5 inch hdmi touch lcd display free sample
The resolution of the LCD display is 800 x 480, you can configure the resolution via software, and the maximum resolution it supports is 1920 x 1080. It is a USB capacitive touch screen and does not require a driver. It supports five touch control, besides that, the LCD screen comes with an OSD menu adjustment function. You can adjust the contrast, brightness, and switch button. There are 9 interfaces on the back of the screen, one earphone for audio output; two touches (USB connector), for power supply and touch output; one display, an HDMI interface, for connecting the motherboard and LCD display. One power, it can control the backlight to turn on and turn off to save power. One return, it’s only useful in the OSD menu. One right/down, backlight shortcut key. One left/up, backlight shortcut key. A menu, it’s useful in the OSD setting menu, open the OSD/ select key.
Compatible and Direct-connect with any revision of Raspberry Pi. (If you are using a Raspberry Pi Zero / Zero 2 W, an additional HDMI cable is required).
5) Insert the TF card into the Raspberry Pi, power on the Raspberry Pi, and wait for more than 10 seconds to display normally. But the touch is abnormal at that time, and the touch needs to be calibrated as the following steps.
3. After reboot, touch will work normally under normal circumstances. But for different resistance screens, the accuracy of using the default calibration parameters may not be very suitable.
You can perform touch calibration by clicking the Raspberry Pi icon on the taskbar, selecting Preferences -> Calibrate Touchscreen, and following the displayed prompts.
4. After calibration, the following data will be displayed. If you want to save these touch values, you can replace the data in the red circle with the data in the corresponding position in 99-calibration.conf.
The installation of xserver-xorg-input-evdev and xinput-calibrator in Ubuntu system reports an error, so the touch cannot be used normally. How to solve it?
The installation of xserver-xorg-input-evdev and xinput-calibrator in Kali system reports an error, so the touch cannot be used normally. How to solve it?
I"ve been looking around for a small HDMI LCD screen to use as a seconday screen with Windows and it took a few months of research on and off before deciding on the Elecrow 5" HDMI monitor. For the most part, it took me a while because a lot of reviews here and on other sites were primarily about use and config with Raspberry Pi.
Having used it for a few months now I still can"t believe how clear and sharp the screen is! There are sadly no controls for brightness, colour, saturation or contrast but everything displayed looks very nice and accurate.
As I"m using this with Windows, I"ve not needed to look through the included driver utility disc and not tried the resistive touchscreen so I can"t comment on those. Windows just detects it as a second display and lets me extend my desktop. No drivers needed. The box contains the LCD screen, a HDMI bridge connector that neatly connects the HDMI socket on the top of the screen to the HDMI socket on the Raspberry Pi when mounted together. Standoffs for mounting are also supplied plus a plastic stylus.
+ Runs off a single micro USB (socket also at the top next to HDMI socket) connected to PC USB so no additional external power adapters or sockets needed. It powers down whenever my PC is scheduled to power down so no lingering standby. Some motherboard USB ports do still continue to supply power for charging devices so your experience may differ.
- The only negative I can think of is the availability or lack of screen cases with cutouts to suit the position of the HDMI and USB sockets on this. The Elecrow has its HDMI and USB socket at the top edge of screen and nearly all cases I have looked at are designed for screens with HDMI and USB on the right edge. I"ve had to import one from China that had the cutouts for this screen. Took about 2 weeks to arrive. Wish I"d have ordered two cases at the same time to avoid the wait as I"m impressed with the clarity of Elecrow I hope to buy another one in near future.
! Just one more thing Columbo! I had originally wanted to buy Revision B of this screen with capacitive touch screen because it has OSD menu buttons. I can"t find any manuals but I"m hoping that OSD buttons allows settings for brightness as that was my other preferred criteria. Having said that, I think it would be even more impossible to find suitable case due to the positions of sockets and extra menu buttons on Revision B screen. Maybe Elecrow could provide some insight on available cases?
5 inch small HDMI monitor with 800x480 mini LCD screen. The touchscreen is USB capacitive touch control, free-driver, plug and play, micro USB interface for touch and power supply, HDMI interface for displaying. the maximum resolution it supports is 1920 x 1080.
