tft display eyes manufacturer
LCD manufacturer KOE, has introduced a 10.2-inch full HD TFT display module, the Rugged+ TX26D208VM0AAA display. It features a resolution of 1920 x 1080 pixels, a 16:9 aspect ratio, and in-plane switching (IPS) wide viewing-angle technology. The TX26D208VM0AVA is available with KOE’s proprietary Pixel Eyes PCap touch technology.
Viewing angles of up to 170 degrees are supported in all directions (left/right, up/down). The 10.2-inch display module has a contrast ratio of 1000:1, and a high brightness LED backlight featuring a specified brightness rating of 1200cd/m², an integrated dimming function, and a 70k hour lifetime. These key features ensure that display images are bright, colourful and precisely defined, says KOE.
The Rugged+ display modules have been specifically designed and developed for use under mechanical shock and vibration environments. The cosmetic specification defines zero bright dot defects as assurance of a high quality, premium display module.
The 10.2-inch TX26D208VM0AAA LTPS (low temperature poly-silicon) display module features mechanical outline dimensions of 241.9 x 147.8 x 12.6mm and an active LCD area of 225.792 x 127.008mm.
KOE’s proprietary Pixel Eyes in-cell capacitive touchscreen technology on the TX26D208VM0AVA display module enables the projected capacitive touch functionality to be fully integrated into the internal LCD cell structure.
According to KOE, Pixel Eyes enhances optical performance and supports up to 10 multiple touch points. Pixel Eyes touchscreen display modules are suitable for graphical user interface (GUI) applications for robust, reliable touch display technology with precise and flexible gesture response.
Suitable uses are in medical equipment, construction and agricultural machinery, forklift trucks, marine instruments, avionics systems and industrial human machine interface (HMI). The 10.2-inch Full HD TX26D208VM0AVA display modules are available now from KOE’s sales channel and distribution partners.
Near-Eye Display Market by Technology (TFT LCD, OLEDoS, LCoS, MicroLED, AMOLED, DLP, Laser Beam Scanning), Device Type (AR, VR), Vertical (Consumer, Medical, Aerospace & Defense, Automotive) and Geography - Global Forecast to 2027
The global near-eye display market size is estimated to be USD 1.7 billion in 2022 and is projected to reach 5.3 billion by 2027, at a CAGR of 24.7% during the forecast period. The market has a promising growth potential due to several factors, including the emergence of metaverse, surge in the use of OLEDoSmicrodisplays, and rising adoption of AR and VR devices.
Near-eye displays are becoming popular in emerging fields of virtual reality (VR), augmented reality (AR), and wearable computing. They have the power to create novel experiences that potentially revolutionize applications in aerospace &defense, medical, automotive, consumer, and several other sectors. Further, the small form factor, light weight, high portability, very low power consumption, and the ability to see-through are some key advantages of near-eye display solutions, boosting their demand.
OLED technology-based near-eye displays are fabricated on a silicon surface called silicon-based OLED or OLEDoS. OLEDoS technology has a driving circuit based on semiconductor CMOS silicon rather than the TFT line. Hence, the technology has better specifications in terms of resolution and size than other technologies deployed in near-eye displays. Also, market players have started adopting organic growth strategies to strengthen their portfolio of OLEDoS technology-based near-eye display products. For example, SeeYA Technology started manufacturing OLEDoS displays for smart wearables in 2020. Therefore, the market for OLEDoS technology-based near-eye displays is likely to grow at the fastest rate during the forecast period.
With the ongoing advancements in the healthcare sector, the medical industry is likely to be the fastest-growing market for near-eye displays during the forecast period. Technological advancements include VR diagnostics, VR surgery, and AR for visualization and training assistance. Further, ongoing developments in the AR and VR markets are expected to propel the growth of the near-eye display market.
North America led the near-eye display market in 2021. Investments in display technologies made by the major players in the US have led the market growth in this region. The increased adoption of new technologies, such as LCoS, OLEDoS, and AMOLED, in the near-eye display products by North American players such as Kopin Corporation; eMagin Corporation; Syndiant, Inc.; and several other leading companies is the key driving factor for the market growth in the region. Moreover, the growing use of smartphones, the rising consumption of smart electronic devices, and the surging demand for AR and VR technologies in healthcare applications also boost the near-eye display market growth in the region.
