contrast ratio for lcd monitors free sample
As a first step, try using the calibration settings we recommend (provided we have reviewed your monitor). This will get good, basic contrast - meaning no additional contrast-enhancing settings - and with no loss of detail in dark portions of the image. You can find this information in the "Post Calibration" section of the review.
Contrast:Adjusting this will let you affect how much contrast the monitor has. We list a recommended setting with all of our reviews, but it"s almost always fine to just set this to the maximum. On rare occasions, gamma might be affected, leading to a loss of detail in highlights.
Local Dimming: The local dimming feature dims the backlight behind darker portions of the screen. It can deepen contrast, and it"s worth using when implemented well. It can introduce issues like light blooming off of light objects within dark areas, and when done especially poorly, can dim the entire image. We discuss local dimming in more detail here.
Backlight settings have a very minor impact on contrast, and so you should set it to whatever looks best in your viewing space. With LED Monitors, both white and black will become about equally brighter or dimmer when the backlight is adjusted, preserving the ratio of light to dark. With OLED monitors, adjusting the OLED light only increases the peak brightness; blacks are still perfectly black.
One frequently asked question is which is more important, a panel"s native contrast or contrast with local dimming? It"s a good question. The answer is a bit complicated, but basically, it depends. Unlike TVs, most monitors don"t have a local dimming feature. The few that do, generally speaking, don"t work very well. They usually have very small zone counts, and the algorithms can"t keep up with fast-paced motion, so the leading edge of a bright object in a dark scene ends up looking darker than the rest, and there"s a trail of light behind it.
Because of these issues with local dimming, it"s almost always more important to look at the native capabilities of a monitor instead of the contrast ratio with local dimming. Because most monitors have poor local dimming features, there"s usually not that much of a difference between the native contrast of the panel and the contrast with local dimming when tested with a checkerboard pattern. In fact, of the 23 monitors with local dimming that we"ve tested on our latest test bench, only 4 of them can improve contrast by 10% or more with our test pattern through local dimming.
There are different ways to measure contrast. We measure contrast with a checkerboard pattern and take the average black level from four squares, but some other review sites measure it differently, which can lead to a difference in posted numbers. Some of the other methods we"ve seen websites use include:
Full On/Off: Some websites measure the contrast using a full white screen, and a full black screen. This is generally considered a less accurate way to measure contrast, and it isn"t very realistic. Contrast measurements with local dimming tend to appear much better with this measurement technique, as it"s easy for any monitor with local dimming to turn the entire screen off at once.
Small Samples: Similar to the full-screen method, but instead of large slides, contrast is measured using small slides that only cover part of the screen. This method isn"t ideal either, as imperfect uniformity can significantly skew the results.
ANSI Checkerboard: The most generally accepted way to measure contrast; a checkerboard pattern very similar to ours is used, but with an asymmetric test pattern. The ANSI method measures the output in all 16 squares and averages the values for the white and black squares. It usually produces very similar results to our own.
Because of differences in measurement techniques, equipment used, and even differences between units, it"s extremely common for different websites to report different contrast measurements.
Monitors use different display technologies, each with advantages and disadvantages. Knowing which type of panel is used in your monitor can already give you a good indication of what to expect in terms of contrast ratio:
OLED: Very few OLED monitors exist, but they essentially have perfect contrast, as each pixel is self-emissive, the black level of black pixels is essentially zero.
Even within the same panel types, it"s normal for the contrast to vary a bit between units, even of the same model, due to manufacturing tolerances. Manufacturers used to provide the typical contrast ratio for each monitor, but recently, some brands, including LG, have started listing the minimum contrast ratio you could get. For IPS and TN panels, this difference usually isn"t very significant, and most people shouldn"t worry about it, but for VA panels, the variance between individual units and measurement techniques can be significant. For example, the LG 32GN600-B is advertised to have a typical contrast ratio of 3000:1, but according to LG, it could be as low as 1800:1 for some units. We measured a contrast ratio of 3248:1, almost double the minimum contrast for that model.
A monitor’s contrast ratio indicates the depth of blacks – a higher contrast ratio means deeper blacks – and, by extension, better picture quality. It’s a very important part of picture quality, so if you want something that looks good (particularly in a dark room), be sure to get a monitor that has good contrast.
