after effects lcd screen effect supplier
You never know where you’ll find inspiration to create something. Yesterday’s Google Doodle of an LCD calculator screen got me wondering how to create that effect.
Given that I’ve spent years teaching folks how to make special graphic effects in InDesign in ebooks and videos, I thought I’d give it a try in that application. If you’d rather tackle the job in Photoshop, Illustrator, or another program, you can adapt the ideas in this article.
Digital Display is a free (donationware) font and works well, but you can probably substitute any decent digital or LCD font. Fill the text with R53 G53 B53 or another neutral gray in that vicinity.
When you’re satisfied that things look right, save a backup copy of the text frame by option/alt dragging it to the pasteboard (so you can create more calculator screen effects later on without having to start from scratch). Then select the other frame and convert the text in it to outlines by pressing Command+Shift+O/Ctrl+Shift+O.
Since we’re going for a realistic effect here, some letters won’t be achievable, just like on a real LCD calculator screen. H, K, and X are indistiguishable, as are A and R, D and O, and U and V. You can get around some of these problems by using lowercase letters, like a and d. But forget about M, T, Q, and W. If you really have to use those letters, then you’ll have to “cheat” a little, sacrificing realism for readability.
For bonus points you can add a stroke aligned to the outside of the LCD screen frame. Fill it with a light tint of black, and apply a little Inner Bevel.
TV manufacturers have been trying to combat something called "motion blur" for years. You may have noticed the blur before and not been able to put your finger on what exactly was so bothersome about it. Or you may be enjoying watching television in blissful ignorance, never even realizing that your TV looks soft. Sorry in advance for ruining your viewing experience, but there are a few potential solutions to consider. However, these methods often have side effects that, for many people, are worse than the cure.
Motion blur is when anything on-screen blurs, becoming fuzzy and less distinct, when it moves. This can be a single object, like a ball or car, or the entire screen, as when the camera pans across a landscape.
In the early days of flat TVs and displays, the culprit was often the slow speed of the liquid crystal elements that create an image on LCD TV. These days most LCDs are able to change their states fast enough that motion blur is caused by something else: "sample and hold."
LCDs -- and modern OLED TVs -- configure their pixels to show an image and then hold that image until the screen refreshes. With most TVs this means that for a full one-sixtieth of a second, the image is stationary on screen. Then the screen refreshes and a new image is held there for another one-sixtieth of a second. Some TVs have faster refresh rates, and in some countries TV refresh every one-fiftieth of a second, but the process is the same.
The processing in modern TVs can determine, with a surprising amount of accuracy, what happens in between two frames of video. For instance, if a ball is on the left side of the screen in frame A, and the right side of the screen in frame B, the TV could safely assume that if there was a frame between A and B, the ball would be in the center of the screen.
Interpolating frames increases the apparent frame rate, so 24fps content no longer looks like 24fps content, because when shown on these TVs, it isn"t 24fps content. The interpolation effectively increases the frame rate so 24fps content looks more like 30 or 60fps. More like sports, reality TV or the content that gives this effect its name: the soap opera effect. That"s where our friend Tom comes in.I’m taking a quick break from filming to tell you the best way to watch Mission: Impossible Fallout (or any movie you love) at home. pic.twitter.com/oW2eTm1IUA— Tom Cruise (@TomCruise) December 4, 2018
Many people don"t notice, or don"t care, about the soap opera effect. Others, like Tom and me, can"t stand it. The ultrasmooth motion is not just artificial-looking, but can be distracting and unpleasant. Most Hollywood creators hate it, too, because it isn"t what the director intended for his or her creative vision. If they wanted to record at 48fps, they"d have recorded at 48fps, like
When the TV spends half of its time showing a black screen, its light output drops. In many cases this trade-off is acceptable, as modern TVs are exceptionally bright. In other cases, not as much. I have a front projector, for example, and the BFI mode can make the image look very dim.
Like frame interpolation, black frame insertion has different implementations. Rarely would a TV with a BFI mode show a black frame for the same length of time it shows a real frame. It"s also not necessarily a "frame" at all. All LCDs create light with a
The only two flat-panel TV technologies available today, LCD and OLED, both suffer from motion blur. However, there is still one display technology that doesn"t:
Currently only found in front projectors, Digital Light Processing uses millions of tiny mirrors that rapidly flash on and off to build an image on a screen.
