1.07g colors
The color depth (palette size) is a separate issue from the vibrancy of the monitor, so it won"t affect it. A monitor with 1.07 colors doesn"t necessarily mean that it can display additional colors that are outside the range of a monitor with 16.7 million colors. It just means it can display more "inbetween" colors for smoother transitions in gradients.
Color depth is only one aspect of color representation, expressing the precision with which the amount of each primary can be expressed; the other aspect is how broad a range of colors can be expressed (the gamut). The definition of both color precision and gamut is accomplished with a color encoding specification which assigns a digital code value to a location in a color space.
With the relatively low color depth, the stored value is typically a number representing the index into a color map or palette (a form of vector quantization). The colors available in the palette itself may be fixed by the hardware or modifiable by software. Modifiable palettes are sometimes referred to as
Old graphics chips, particularly those used in home computers and video game consoles, often have the ability to use a different palette per sprites and tiles in order to increase the maximum number of simultaneously displayed colors, while minimizing use of then-expensive memory (and bandwidth). For example, in the ZX Spectrum the picture is stored in a two-color format, but these two colors can be separately defined for each rectangular block of 8×8 pixels.
The palette itself has a color depth (number of bits per entry). While the best VGA systems only offered an 18-bit (262,144 color) palette from which colors could be chosen, all color Macintosh video hardware offered a 24-bit (16 million color) palette. 24-bit palettes are pretty much universal on any recent hardware or file format using them.
2 colors, often black and white (or whatever color the CRT phosphor was) direct color. Sometimes 1 meant black and 0 meant white, the inverse of modern standards. Most of the first graphics displays were of this type, the X window system was developed for such displays, and this was assumed for a 3M computer. In the late 80"s there were professional displays with resolutions up to 300dpi (the same as a contemporary laser printer) but color proved more popular.
8 colors, almost always all combinations of full-intensity red, green, and blue. Many early home computers with TV displays, including the ZX Spectrum and BBC Micro.
16 colors, usually from a selection of fixed palettes. Used by the EGA and by the least common denominator VGA standard at higher resolution, color Macintoshes, Atari ST low resolution, Commodore 64, Amstrad CPC.
256 colors, usually from a fully-programmable palette. Most early color Unix workstations, VGA at low resolution, Super VGA, color Macintoshes, Atari TT, Amiga AGA chipset, Falcon030, Acorn Archimedes. Both X and Windows provided elaborate systems to try to allow each program to select its own palette, often resulting in incorrect colors in any window other than the one with focus.
4096 colors, usually from a fully-programmable palette (though it was often set to a 16×16×16 color cube). Some Silicon Graphics systems, Color NeXTstation systems, and Amiga systems in HAM mode have this color depth.
In high-color systems, two bytes (16 bits) are stored for each pixel. Most often, each component (R, G, and B) is assigned 5 bits, plus one unused bit (or used for a mask channel or to switch to indexed color); this allows 32,768 colors to be represented. However, an alternate assignment which reassigns the unused bit to the G channel allows 65,536 colors to be represented, but without transparency.Sharp X68000 and IBM"s Extended Graphics Array (XGA).
224 gives 16,777,216 color variations. The human eye can discriminate up to ten million colors,gamut of a display is smaller than the range of human vision, this means this should cover that range with more detail than can be perceived. However, displays do not evenly distribute the colors in human perception space, so humans can see the changes between some adjacent colors as color banding. Monochromatic images set all three channels to the same value, resulting in only 256 different colors; some software attempts to dither the gray level into the color channels to increase this, although in modern software this is more often used for subpixel rendering to increase the space resolution on LCD screens where the colors have slightly different positions.
Deep color consists of a billion or more colors.30 is 1,073,741,824. Usually this is 10 bits each of red, green, and blue (10 bpc). If an alpha channel of the same size is added then each pixel takes 40 bits.
Using 12 bits per color channel produces 36 bits, 68,719,476,736 colors. If an alpha channel of the same size is added then there are 48 bits per pixel.
Using 16 bits per color channel produces 48 bits, 281,474,976,710,656 colors. If an alpha channel of the same size is added then there are 64 bits per pixel.
Some systems started using those bits for numbers outside the 0–1 range rather than for increasing the resolution. Numbers greater than 1 were for colors brighter than the display could show, as in high-dynamic-range imaging (HDRI). Negative numbers can increase the gamut to cover all possible colors, and for storing the results of filtering operations with negative filter coefficients. The Pixar Image Computer used 12 bits to store numbers in the range [-1.5,2.5), with 2 bits for the integer portion and 10 for the fraction. The Cineon imaging system used 10-bit professional video displays with the video hardware adjusted so that a value of 95 was black and 685 was white.
Virtually all television displays and computer displays form images by varying the strength of just three primary colors: red, green, and blue. For example, bright yellow is formed by roughly equal red and green contributions, with no blue contribution.
For storing and manipulating images, alternative ways of expanding the traditional triangle exist: One can convert image coding to use fictitious primaries, that are not physically possible but that have the effect of extending the triangle to enclose a much larger color gamut. An equivalent, simpler change is to allow negative numbers in color channels, so that the represented colors can extend out of the color triangle formed by the primaries. However these only extend the colors that can be represented in the image encoding; neither trick extends the gamut of colors that can actually be rendered on a display device.
A typical CRT monitorgamut: Inside the colored triangle represents colors that the monitor can display. The horseshoe-shaped surrounding grey area represents colors humans can see, but that the monitor cannot show.
Supplementary colors can widen the color gamut of a display, since it is no longer limited to the interior of a triangle formed by three primaries at its corners, e.g. the CIE 1931 color space. Recent technologies such as Texas Instruments"s BrilliantColor augment the typical red, green, and blue channels with up to three other primaries: cyan, magenta, and yellow.
Mitsubishi and Samsung (among others) use BrilliantColor in some of their TV sets to extend the range of displayable colors.Sharp Aquos line of televisions has introduced Quattron technology, which augments the usual RGB pixel components with a yellow subpixel. However, formats and media that allow or make use of the extended color gamut are at present extremely rare.
Because humans are overwhelmingly trichromats or dichromatsrange of colors than a mixture of three colored lights can display. The deficit of colors is particularly noticeable in saturated shades of bluish green (shown as the left upper grey part of the horseshoe in the diagram) of RGB displays: Most humans can see more vivid blue-greens than any color video screen can display.
Some women have tested as functional tetrachromats but they are exceedingly rare."color blind" dichromats, who theoretically would only need two primary colors.