There are a few things that can be done to improve contrast, but there are limits. As a good first step, look to our recommended picture settings (listed with every review), as those can help you get a good baseline. From there, you can enable or disable a few different settings that might help deepen blacks. Just remember that some of those settings will have other consequences on picture quality.
By uploading, you give permission for your files to be stored on the server and to be used for any purpose, including public display without personally identifiable information.
If you’re in the market for a new TV, projector, camera, or any other type of display, you should pay attention to the contrast ratio. But what does this measurement mean, and how do you know whether your display has good contrast?
While most displays have a contrast setting that the viewer can manually adjust, the ratio refers to the panel’s limitations—in other words, the largest possible difference between its lightest (white) and darkest (black) areas.
Contrast ratio is the measurement of the difference between a display"s maximum and minimum brightness; put another way, it"s the ratio between the brightest white and the darkest black. For example, a contrast ratio of 1,000:1 means that the brightest white image is 1,000 times brighter than the darkest black.
Generally, a higher contrast ratio is better since a display with a 100,000:1 ratio can produce darker black levels and more saturated colors than one with a 1,000:1 rating, thus achieving a more natural-looking image. That said, a bigger number isn"t always better, as you need to take external lighting conditions into account the lighting conditions and the type of display into account.
As previously mentioned, a higher contrast ratio has its benefits but isn’t the only thing you should consider. For example, a projector with a lower contrast ratio could provide an optimal viewing experience if you’ll be using it in a room with a lot of ambient light.
Contrast ratios can also vary significantly across different display types. While a transmissive digital projector may only have a contrast ratio of 200:1, many newer TVs are over 4,000:1. But even these figures don’t tell the whole story, as contrast ratios are dependent on the underlying technology and how they are measured.
When looking at a display’s contrast ratio, it’s important to understand the various ways in which they are measured. The actual ratio you see can be broken down into two different types: Static Contrast and Dynamic Contrast.
Static Contrast, otherwise known as “native” or “onscreen,” is a ratio comparing the brightest and darkest shade a display system is capable of producing at the same time. Since this ratio reflects the results from when the panel was made, industry experts typically consider this a more accurate representation of a display’s capabilities.
Dynamic Contrast offers a more theoretical range of a display’s contrast ratio, as it’s heavily dependent upon the screen’s underlying technology. Here, the range between the lightest areas of an all-white/light scene and the darkest areas of a black/dark scene is measured.
The problem with dynamic contrast measurements is that they are typically dishonest, as you’re unlikely to experience such a wide contrast range in the same scene. On top of this, manufacturers can manipulate contrast to make a scene lighter or darker using a display’s backlighting and firmware.
Unfortunately, there is no standardized measurement of contrast ratio. Particularly in the TV market, manufacturers can essentially inflate their ratings due to a combination of measurement and unstated variables. That said, most contrast ratios are measured using one of two methods:
Displays that measure with this method tend to register lower contrast ratios as ANSI contrast provides a more realistic measurement of the screen’s capability. However, since the test can include a room’s lighting conditions in its measurement, it needs to be performed in an ideal environment for the most accurate reading.
This method measures an all-white screen with an all-black screen and reflects equal proportions of light from the display to the room and back. It"s the preferred method for many manufacturers, as it cancels out exterior lighting conditions and results in an ideal (and thus higher) contrast ratio. Unfortunately, dynamic contrast specs are often misleading since they can be inflated and don"t indicate much about how an average image"s contrast will look.
The eye test is the best tool at your disposal — if a display’s black levels look washed out and gray, its contrast ratio probably isn’t high enough. However, there are other ways to ensure you’re not being misled:
Look for vendors that publish ANSI contrast specs, as this is a more accurate reflection of the display’s true contrast range. Unfortunately, many companies don’t disclose these figures, as ANSI readings tend to be much lower than Full On/Off, and it’s simply a better marketing strategy for these companies to focus on the latter.
Pay attention to backlighting technology.If you’re looking for a TV with a high contrast ratio, an OLED display will offer a better viewing experience than an LCD panel, as the OLED’s pixels don’t rely on a backlight and can display deeper blacks without a “blooming” effect.
Stick to the same manufacturer when making comparisons.Since every company arrives at its contrast ratios through different means, comparing displays produced by the same manufacturer is an excellent way to get consistent figures.