I have long loathed motion blur, being far more aware and annoyed by it than my peers. Since I also hate the soap opera effect, the only current option for reducing motion blur on my current projector is black frame insertion. And after a few months… I turned it off. The trade-off of a dimmer picture, and a just-noticeable flicker, was no longer worth the better apparent detail.
Light leak or backlight bleeding is often noticeable around the edges or the sides of a screen. Especially while it is displaying a dark background or is in a dark environment.
NOTE: This article provides information about common issues that are seen on LCD screens. It is not something specific to a particular Dell computer but is something that can be seen on any LCD screen by any manufacturer.
With LED-backlit LCD TVs, gray uniformity issues are caused by a couple of factors. LCD panels are pretty sensitive to pressure, so extra pressure caused by misalignment of the TV"s components or by mishandling of the panel during manufacturing or shipping could lead to defects appearing. Also, too much pressure can affect the backlight and how much light it diffuses, which causes some areas to be darker. Size may also have an effect because it"s harder to keep a larger screen uniform, but since we only test one size of each TV, we can"t draw any conclusions about this.
LED and OLED TVs use different technologies to display an image. While LED TVs are really LCD TVs backlit by LED backlights, OLEDs don"t have any backlighting and instead turn each pixel on and off. As such, they perform differently when it comes to uniformity. For the most part, OLEDs tend to have better uniformity, and there are rarely any issues. LED TVs can suffer more from uniformity issues, especially if their backlight is edge-lit and not direct LED. However, we can"t confidently say one TV will have better uniformity than another just because of the backlight or panel type.
We test gray uniformity on monitors the same way as on TVs. While you can"t compare the final scores, you can still compare the standard deviations and the pictures. Generally speaking, there isn"t a big difference in the total standard deviation with the 50% gray image on LED-backlit TVs and monitors, as they can each suffer from backlight bleed along the edges. The big difference here between monitors and TVs is the amount of dirty screen effect in the center. Monitors rarely have that issue, and only four monitors have worse DSE than the best TV we"ve tested.
This is expected from monitors because you need to have a uniform screen when browsing the web with large areas of solid colors. Monitors are also smaller, so it"s easier for the backlight to provide a uniform screen.
Unfortunately, gray uniformity is entirely down to the panel you get. There isn"t much you can do to improve gray uniformity as it"s down to panel lottery. You can try massaging the screen with a soft cloth to relieve the pressure, but this is a delicate technique, so it may be best to not do it if you"re unsure of yourself.
Gray uniformity refers to how well a TV display a single, solid color across the screen. It matters for content containing a large area of a single color, like with sports, where bad gray uniformity affects the appearance of playing surfaces. For each TV, we take two photos of different shades of gray, calculate the standard deviation of the color values of the pixels, and then calculate the amount of dirty screen effect that"s present in each picture.
Unfortunately, there aren"t many steps that you can take to improve gray uniformity – it’s entirely down to the panel you get. You can try massaging the screen, but that"s hard to do. If you find yourself with uniformity that you can"t live with, you should exchange your TV for a different unit, or even a different model.
Is your obsessive side getting twitchy yet? Before we discuss upping your Xanax prescription, let"s review how the DSE demon begins its possession of your beloved screen.
Still, DSE may afflict cheaper versions, particularly if the anti-reflective coating on the glass that overlays the screen is of low quality or poorly applied. Furthermore, as the display ages, the phosphors in the screen may begin to wear out or malfunction, all of which can contribute to less uniform images, which is often apparent particular in scenes with fast panning shots.
In LCD and LED TVs, DSE is typically a bigger issue, one that"s due to the way these units are illuminated. Before we proceed, it"s worth mentioning that although marketing-speak often treats LED and LCD TVs as completely different technologies, they"re not different beasts.
LED units could be more accurately described as "LED-backlit LCD televisions," but salespeople and consumers alike are too lazy to utter that tongue-wearying phrase while haggling in a big-box store. What"s important to realize is that both categories rely on LCDs (liquid crystal displays), which act as shutters that either block light or allow it to pass, depending on the image that"s being rendered on the screen.
There are a variety of factors that affect LCD quality, notably illumination source. Older LCD TVs, for example, used multiple cold cathode fluorescent lamps (CCFL) to light LCDs from the rear. They provide generally smooth and even illumination, but they make the final product rather bulky.