The near-eye display market is dominated by a few globally established players such as Sony Group Corporation (Japan), Himax Technologies, Inc. (Taiwan), Kopin Corporation (US), eMagin Corporation (US), and MICROOLED Technologies (France).
The report segments the near-eye display market and forecasts its size, by volume and value, based on region (Asia Pacific, Europe, North America, and RoW), technology (TFT LCD, AMOLED, LCoS, OLEDoS,
The report also provides a comprehensive review of market drivers, restraints, opportunities, and challenges in the near-eye display market. The report also covers qualitative aspects in addition to the quantitative aspects of these markets.
The report will help the leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall market and the sub-segments. This report will help stakeholders understand the competitive landscape and gain more insights to better position their businesses and plan suitable go-to-market strategies. The report also helps stakeholders understand the pulse of the near-eye display market and provides them information on key market drivers, restraints, challenges, and opportunities.
TFT (Thin Film Transistor) LCD (Liquid Crystal Display) we are talking here is TN (Twisted Nematic) type TFT displays which is align with the term in the TV and computer market. Now, TFT displays have taken over the majority of low-end color display market. They have wide applications in TV, computer monitors, medical, appliance, automotive, kiosk, POS terminals, low end mobile phones, marine, aerospace, industrial meters, smart homes, consumer electronic products etc. For more information about TFT displays, please visit our knowledge base.
Talking about Pros and Cons of TFT displays, we need to clarify which display they are compared to. To some displays, TFT displays might have advantages, but compared with another display, the same character might become the disadvantages of TFT displays. We will try our best to make clear as below.
Less Energy Consumption: Compared with CRT(Cathode-Ray Tube) VFD ( Vacuum Fluorescent Display) and LED (Light Emitting Diode) display, which made laptop possible.
Excellent physical design. TFT displays are very easy to design and integrated with other components, such as resistive and capacitive touch panels (RTP, CTP, PCAP) etc.
Minimum Eye Strain: Because TFT panel itself doesn’t emit light itself like CRT, LED, VFD. The light source is LED backlight which is filtered well with the TFT glass in front for the blue light.
More Energy Consumption: Compared with monochrome displays and OLED (PMOLED and AMOLED) display, which makes TFT displays less attractive in wearable device.
Poor response time and viewing angle: Compared with IPS LCD displays, AMOLED displays and recent micro-LED display. TFT displays still need to note viewing angle of 6 o’clock or 12 o’clock in the datasheet and still have the gray scale inversion issue.
High tooling cost: Depending on which generation production line to produce and also depending on its size. Building a TFT display fab normally need billions of dollars. For a big size display which needs high generation production line to produce. The NRE cost can be millions dollars.
Sunlight Readability: Because it is very expensive to produce transflective TFT LCD displays, in order to be readable under the sunlight, very bright LED backlight (> 1,000 nits) has to be used. The power needed is high and also need to deal with heat management. If used together with touch panel, expensive optical bonding (OCA or OCR) and surface treatment (AR, AF) technologies have to be used.
When display devices are brought outside, oftentimes they face the brightness of sunlight or any other form of high ambient light sources reflecting off of and overwhelming the LED backlight’s image.
With the growth of the LCD panel industry as a whole, it has become more important than ever to prevent the sun’s wash out of displays used outdoors, such as automobile displays, digital signage, and public kiosks. Hence, the sunlight readable display was invented.
One solution would be to increase the luminance of the TFT LCD monitor’s LED backlight to overpower the bright sunlight and eliminate glare. On average, TFT LCD screens have a brightness of about 250 to 450 Nits, but when this is increased to about 800 to 1000 (1000 is the most common) Nits, the device becomes a high bright LCDand a sunlight readable display.
Since many of today’s TFT LCD display devices have shifted to touchscreens, the touch panels on the surface of LCD screens already block a small percentage of backlighting, decreasing the surface brightness and making it so that the sunlight can even more easily wash out the display. Resistive touch panels use two transparent layers above the glass substrate, but the transparent layers can still block up to 5% of the light.
In order to optimize the high brightness of the backlight, a different type of touchscreen can be used: the capacitive touchscreen. Though it is more expensive than the resistive touch screen, this technology is more ideal for sunlight readable displays than the resistive due to its usage of a thinner film or even in-cell technologies rather than two layers above the glass of the display, and therefore, light can pass more efficiently.