As it pertains to monitors, the contrast ratio is the ratio between the brightest white’s highest lumination level and the deepest black color the monitor is capable of producing. If a monitor has a high contrast ratio, it means it offers deeper shades of black, indicating a higher level of picture quality overall.
Contrast ratio is crucial for projector image quality. The higher the contrast ratio, the more detail viewers can see on the image projected. A higher contrast ratio also means more color subtlety is available, and more shading is visible.
Modern computer LCD monitors typically have a contrast ratio of between 1000:1 and 3000:1. A good gaming monitor may range toward the higher end of the spectrum, but use your eyes when considering a monitor you"re comfortable with and note that ambient light will affect what you"re seeing.
Contrast Ratio is the ratio of the brightest white a monitor can create compared to its darkest black. Contrast is typically expressed as 500:1 for example, this would mean the monitor"s white colors are five hundred times brighter than its black colors.
A "good" contrast ratio will depend on your preferences and what you"ll use your monitor screen for. Most LCD monitors have a contrast ratio between 1000:1 to 3000:1, and this works fine for everyday tasks like browsing the internet, sending emails, and editing documents. However some more advanced OLED displays can have contrast ratios of up to 100000:1. High contrast ratios like this are great for sharper image detail while gaming, watching films, or editing photos.
When referring to a display, the contrast ratio is a figure used to measure the luminance difference between the brightest white and the darkest black. The contrast ratio is listed as y:z where "y" is the brightest white and "z" is the darkest black. An example of a standard contrast ratio for computer monitors and an LCD is 200:1, a higher number (e.g., 600:1) has a brighter display.
Nothing beats the vertical alignment panels and super vertical alignment panels in contrast ratios regarding the display technology and probably the panel types.
The vertical alignment panels have liquid crystals aligned naturally to the glass, ensuring a more comprehensive contrast ratio range. These panels also have minimum light leakage; meaning prevents the backlights from reaching the deepest blacks. Its whites have better clarity and are uniform.
The display brightness determines the contest ratio integrity in the real action. It counters the surrounding lights" effect on the display. Calibrate the backlight luminance settings to match the display contrast calibration.
To enjoy the best contrast ratio experience, consider a monitor with high brightness levels of up to 5,000 nits. The high luminance counters the effect of ambient lighting.
Glare and reflection of light to the screen affect contrast ratio. When ambient light hits the screen surface, it reflects into your eyes, disrupting your vision. A monitor with an anti-glare coating addresses the glare and reflection issues effectively. Also, ensure your room has minimum ambient and natural light striking the screen directly.
Ambient light from the surroundings directed towards the monitor affects the contrast ratio. This light strikes the screen, scattering in all directions. The reflected light then strikes the eyes of the monitor used. This condition results in unclear image display due to lowered contrast quality.
Evaluating your design for color contrast is a critical aspect of accessibility testing and organizations may benefit from appropriate user experience training and expertise to ensure proper contrast. While our color contrast checker is one of the best tools that allows you to determine contrast levels on your own, we would love to help you with your next project. Our accessibility and user experience experts have the skills required to ensure your next project meets your accessibility goals.
We can help you determine the appropriate success criteria, develop a roadmap to achieve your goals, and provide expert support along the way. Contact us today to discuss why you are looking for our color contrast checker or see if we can help with other aspects of your accessibility projects.
If you have any questions concerning our color contrast tool, would like to report bugs or suggest improvements, or contribute to the code, see the Colour Contrast Analyser (CCA) repository.
The current version of the Colour Contrast Analyser (CCA) has been rebuilt from the ground up using Electron. For the previous, non-Electron versions (“CCA Classic”), see the CCA-Win and CCA-OSX repositories.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Contrast ratio is the most important aspect of a TV"s performance. More than any other single metric, a set"s contrast ratio will be the most noticeable difference between two TVs.
In its simplest form, contrast ratio is the difference between the brightest image a TV can create and the darkest. In another way: white/black=contrast ratio. If a TV can output 45 foot-lamberts with a white screen and 0.010 ft-L with a black screen, it"s said to have a contrast ratio of 4,500:1.