More modern TVs rely on LEDs (light-emitting diodes) as a light source. Some models have what"s called full-array backlighting, in which the LEDs are stationed in regular intervals behind the screen, creating even lighting and excellent picture quality.
Other models incorporate what"s called edge lighting, which positions the LEDs along the edges of the screen. In general, the overall picture quality isn"t quite as good as a backlit screen, but manufacturers still use it because it allows them to build substantially slimmer TVs.
If you"ve ever pressed a little too hard on your smartphone or computer screen, you"ve likely witnessed a bit of discoloration, clear evidence of how sensitive LCDs are to physical pressure. Now, picture a huge manufacturing facility that cranks out thousands of these units per week. It"s easy to see how a bit of mishandling could alter the screen"s consistency.
The same goes for shipping. Some units travel long distances in cargo boxes, and then take bouncy rides in your car to their final resting place on your living room wall. That"s a lot of opportunities for tiny mishaps to affect LCD uniformity.
Liquid crystal displays (LCD) have become an essential component to the industry of display technology. Involved in a variety of contexts beyond the indoors like LCD TVs and home/office automation devices, the LCD has expanded its usage to many environments, such as cars and digital signage, and, thus, many temperature variations as well.
As with any substance that requires a specific molecular characteristic or behavior, LCDs have an operating temperature range in which the device, if within, can continue to function properly and well. In addition to that, there is also an ideal storage temperature range to preserve the device until used.
This operating temperature range affects the electronic portion within the device, seen as falling outside the range can cause LCD technology to overheat in hot temperatures or slow down in the cold. As for the liquid crystal layer, it can deteriorate if put in high heat, rendering it and the display itself defective.
In order for the LCD panel to avoid defects, a standard commercial LCD’s operation range and storage range should be kept in mind. Without adaptive features, a typical LCD TV has an operating range from its cold limit of 0°C (32°F) to its heat limit of 50°C (122°F) (other LCD devices’ ranges may vary a bit from these numbers).
The storage range is a bit wider, from -20°C (-4°F) to 60°C (140°F). Though these ranges are quite reasonable for many indoor and even outdoor areas, there are also quite a few regions where temperatures can drop below 0°C or rise above 32°C, and in these conditions, LCDs must be adapted to ensure functionality.
Heat, can greatly affect the electronics and liquid crystals under an LCD screen. In consideration of heat, both external heat and internally generated heat must be taken into consideration.
Seen as the liquid crystals are manipulated in a device by altering their orientations and alignments, heat can disrupt this by randomizing what is meant to be controlled. If this happens, the LCD electronics cannot command a certain formation of the liquid crystal layer under a pixel, and the LED backlighting will not pass through as expected, which can often lead to dark spots, if not an entirely dark image. This inevitably disrupts the display’s readability.
Depending on the upper limit of the operation temperature range, LCD device can be permanently damaged by extreme heat. With long exposure to extreme heat, besides the destruction of the liquid crystals, battery life can shorten, hardware can crack or even melt, response time may slow to prevent even more heat generation from the device.
The LED backlight and the internal circuitry, typically TFT-based in the common TFT LCDs, are components that can generate heat that damages the device and its display. To address this concern with overheating, many devices use cooling fans paired with vents.
In the opposite direction is extreme cold. What typically occurs in the cold is “ghosting” (the burning of an image in the screen through discoloration) and the gradual slowing and lagging of response times. Like heat-affected LCD modules, the extreme temperature can affect the liquid crystals. This layer is a medium between the liquid and solid state, so it is still susceptible to freezing.
An LCD device can be left in freezing temperatures because it will likely not be permanently damaged like in the heat, but it is important to understand the device’s limits and how to take precautions when storing the device. The standard and most common lower-bound storage range limit is -20°C, below freezing, but if possible, it would be best to keep it above that limit, or else there is still a risk of permanent damage.
If the device is not adapted for the cold, it would be good to keep it bundled up, trapping the heat within layers. However, this is only a temporary solution. Adapted, rugged devices have advantages such as screen enclosure insulation for heat level preservation and, in more extreme cases, heaters to generate extra heat to raise the internal temperature to a level above the minimum.
When selecting the appropriate module, it is necessary to understand the device’s expected primary application. The application will decide factors such as display type, environmental conditions, whether or not power consumption is a factor, and the balance between performance and cost. These factors can have an effect on the operation and storage temperature ranges for the device.