When working with Raspberry Pi 4: please connect to HDMI 0 port, and comment out by adding # in the front of "dtoverlay = vc4-fkms-V3D" or delete this line directly in the config.txt file.
When working with Raspberry Pi 4:please connect to HDMI 0 port, and comment out by adding # in the front of "dtoverlay = vc4-fkms-V3D" or delete this line directly in the config.txt file.
and connect the other end of the USB cable to the USB port of the LCD; then supply power to Raspberry Pi; after that if the display and touch both are OK,
A) Take the Raspberry Pi OS 2021-05-07 as example. After the programming is completed, Use Notepad++ to open the config.txt file in the root directory of the TF card, and add the following code at the end of “config.txt” to save and safely eject the TF card.
B) Take the Raspberry Pi OS 2020-05 as example. After the programming is completed, Use Notepad++ to open the config.txt file in the root directory of the TF card, and comment the following two lines
Step 6:Connect the touch interface (using micro USB cable) , HDMI interface (using HDMI to micro HDMI cable) of the 5-inch screen to Raspberry Pi 4 as following, and wait for a few seconds to display normally:
Note: Support Raspberry Pi OS / Ubuntu / Kali / Retropie / WIN10 IoT systems. When LCD works on Raspberry Pi 2/3b/3B+, it will be recognized as the system default resolution.
Step 5: Connect the touch interface (using micro USB cable) , HDMI interface (using HDMI to HDMI cable) of the 5-inch screen to Raspberry Pi 2/3B/3B+ as following, and wait for a few seconds to display normally
Step 1: Connect the LCD HDMI interface to the device’s HDMI output signal to by using the HDMI cable (select HDMI cable according to the deceive HDMI interface), and connect the LCD’s USB Touch interface to the USB port of the device as following
Step 2: If there are several monitors, please unplug other monitor connectors first, and use LCD as the only monitor for testing. (Testing on win10, it supports two monitor simultaneously)
I recently found a discount code through SlickDeals for $10 off the Elecrow 5" HDMI Touchscreen display for the Raspberry Pi. Since the Raspberry Pi was introduced, I"ve wanted to try out one of these mini screens (touchscreen or no), but they"ve always been prohibitively expensive (usually $60+).
This review will walk through my experience connecting the Pi, getting the screen working correctly, getting the _touch_screen working correctly, and then how the whole system works with a Raspberry Pi 3. (See my separate Raspberry Pi 3 model B review).
The display is pretty solid, and comes well packed in styrofoam with four standoffs for mounting, a cheap plastic stylus, and a male-to-male HDMI daughter-card. Getting the Pi onto the board is easy enough; I used one standoff through one of the Pi"s mounting holes (on the side with the HDMI plug), then seated the Pi directly on top of the GPIO slot on the display board, so so the HDMI ports would line up perfectly on the other side.
The Elecrow officially supports the Raspberry Pi 3 model B, but I tested it with a 2 model B as well. I didn"t try it with a B+, but the hardware layout should work, so at least the HDMI display would work correctly (not sure about the touchscreen controls). The way the hardware is laid out, you seat the Raspberry Pi directly onto a GPIO socket (it takes up the first 13 sets of GPIO pins—pins 1-26), and then there"s an included HDMI male-to-male daughtercard that slots in nicely to connect the HDMI output of the Pi to the HDMI input on the display.
There"s an extra OTG USB plug on the display if you want to give it a separate power source, but if you plug it straight into the Pi"s GPIO, it will leech off the 5V connection. As long as you have a good 2A power supply for your Pi, though, you shouldn"t have to worry about supplying independent power to the display. In my usage, I only saw the overvolt indicator every now and then (just like I do in normal usage of the Pi 3, since it uses a bit more power than a 2!).
When I first booted the Pi attached to the display, there was a large white area on the right, and only the left portion of the screen was being used by the Pi (it was only using 640x480 of the 800x480 display). To fix this, you have to set a few display options in the configuration file the Raspberry Pi reads during startup to switch certain hardware settings.