There is no standard as to how to measure contrast ratio. In other words, a TV manufacturer could measure the maximum light output of 1 pixel driven at some normally unobtainable maximum, then measure that same pixel with no signal going to it at all. This hardly represents what you"d see at home, but without a standard, such trivialities don"t matter to TV manufacturers.
Worse, contrast ratio numbers have gotten so extreme, there is literally no way to measure some of them. What happens more often than not is the marketing department will come up with the number it needs to sell the product. The engineers will shuffle their feet, and stare at the wall, and magically the TV has that contrast ratio.
Because you"re reading this article on a device that has its own contrast ratio, I can"t give you real examples of what good and bad contrast ratios look like, so I"ll have to fake it. If you can, make sure your computer monitor is set decently; you can use
There are two more aspects of contrast ratio. Most often these are referred to as "native" and "dynamic." Native contrast ratio is what the display technology itself can do. With an LCD, this is what the liquid crystal panel itself is capable of. With DLP, it"s what the DMD chip/chips can do.
Imagine putting the image above on your TV"s screen. Native contrast ratio is how dark the darkest parts of the image are, compared with the brightest parts of the same image. I like to call this "intra-scene contrast ratio" though I"m certainly open to something better if anyone has an idea.
When an adjustable backlight, or a projector"s iris, is used in conjunction with circuitry to monitor the video signal, it is able to adjust the overall light output in real time depending on what"s onscreen. This dynamic contrast ratio looks like this:
A bright image is bright, a dark image is dark. Done well, this does increase the apparent contrast ratio of a display, but not nearly as much as the numbers would suggest. A TV with 5,000,000:1 contrast ratio would be unbelievable to look it. Too bad one doesn"t exist. A TV with a high dynamic contrast ratio may look better than a TV that has no such circuitry, but it won"t look as good as a display with a high native contrast ratio.
Yes, the LED"s of an LED LCD can turn off, creating a true black, but it will never do this when there is any amount of video on the screen. Picture the end credits of a movie. A display with a high native contrast will show this as a dark black background, and punchy white text. A display with a high dynamic contrast ratio may have a similarly dark background, but the text won"t be bright.
As you can see, a display with a high native contrast is the way to go, if that"s what you"re going for. The night sky is black, but the streetlights pop out. The day sky is bright, but the dark jacket is dark. This is more like CRT, more like film, more like life.
The technology with the highest native contrast ratio is... LCOS. At the moment, JVC front projectors using their version of the technology (D-ILA) have the highest native contrast ratios I"ve measured. Sony"s version (SXRD) comes in a rather distant second. Third is plasma, though some DLP projectors are close.
LCD has come a long way in the past decade, but still lags behind the other technologies. Thankfully, the better LCD manufactures know this and have come up with a few ways to mimic the high native contrast ratio of the other technologies.
The best way to get a high intra-scene contrast ratio with LCDs is with local dimming. This is when the backlight of the LCD is an array of LEDs, all of which can dim depending on what"s on screen. It"s not done on a per-pixel level, but LED zones are generally small enough that the overall effect is quite good. It"s far better than what the LCD panel can do itself. The downside is an artifact known as "halos" where the LEDs are lit behind small bright areas of the screen, but these areas are visible because the other parts of the screen are dark. This is very noticeable on specific types of content (like movie credits or star fields) but generally local dimming works really well. I was going to Photoshop some halos onto a screenshot of the one movie where I actually had a screen credit, but it came across more douchey
Unfortunately, most manufactures have moved away from full array LED backlights, which are the only kind that can do local dimming well, because of the cost.
Most LED LCDs these days are "edge lit," as in their LEDs are along the sides (or the top and bottom, or both). Several companies have developed methods to dim areas of the screen with LED edge lighting, though the effect isn"t as good as full array LEDs. Again, every bit helps though, and many edge lit LED LCDs look amazing.
You may be asking yourself: How can you, as a consumer, find out what display has the best contrast ratio? Good question. You can"t tell in a store, as the store lighting will throw off any comparison (biasing towards LCDs or TVs with antireflective and/or antiglare screens that have better ambient light rejection). As mentioned, all manufacturers manufacture their numbers with little basis on reality, so spec sheets are out.
