×240 color pixels and is a true TFT display. The TFT driver (ILI9340 or compatible) can display full 18-bit color (262,144 shades). The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic. Adafruit also had a little extra space on the back so there is a microSD card holder for easily loading full-color bitmaps from a FAT16/FAT32 formatted microSD card.
The Adafruit 2.2″ TFT LCD with MicroSD Card also features an EYESPI connector for a simpler connection to the LCD. EYESPI is a single 18-pin FPC used as a quick way to connect displays.
![]()
By these two functions, You can find out the resolution of the display. Just add them to the code and put the outputs in a uint16_t variable. Then read it from the Serial port by Serial.println();. First add Serial.begin(9600); in setup().

Ideal for monitoring situations out in the field, this portable 3.5-inch TFT LCD monitor can be strapped onto your wrist and offers a wide viewing angle.

APO/FPO, Afghanistan, Africa, Alaska/Hawaii, Albania, American Samoa, Andorra, Armenia, Azerbaijan Republic, Bahrain, Bangladesh, Belarus, Bermuda, Bosnia and Herzegovina, Brunei Darussalam, Central America and Caribbean, China, Cook Islands, Fiji, French Polynesia, Georgia, Greenland, Guam, India, Iraq, Israel, Jersey, Jordan, Kazakhstan, Kiribati, Kuwait, Kyrgyzstan, Laos, Lebanon, Luxembourg, Maldives, Marshall Islands, Micronesia, Moldova, Mongolia, Nauru, Nepal, New Caledonia, Niue, Oman, Pakistan, Palau, Papua New Guinea, Qatar, Russian Federation, Saint Pierre and Miquelon, Serbia, Solomon Islands, South America, Sri Lanka, Tajikistan, Tonga, Turkmenistan, Tuvalu, US Protectorates, Ukraine, Uzbekistan, Vanuatu, Vatican City State, Wallis and Futuna, Western Samoa, Yemen
Ms.Josey
Ms.Josey