Besides being a 800x480 HDMI display, the Elecrow also has a touchscreen overlay that allows simple one-point resistive touch detection on the screen. Note that at best, resistive touch is not nearly as responsive and intuitive as capacitive touch detection, which you"re likely used to on any recent smartphone or tablet screen. But something is better than nothing, when it comes to building simple UIs for "Internet of Things" devices or other fun things.
I tried to find some kind of downloadable driver for the XPT2046 touch controller, but didn"t find a lot of helpful information. Elecrow"s Wiki has some helpful information, a link to a setup PDF, a link to some configuration examples... but some of this seemed to be formatted incorrectly (likely due to bad copy/pasting or PDF formatting), so ignore that info and use this process instead (all commands run from the Terminal app):
These commands first install the touchscreen calibration utility, then configure the Pi to use the correct GPIO settings so touches can be interpreted as mouse moves/clicks by the Pi.
After you make those changes, reboot the Pi via the UI or in the Terminal with sudo reboot. Once it reboots, you need to calibrate the touchscreen. To do that, go to Menu > Preferences > Calibrate Touchscreen (see image below):
Once calibrated, the accuracy is pretty good, using either the included stylus or your fingernail. Note that the default Raspberry Pi UI is totally unoptimized for small (or even large) touchscreen use. You should probably get to work building your own touchscreen UI now :)
For ~$30 ($40 without discount), I wasn"t expecting a mind-blowing retina display with excellent glare-reducing coatings and contrast. But I do expect no dead pixels, and at least a crisp, vibrant picture when looking straight on. This screen is "good enough" in that regard, though viewing angles aren"t too great; side to side is okay, but looking down from above or up from below results in a bit of a washed out picture. Also, there is no antireflective coating on the screen, so wherever you use it, you need to be aware of nearby light sources.
So, to summarize the review: this is everything I expected out of a sub-$50 display. It"s nothing like a high-end smartphone display with capacitive touch, so if that"s what you"re expecting, you"ll have to look elsewhere. But if you just want a small display that mounts to the Pi easily and is more affordable than the Raspberry Pi Foundation"s own 7" touchscreen, this is a great buy!
In order to meet the increasing need of compact HDMI displays, especially for some popular single-board computers like the Raspberry Pi, the UCTRONICS team now releases a 5-inch HDMI capacitive multi-touch touchscreen with stand.
Smart lcd display 7 inch Resistance+ Touch+ Screen+ LCD+ Raspberry pi +HDMI Support Raspberry Pi, BB Black, Banana Pi and other mainstream mini PC Can be used as general-purpose-use HDMI monitor, for example: connect with oca computer HDMI as the sub-display Used as a raspberry pi display that supports Raspbian, Ubuntu, Kali-Linux, Kodi, win10 IOT, single-touch, free drive Work as a PC monitor, support win7, win8, win10 system 5 point touch (XP and older version system: single-point touch).
Rotating the screen to the proper orientation proved challenging. The config.txt rotate commands don’t work with the raspberry pi4. I couldn’t get the xorg configuration to rotate the display. When I added kernel commandline parameters to rotate the display, that worked for the initial verbose boot screen… but once KlipperScreen loaded, it was the wrong orientation.
can be used as general-purpose-use HDMI monitor, for example: connect with a computer HDMI as the sub-display (resolution need to be able to force output for 800 x480)
This is a fantastic HDMI monitor with usb touch screen.Utilizing pre-existing Linux/Windows/Mac drivers, this 800 x 480 touchscreen will help you hit the ground running.
Resistive touch function give the user full control over any device. Supports Windows XP SP3, Windows 7, Windows 8, Windows 8.1, Windows 10, Android 4.2, Windows CE7, Ubuntu and Debian. Built-in EDID device information very easy to let the equipment correctly identified, USB touch can support functions of the right mouse button and drag and drop.We special design the power circuit for this monitor, which just only need less than 400mA current.