However, with this method comes a list of potential problems. Firstly, high brightness displays result in much greater power consumption and shorter battery life. In order to shed more light, more power will be needed which can also consequently result in device overheating which can also shorten battery life. If the backlight’s power is increased, the LED’s half-life may also be reduced.
While in bright exterior light settings, these devices reduce eye strain as the user attempts to view the image on screen, the brightness of the display itself can also cause eye strain, seen as the brightness may overwhelm your eyes. Many devices allow the user to adjust brightness, so this concern is oftentimes not too severe.
A recent technology falling into the sunlight readable display category is the transflective TFT LCD, coming from a combination of the word transmissive and reflective. By using a transflective polarizer, a significant percentage of sunlight is reflected away from the screen to aid in the reduction of wash out. This optical layer is known as the transflector.
In transflective TFT LCDs, sunlight can reflect off the display but can also pass through the TFT cell layer and be reflected back out off a somewhat transparent rear reflector in front of the backlight, illuminating the display without as much demand and power usage from the transmissive nature of the backlight. This addresses both the issues of wash out and the disadvantages of high brightness TFT LCDs in high ambient light environments. Because of its transmissive and reflective modes, this type of device is very useful for devices that will be used outdoors but also indoors.
When anti-glare is used, reflected light is fragmented. Using a rough surface as opposed to a smooth one, anti-glare treatments can reduce the reflection’s disruption of the actual image of the display.
Often paired with other methods of creating sunlight readable displays is optical bonding. By gluing the glass of a display to the TFT LCD cells beneath it, optical bonding eliminates the air gap that traditional LCD displays have in them using an optical grade adhesive.
With this contrast ratio improvement, optical bonding addresses the root issue with unreadable outdoor displays: the contrast. Though an increase in brightness can improve contrast, by fixing the contrast itself, LCD display images in outdoor environments will not be as washed out and will require less power consumption.
Besides the visual display advantages that optical bonding provides, this adhesive improves the display in many other ways. The first being durability, optical bonding eliminates the air gap within the device and replaces it with a hardened adhesive that can act as a shock absorber.
Touch screens with optical bonding gain, accuracy in where the point of contact is between the touch and screen. What is known as parallax, the refraction angle of light, can make it seem that the point of contact and the actual point on the display are different. When the adhesive is used, this refraction is minimized, if not reduced.
Compiling the various methods of improving LCD screens for sunlight readability, these devices can be optimized in high ambient light settings. An anti-glare coating is applied to the surface of the glass and anti-reflective coatings are applied to both the front and back. The transflector is also used in front of the backlight. These features can result in 1000 Nit or more display lighting, without the excessive power consumption and heat production through a high brightness backlight, consequently allowing for a longer lasting and better performing LCD
Unfortunately, the process of building a reflector inside TFT LCD is complicated and transflective TFT LCD is normally several times higher cost compared with normal transmissive TFT LCD.
To further improve and enhance the qualities of the LCD, LED and cold cathode fluorescent lamp (CCFL) backlights are used. Both these create bright displays, but the LED specifically can do so without as much power consumption and heat generation as compared to the CCFL option. Optical bonding is also applied in order to improve display contrast, leading to a more efficient and better quality sunlight readable display.
The two buzzwords the tech world has been chatting about for a number of years now is IPS, (In-Plane Switching) screen technology used for liquid crystal displays or LCD’s for short, and TFT (Thin-Film-Transistor) an active matrix screen technology, which is more expensive, but a sharper image.
TFT (Thin-Film-Transistor) Liquid Crystal Display is a thin display type, where a transistor embedded into each crystal gate; these transistors are then printed on thin-transparent film. The technology was designed to improve image qualities, such as contrast and addressability.
Also designed in the late 1980’s, TFT display technologies is just another variation of LCD displays that offer greater color, contrast, and response times as opposed to available passive matrix LCD’s. One of the primary differences between IPS and TFT display technologies is the cost. IPS is more expensive than TN technology. However, there are some key differences between the two that should be noted.