So that leaves reviews. Sadly, few review sites measure contrast ratio, and those that do don"t have consistency between them. There is no set standard for reviewers on how to measure contrast ratio either, so numbers are going to be extremely different. I may measure 20,000:1, while Joe Numbnutz over at TVAwesomeReviews.com measures 1,000:1 with his Datacolor Spyder (a decent product, but not a valid measurement tool for contrast ratio).
ANSI contrast ratio is a good addition. This is where eight-each white and black boxes in a checkerboard pattern are measured and averaged. This gives a good idea of what a display is doing, and is far more relevant to compare to actual video. Even this, though, is problematic, as the brightness of the white boxes can affect the measurement of the black boxes. Done right, it is also exceedingly time consuming. When I started measuring ANSI contrast ratio when I was at Home Theater, it nearly doubled the total amount of time spent measuring a television. Spending that much time on one measurement that most people will overlook is not an effective use of time.
I hate to say it, but there is no good answer. Yep, 1,500 words to get to that conclusion. Sorry. The best we can hope for is reasonably accurate measurements from sites like CNET to give a general idea of what"s going on, and the knowledge from the rest of this article and others like it to extrapolate what the performance will be in your home.
Like nearly all TV buying guides say: It"s all in what you want to do with the TV. If you"re a movie buff and you watch TV in a dark room or at night, the added contrast of plasma will be very cinematic.
Somewhere in between is an LED LCD with some kind of local or zone dimming, offering better intra-scene contrast ratio than a "normal" LCD, but still offering that technology"s extreme light output.
Got a question for Geoff? First, check out all the other articles he"s written on topics like Send him an e-mail! He won"t tell you which TV to buy, but he might use your letter in a future article. You can also send him a message on Twitter: @TechWriterGeoff.
The contrast ratio (CR) is a property of a display system, defined as the ratio of the luminance of the brightest shade (white) to that of the darkest shade (black) that the system is capable of producing. A high contrast ratio is a desired aspect of any display. It has similarities with dynamic range.
There is no official, standardized way to measure contrast ratio for a system or its parts, nor is there a standard for defining "Contrast Ratio" that is accepted by any standards organization so ratings provided by different manufacturers of display devices are not necessarily comparable to each other due to differences in method of measurement, operation, and unstated variables.projection screen or emitted by a cathode ray tube, and the only light seen in the room would come from the display device. With such a room, the contrast ratio of the image would be the same as the contrast ratio of the device. Real rooms reflect some of the light back to the displayed image, lowering the contrast ratio seen in the image.
Static contrast ratio is the luminosity ratio comparing the brightest and darkest shade the system is capable of producing simultaneously at any instant of time, while dynamic contrast ratio is the luminosity ratio comparing the brightest and darkest shade the system is capable of producing over time (while the picture is moving). Moving from a system that displays a static motionless image to a system that displays a dynamic, changing picture slightly complicates the definition of the contrast ratio, due to the need to take into account the extra temporal dimension to the measuring process.
Many display devices favor the use of the full on/full off method of measurement, as it cancels out the effect of the room and results in an ideal ratio. Equal proportions of light reflect from the display to the room and back in both "black" and "white" measurements, as long as the room stays the same. This will inflate the light levels of both measurements proportionally, leaving the black to white luminance ratio unaffected.
Some manufacturers have gone as far as using different device parameters for the three tests, even further inflating the calculated contrast ratio. With DLP projectors, one method to do this is to enable the clear sector of the color filter wheel for the "on" part and disable it for the "off" part
Another measure is the ANSI contrast, in which the measurement is done with a checker board patterned test image where the black and white luminosity values are measured simultaneously.
It is useful to note that the full on/full off method effectively measures the dynamic contrast ratio of a display, while the ANSI contrast measures the static contrast ratio.
An LCD technology is dynamic contrast (DC), also called advanced contrast ratio (ACR) and various other designations. When there is a need to display a dark image, a display that supports dynamic contrast underpowers the backlight lamp (or decreases the aperture of the projector"s lens using an iris), but proportionately amplifies the transmission through the LCD panel; this gives the benefit of realizing the potential static contrast ratio of the LCD panel in dark scenes when the image is watched in a dark room. The drawback is that if a dark scene contains small areas of superbright light, the resulting image will be over exposed.
The trick for the display is to determine how much of the highlights may be unnoticeably blown out in a given image under the given ambient lighting conditions.