If you do not need the touchscreen function, you just only plug HDMI line to let this monitor run, we"ve tested it successfully on PC, laptop, Raspberry pi, Beaglebone Black, Udoo, computer stick, SLR camera and so on.For use with a Raspberry Pi we suggest editing config.txt to set the HDMI to the native 800x480 in case it doesn"t detect the resolution properly.
Answer: Please check the FPC connector, and you can reconnect it by yourself, and please check the resolution configuration to ensure that the resolution is 800x480, and the power cord is connected to ensure 5V input.
Supports Raspbian, 10-points touch, driver free Supports Ubuntu / Kali / WIN10 IoT, single point touch, driver free Supports Retropie, driver free
Rather than plug your Raspberry Pi into a TV, or connect via SSH (or remote desktop connections via VNC or RDP), you might have opted to purchase a Raspberry Pi touchscreen display.
Straightforward to set up, the touchscreen display has so many possibilities. But if you"ve left yours gathering dust in a drawer, there"s no way you"re going to experience the full benefits of such a useful piece of kit.
The alternative is to get it out of the drawer, hook your touchscreen display to your Raspberry Pi, and reformat the microSD card. It"s time to work on a new project -- one of these ideas should pique your interest.
Let"s start with perhaps the most obvious option. The official Raspberry Pi touchscreen display is seven inches diagonal, making it an ideal size for a photo frame. For the best results, you"ll need a wireless connection (Ethernet cables look unsightly on a mantelpiece) as well as a Raspberry Pi-compatible battery pack.
In the example above, Belkin WeMo switches and a Nest thermostat are manipulated via the Raspberry Pi, touchscreen display, and the InControlHA system with Wemo and Nest plugins. ST:TNG magic comes from an implementation of the Library Computer Access and Retrieval System (LCARS) seen in 1980s/1990s Star Trek. Coder Toby Kurien has developed an LCARS user interface for the Pi that has uses beyond home automation.
Building a carputer has long been the holy grail of technology DIYers, and the Raspberry Pi makes it far more achievable than ever before. But for the carputer to really take shape, it needs a display -- and what better than a touchscreen interface?
Now here is a unique use for the Pi and its touchscreen display. A compact, bench-based tool for controlling hardware on your bench (or kitchen or desk), this is a build with several purposes. It"s designed to help you get your home automation projects off the ground, but also includes support for a webcam to help you record your progress.
The idea here is simple. With just a Raspberry Pi, a webcam, and a touchscreen display -- plus a thermal printer -- you can build a versatile photo booth!
Various projects of this kind have sprung up. While the versions displayed above uses a thermal printer outputting a low-res image, you might prefer to employ a standard color photo printer. The wait will be longer, but the results better!
Projects along these lines can also benefit from better use of the touchscreen. Perhaps you could improve on this, and introduce some interesting photo effects that can be tweaked via the touchscreen prior to printing?
How about a smart mirror for your Raspberry Pi touchscreen display project? This is basically a mirror that not only shows your reflection, but also useful information. For instance, latest news and weather updates.
Naturally, a larger display would deliver the best results, but if you"re looking to get started with a smart mirror project, or develop your own from scratch, a Raspberry Pi combined with a touchscreen display is an excellent place to start.
Want to pump some banging "toons" out of your Raspberry Pi? We"ve looked at some internet radio projects in the past, but adding in a touchscreen display changes things considerably. For a start, it"s a lot easier to find the station you want to listen to!
This example uses a much smaller Adafruit touchscreen display for the Raspberry Pi. You can get suitable results from any compatible touchscreen, however.
We were impressed by this project over at Hackster.io, but note that there are many alternatives. Often these rely on compact LCD displays rather than the touchscreen solution.
Many home automation systems have been developed for, or ported to, the Raspberry Pi -- enough for their own list. Not all of these feature a touchscreen display, however.
Another great build, and the one we"re finishing on, is a Raspberry Pi-powered tablet computer. The idea is simple: place the Pi, the touchscreen display, and a rechargeable battery pack into a suitable case (more than likely 3D printed). You might opt to change the operating system; Raspbian Jessie with PIXEL (nor the previous desktop) isn"t really suitable as a touch-friendly interface. Happily, there are versions of Android available for the Raspberry Pi.