Before we go into the differences, let’s talk about features of each technology. Note that we’re not talking TVs, computer, or tablets, but screens on a much smaller scale, (think 7” or smaller) which uses different rules to fit that scale. First, it’s interesting to discover that the TFT display technologies is the most common type of color display technology; more monochrome displays still out-sell color, due to lower cost and lower power consumption, however, the narrow poor visibility of TFTs in direct sunlight is their downside; but I’m getting ahead of myself here.
Brilliant color image – this is a huge advance in technology, from a Twisted Nematic (TN) display that only produced 6-bit color, to an 8-bit color display with the IPS technology
TFT display technologies have developed over the years and have become quite popular in tech circles. The features offered with this advancing technology are:Superior color display – for technology that requires it or for consumers that desire color screens
Features a longer half-life, (half-life is the amount of time in hours before the display is 50% as bright as when it was first turned on), than OLEDs and comes in varying sizes, from under an inch up to over 15 inches
Variety of displays, which can be interfaced through a variety of bus types, including 18 and 24 bit for red/green/blue, LVDS, and 8 bit and 16 bit for a CPU – many controllers allow for two or more different types of interfaces on the same TFT screen
Let me explain. As you can see, both have excellent color display and clarity; however, IPS screens offer greater color reproduction and viewing angles because of the way crystal orientation and polarizers are arranged. In a TFT screen, the structure of the crystals results in angular retardation in the light. The IPS screens thus offer less distortion properties. Other differences include power consumption and cost. With IPS screens, it takes more power (up to 15% more) than with a TFT screen. If you’re on a monitor, such as a computer screen that’s bigger than 7 inches, it will drain your battery faster than if you’re on a 3.5” screen. Regarding cost, IPS panels are more expensive to produce than TFT panels.
The color channels increase from 6 bits (TN displays) to 8 bits (IPS displays) to ensure the precision of shades per color channel, thus increasing manufacturing costs
If you want the benefits of having a Smartphone without a huge price tag, then TFT devices are your best bet. Another difference is that IPS screens have longer response times than TFT screens, so the lag output is greater. A few other key differences to be aware of are that with IPS panels, you get a bigger variety of panels, as was discussed above, with their super, advanced, and so forth developments, giving the consumer options, and IPS screens that can display 24-bit TrueColor; they also stay color-accurate and remain stable.
Now we will go over the downside of IPS screens, which we briefly touched on above, which includes a major disadvantage: cost. If you’re just looking for an average Smartphone or don’t need all the fancy coloring and clarity for LCD displays, then cost may not be a big factor; however, this is the main reason why IPS technology is beginning to come down. As with every new invention, discovery or technology, demand is everything. Another disadvantage is that colors may not always transcribe correctly or accurately, which may or may not be a deterrent. Also, high resolutions are not always readily available for personal applications. In certain circumstances, the brightness may not be enough, especially in darkness.
Steve Jobs said it best: “Design is not just what it looks like and feels like. Design is how it works.” I tend to agree with him. With TFT display technologies, less energy consumption is a big deal, especially when dealing with bigger screens, and of course less electricity means lower cost, overall. The visibility is sharper, meaning no geometric distortion, which is great for these tired, old eyes. The response time and physical design of the screens are also appealing. TFT displays can also save space and be placed virtually anywhere in an office or home, because of the brightly lit feature and crisp clear images.
Some cons of TFT screens deal with the viewing angle, which create distortion, resulting in a less-than-perfect image. Static resolution, meaning the resolution can’t be changed, may also cause a problem, but newer models seem to have tackled that issue. The accuracy of the display of colors is not perfect, specifically strong blacks and bright whites, so when printing an image, it may not display the spectrum of colors.
And there you have it. In the future, even this superb technology will change and new, more exciting technology will take its place. But until then, IPS & TFT screens are forging ahead with their own advances and improvements, so stayed tune. You don’t want to miss it.
Focus Display Solutions (www.FocusLCDs.com) offers off-the-shelf Color TFT display technologies in both TN and IPS. Many of the color modules contain built in touch panels.
There are more and more TFT displays used in outdoor applications, such as automobile display, digital signage and kiosks. High ambient light in outdoor environment often causes wash-out image and renders the screen not readable. Readability & sustainability of TFT display under direct sunlight is becoming vital. Topway Display has been developing sunlight readable LCD display solution for years. The company understands the ins and outs of sunlight readable TFT LCD.