It is also common to market only the dynamic contrast ratio capability of a display (when it is better than its static contrast ratio only on paper), which should not be directly compared to the static contrast ratio. A plasma display with a 4,000,000:1 static contrast ratio will show superior contrast to an LCD (with LED or CCFL backlight) with 30,000,000:1 dynamic and 20,000:1 static contrast ratio when the input signal contains a full range of brightnesses from 0 to 100% simultaneously. They will, however, be on par when input signal ranges only from 0 to 20% brightness.
This animated gif shows a rudimentary representation of how various backlight dimming technologies work on TV. Dimming technology can drastically affect the contrast ratio of the display.
In marketing literature, contrast ratios for emissive (as opposed to reflective) displays are always measured under the optimum condition of a room in total darkness. In typical viewing situations, the contrast ratio is significantly lower due to the reflection of light from the surface of the display, making it harder to distinguish between different devices with very high contrast ratios.luminance of the display, as well as the amount of light reflecting off the display.
Contrast ratio is a ratio that indicates the range between the brightest point and the darkest point that a display can produce. For example, if the ratio is 500:1, it means that the brightest white is 500 times brighter than the blackest black. This measurement is often used in marketing language for both playback and recording devices, and like many “number wars” in the consumer electronics industry, it is very complicated, and consumers should approach it with care.
Ideally, contrast ratios would be tested in the exact same conditions, using the exact same procedures, with carefully calibrated equipment and neutral professionals administering the test. Unfortunately, this is not the case, which means that the measurements can be extremely variable and not always very reliable. Companies may test their contrast under various conditions, using various methods, and the claims they make may be difficult to reproduce.
The most popular method is the full on/full off, in which a display shows an all white and then an all black image, usually in perfect darkness. This provides the biggest number, because the contrast will be quite radical, but these conditions are rarely seen in the real world. Some companies use other methods such as a checkerboard of white and black squares, which provide more realistic conditions and therefore a more accurate contrast. The method used is not always disclosed by the company, however, which can make it difficult to judge the reliability of the stated measurement.
Theoretically, the better the contrast ratio, the better the quality of the display, but displays can also be affected by the conditions where they are used. A television, for example, will have greater contrast in darkness than it will in light conditions. The quality of the material being displayed can also have an impact, as a poor recording will look bad even on the best display. Furthermore, the human eye"s ability to discern contrast and detail are limited, which means that two displays with different ratios can look very similar to the average consumer.
In addition to being important for displays, this ratio also has an impact on the quality of recording devices like cameras. If the ratio is high, the device will be able to reproduce high levels of contrast, creating cleaner, crisper, better-quality images. With a low ratio, quality will also be lower, and it will usually be impossible to clean up or improve the image because the necessary data will be missing since it was never captured.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
The image contrast is given by the ratio between the brightness of the "white" and the brightness of the "black" the monitor can reproduce. A higher contrast of the display can give the impression of increased brightness and can increase the capacity of noticing details.
The "static" contrast ratio is the contrast ratio that can be produced at any moment in time, and is determined by calculating the ratio between the brightness of "white" and the brightness of "black" within a single picture on a display situated in a complete dark room.
The "dynamic" contrast ratio compares the brightest whites and the darkest blacks from different scenes of a movie. The display equipped with dynamic contrast ratio (DCR) has the ability to make dark scenes even darker by adjusting the intensity of the backlight. In this way, the ratio between the luminosity of the whitest white among all images and the darkest black from all images increases. As a consequence, the dynamic contrast ratio is always much higher than the static contrast ratio.
The human eye can perceive changes in contrast up to about 1000:1 ratio. Changes are more noticeable when we pass from 10:1 contrast ratio to a 20:1 contrast ratio. As the contrast ratio increases the difference is noticed less. For example, the difference in contrast at ratios higher than 500:1 up to 1000:1 will seem minor. The contrast perceived by the viewer will be always less than the given contrast ratio for the monitor. This difference is due to the fact that the monitors are usually in an office setting where the reflection of the surrounding light will reduce the contrast.
What is acceptable to an individual will also depend on character size, viewing distance and the type of task being done. A properly functioning monitor will typically provide adequate resolution and a static contrast ratio up to 1000:1.