For an LCD to be readable in outdoor environment with very bright ambient light, the LCD screen’s brightness needs to exceed the intensity of light that is reflected from the display surface. To be comfortably viewed by human eyes, the LCD’s brightness needs to exceed its reflected light by a factor of 2.5 at minimum. Naturally, to make an LCD sunlight readable, we can work on two areas, increasing brightness or reducing reflectance.
On a clear day in direct sunlight, the ambient brightness is about 6000 cd/m2. And a typical TFT LCD with touch screen reflects about 14% of ambient light, which is around 840 cd/m2. These days, most LCD displays use LED backlight as light source. It is not too difficult to increase an LCD’s brightness to 800 ~ 1000 Nits, to overpower the bright reflected sunlight. Thus, you have a sunlight readable TFT LCD.
However, this method requires more backlight LEDs and/or higher driving current. The drawbacks are high power consumption, more heat dissipation, increased product size and shorter LED backlight lifespan. Apparently, increasing backlight to make TFT LCD sunlight-readable is not a very good solution.
Transflective TFT LCD is a TFT LCD with both transmissive and reflective characteristics. A partially reflective mirror layer is added between LCD and backlight. This change turns part of the reflected ambient light into LCD’s light source, increasing the TFT display’s brightness. However, transflective TFT LCD is more expensive than transmissive one. At the same time, the partially reflective mirror layer will block some of the backlight, making it not ideal in indoor or low ambient light environment.
The total reflectance on a TFT LCD with touch panel is the sum of reflected light on any interface where two materials meet. As an example, between polarizer and display glass, the difference in index of refractions for the two materials is very small, around 0.1. So the reflected light on this interface is only 0.1%. As Fresnel’s equation points out, we should focus reflection reduction on air interfaces. For air, its index of refraction is 1; for glass, it is 1.5. And that results in a reflectance of 4.5%. Therefore, the three air interfaces contribute majority of TFT LCD’s reflectance, at about 13%.
For food industry application, shattered glass is a serious problem. An LCD screen with external film solves this issue nicely. As for automotive applications, in an accident, broken LCD with top AR film won’t produce sharp edge glass that could harms auto occupant. Nevertheless, a top film always reduces TFT LCD’s surface hardness. And it is susceptible to scratches. On the other hand, AR coating retains LCD’s hardness and touch performance. But it comes with a bigger price tag.
Another quick and easy way to tackle reflectance is to affix a linear polarizer on the top of TFT screen. When ambient light gets to the top polarizer, only half of the light passes through. Which results in reflection light cutting to half. This is a very low cost way to increase TFT LCD’s contrast, such that making it more sunlight readable.
Laminating a circular polarizer in TFT LCD will get rid of a lot of reflectance. That is because when ambient light passes through circular polarizer it gets circularly polarized. And when it is reflected, the polarization direction flips by 180 degrees. So when reflected light comes back to the circular polarizer, nothing goes through to viewer’s eyes.
This method is very effective for an LCD display with resistive touch panel. We know resistive touch LCD has two air gaps: air gap between two ITO layers and air gap between touch panel and LCD display. Reflectance caused by the two air gaps is very high. Applying circular polarizer blocks off most of the reflected light, and makes the LCD display sunlight readable.
The disadvantage of such solution is its cost. Since we need not only a circular polarizer, but also a retarder film on the top of LCD display, making sure light originates from within LCD is not blocked by external circular polarizer.
Add AR films on both interfaces of internal air gap. The add-ons can reduce this area’s reflection from 8.5% to 2%. And since the AR films are not outside facing, they are much cheaper than the one used outside. Keeping the air gap also retains the ease of service, in case either touch panel or LCD display needs to be repaired.
The most effective way is to eliminate air gap totally, by using optical bonding. In plain language, we fill air gap with special optical adhesive, to smooth out the area’s refraction index differences. Such that reflectance caused by internal air gap drops from 8.5% to 0.5%. Optical bonding is expensive but effective way to improve TFT LCD sunlight readability. It enhances durability and resistance to impact. Moreover, no air gap means no moisture condensation and fogging.
There are many ways to make TFT LCDsunlight readable. They all have their own pros and cons. With 20+ years" LCD design and manufacturing experience, Topway knows how to create the best sunlight readable TFT LCD for challenging environments. Leave us a message and let"s start the conversation of creating suitable sunlight readable TFT LCD for your project.
The prototype was built by plugging the ESP32 and displays into breadboards and using jumper wires. This is convenient for initial experimentation but is prone to poor connection especially if moved about. It the eyes are to be used as part of a costume then soldering all connections is recommended.
Normally the TFT chip select line for a single display is defined within a user_setup file of the TFT_eSPI library, however when using the library with two displays the chip selects must be controlled by the sketch, thus you must NOT define the TFT_CS pin in the TFT_eSPI library setup files. Instead, the chip selects (CS) must be defined in the "config.h" tab of the Animated_Eyes_2 sketch.
The TFT_eSPI library uses "user_setup" files to define all the parameters for the display, processor and interfaces, for the Animated_Eyes_2 sketch the "Setup47_ST7735.h" file was used with the wiring as shown above.
The displays used for testing were 128x128 ST7735 displays, the TFT_eSPI library setup file may need to be changed as these displays come in many configuration variants.
TFT stands for thin-film transistor, which means that each pixel in the device has a thin-film transistor attached to it. Transistors are activated by electrical currents that make contact with the pixels to produce impeccable image quality on the screen. Here are some important features of TFT displays.Excellent Colour Display.Top notch colour contrast, clarity, and brightness settings that can be adjusted to accommodate specific application requirements.Extended Half-Life.TFT displays boast a much higher half-life than their LED counterparts and they also come in a variety of size configurations that can impact the device’s half-life depending on usage and other factors.TFT displays can have either resistive or capacitive touch panels.Resistive is usually the standard because it comes at a lower price point, but you can also opt for capacitive which is compatible with most modern smartphones and other devices.TFT displays offer exceptional aspect ratio control.Aspect ratio control contributes to better image clarity and quality by mapping out the number of pixels that are in the source image compared to the resolution pixels on the screen.Monitor ghosting doesn’t occur on TFT displays.This is when a moving image or object has blurry pixels following it across the screen, resembling a ghost.
TFT displays are incredibly versatile.The offer a number of different interface options that are compatible with various devices and accommodate the technical capabilities of all users.
There are two main types of TFT LCD displays:· Twisted nematic TFT LCDs are an older model. They have limited colour options and use 6 bits per each blue, red, and green channel.
In-plane switching TFT LCDs are a newer model. Originally introduced in the 1990s by Hitachi, in-plane switching TFT LCDs consist of moving liquid pixels that move in contrast or opposite the plane of the display, rather than alongside it.
The type of TFT LCD monitor or industrial display you choose to purchase will depend on the specifications of your application or project. Here are a few important factors to consider when selecting an appropriate TFT LCD display technology:Life expectancy/battery life.Depending on the length of ongoing use and the duration of your project, you’re going to want to choose a device that can last a long time while maintaining quality usage.
Image clarity.Some TFT displays feature infrared touchscreens, while others are layered. The former is preferable, especially in poor lighting conditions or for outdoor and industrial applications, because there’s no overlay and therefore no obstructions to light emittance.
The environmental conditions make a difference in operation and image clarity. When choosing a TFT for outdoor or industrial applications, be sure to choose one that can withstand various environmental elements like dust, wind, moisture, dirt, and even sunlight.
As a leading manufacturer and distributor of high-quality digital displays in North America, Nauticomp Inc. can provide custom TFT LCD monitor solutions that are suitable for a multitude of industrial and commercial indoor and outdoor applications. Contact us today to learn more.
The Snake Eyes Bonnet is a Raspberry Pi accessory for driving two 128x128 pixel OLED or TFT LCD displays, and also provides four analog inputs for sensors.
It"s perfect for making cosplay masks, props, spooky sculptures for halloween, animatronics, robots...anything where you want to add a pair of animated eyes!
This product doesn"t include two displays or connector cables! You"ll want 1 or 2 of either the Adafruit 1.44" TFT Breakout or the Adafruit 1.5" OLED Breakout. The OLED looks better with higher contrast and viewing angle, but is more expensive. You"ll also want a bunch of 12" F-F jumper cables to connect your displays. Soldering is required to attach headers onto the Bonnet and displays, so make sure you have a soldering iron, solder and some basic hand tools.