Aspect ratio is the relationship of the width of a video image compared to its height. The two most common aspect ratios are4:3, also known as 1.33:1 or fullscreen, and 16:9, also known as 1.78:1 or widescreen. (Larger aspect ratio formats are used in the motion picture industry.)
All the older TV’s and computer monitors you grew up with had the squarish 4:3 shape– 33% wider than it was high. These are often referred to as square monitors. 4:3 LCD monitors can display analog video signals that conform to NTSC and PAL standards. They are not capable of displaying HD (high-definition) video.
The 4:3 aspect ratio dates back to 1917, when the Society of Motion Picture Engineers adopted it as the standard format for film. In the 1930’s, the television industry adopted the same 4:3 standard. But in the mid-1950’s, the motion picture industry began developing several widescreen formats to improve their decreasing audience numbers. Television broadcasting stayed with the 4:3 standard, until the recent move to HDTV and 16:9 widescreen.
16:9 is the native aspect ratio of most high-definition widescreen LCD monitors and TV’s (16:9 and 16:10 are very similar). It is 78% wider than it is tall, and fully one-third wider than a 4:3 screen. 16:9 widescreen monitors are ideally suited to display HD video signals. Some models can also display SD (standard definition) video signals, but this will require some compromises, as you will read below.
Nearly all experts agree that in order to display optimal video images, it is critical to match the aspect ratio of the monitor to the aspect ratio of the camera (or other incoming video source). Below is a example of a 16:9 image on a 16:9 widescreen lcd monitor:
However, many cameras in the industrial, commercial, security, and law enforcement industries still utilize 4:3 CCD or CMOS imagers. Therefore, to display clear, undistorted video images, it is important to utilize monitors with the same 4:3 aspect ratio to match the cameras. Failure to do so will result in distorted images, as shown below.
Unfortunately, despite the continued widespread use of 4:3 cameras, LCD monitors with a 4:3 aspect ratio are getting harder and harder to find. Many manufacturers have abandoned them in favor of the newer 16:9 widescreens. TRU-Vu Monitors still offers a complete line of industrial-grade 4:3 aspect ratio LCD monitors. These range in size from 5.5″ to 19″ screens. They are available with standard, waterproof, steel or open frame enclosures. They can be touch screen, sunlight readable, medical-grade, or optically bonded.
16:9 widescreen LCD monitors are the ideal complement to 16:9 format HD cameras. These are increasingly used in video conferencing, broadcast and medical applications. They display superb, distortion-free, high-definition images. TRU-Vu Monitors offers these in 7″, 10.1″, 13.3″, 15.6″, 17.3″, 18.5″ and 21.5″ to 65” LCD screen sizes, in standard, touch screen, sunlight readable, medical-grade, optically bonded and open frame configurations.
You must avoid video images which are stretched, chopped, squeezed, shrunk or distorted. Be sure to choose a LCD monitor with the correct aspect ratio (4:3 aspect ratio or 16:9 aspect ratio) that matches your camera or other incoming video signal.
There was a time when I used to lambast the meaninglessness of dynamic contrast ratio figures quoted in the latest TVs and monitors, but now I just give up...
Samsung has launched the "XL2370", a 23in 16:9 LED backlit monitor which it claims has a 5,000,000:1 dynamic contrast ratio. Let me say that again: 5,000,000:1. To put this in perspective, the eighth generation Pioneer Kuro - a set which revolutionised the HDTV landscape (as is still only bettered by its successor) - has a 16,000:1 contrast ratio. Sigh.
Color gamut is a measure of how many colors can be represented on a display. The higher the color gamut, the more colors represented, making color more rich and saturated. While no display can come close to what is seen with the human eye, a 100% color gamut panel is the best available in PC display. When a panel is 100% color gamut, it’s typically described as Adobe RGB. The XPS 15 4K Ultra HD display is factory color measured and color coordinates are saved onto the panel so you can reproduce color accurately. They are vivid, show more shades, higher saturation and more colorfulness. The user sees a more pleasant, colorful and accurate image. The XPS 15 and 17 are the only laptops that are true 100% minimum Adobe RGB, meaning the panel can represent all color in the Adobe color space without compromise. Professionals are able to get a full color representation of their content in the field - they can take a photo with an RGB setting on their camera, use Adobe software, and see that image on their display with exactly the same colors represented.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.