Display types have a lot of variation. Choices like alphanumeric or graphic LCD, human-machine interactive LCD modules and touchscreen panels capabilities, the width of the viewing angle, level of contrast ratios, types of backlighting, and liquid crystal alignment methods are often considered. For example, the twisted nematic LCD provides for the fastest response time at the lowest cost, but cannot offer the highest contrast ratio or widest viewing angle.
Environment-based factors must consider things besides the obvious temperature like UV exposure and humidity/moisture, as they all are necessary in finding the perfect fit extreme temperature LCD module.
Besides the LCD modules, recent new products have opened doors in wide temperature range displays, such as OLED displays. OLED displays offer better displays in regard to contrast, brightness, response times, viewing angles, and even power consumption in comparison to traditional LCD displays.
Pixel pitch describes the density of the pixels (LED clusters) on an LED display and correlates with resolution. Sometimes referred to as pitch or dot pitch, the pixel pitch is the distance in millimeters from the center of a pixel to the center of the adjacent pixel. Since pixel pitch indicates the amount of space between two pixels, a smaller pixel pitch means there is less empty space between pixels. This equates to higher pixel density and improved screen resolution.
Pixel pitch is important because it influences the optimal viewing distance for your display. An image achieves smoother borders and finer detail with lower pixel pitch values. This allows the viewer to stand closer to the screen and enjoy a clear image without the distraction of discerning individual pixels. When determining viewing distance and pixel pitch, the rule of thumb is that a smaller pixel pitch allows for a closer viewing distance. Conversely, a higher pixel pitch elongates the minimum viewing distance. So, a 1.2mm screen will have significantly higher resolution and a closer optimal viewing distance than a 16mm .
Consumers can get the best value for their LED screen by determining the optimal viewing distance of their screen. The optimal viewing distance is the point where image fidelity is retained, but if the observer moved much closer, the image quality would decrease or the screen would appear pixelated.
For example, a display with interactive touch solutions will need a low pixel pitch to produce crisp images for the nearby audience. On the other hand, an LED screen displayed above viewers, like one hung in an arena, could get away with a higher pixel pitch. The short answer is that a smaller pixel pitch will always give you better quality image, but the investment will not be fully appreciated if the screen is not seen from a sufficiently close enough distance.
Visual Acuity Distance – also known as retina distance, this is a formulated calculation of the distance a person with 20/20 vision must move away from an LED screen to see a coherent image that is not pixelated.
While these methodologies are useful guides, there is no correct answer in determining viewing distance. A screen’s viewing distance is ultimately whatever the owner of the screen finds comfortable.
A lot of end-users embrace screen customization when purchasing LCD screens for use in their products. This is because a client’s own product often has a unique design, which necessitates the incorporation of a customized LCD screen.
This step involves the end-user providing their requirements, including the required screen size, resolution, brightness, interface, shape size, AA area size, PIN definition, temperature range, service life, and any specific requirements for the touch screen.
End-users need to carefully review these drawings before giving their assent to proceed. This will involve reviewing the outline design drawings, any modified drawings, the mold-making process, layout design, photoresist film making (electrode x2, frame, silver dot, PI, test PCB), and screen-printing screen, relief plate, and the test stand. After the client has approved the drawings, the LCD manufacturer can begin the process of sample production.
LCD screen manufacturers will arrange production after confirming the drawings. The lead time is dependent on several factors, including the difficulty of the design. Under normal circumstances, however, the lead time of the module is about 20 days, and the lead time of the assembly is about 25 days.
LCD manufacturers will ensure the sample undergoes strict tests before anything is shipped to the client. Following the completion of testing and final approval from the client, the LCD manufacturer will begin to prepare for small-batch production.
As you can see, the steps involved in producing a customized LCD screen are not complex. We at Panox Display are able to offer professional advice and guide you through the process from start to finish.
1. First of all, the customer needs to provide the size of the LCD backlight, including its length, width, and thickness. Because the thickness will affect the choice of lamp as well as the lamp board, this measurement must be provided.
2. It is necessary to provide the color of the LED light, because the work will be carried out in a variety of places where there are certain requirements regarding the color of the LED light. The most common colors are white, red, blue, etc. Of course, if the brightness of the LCD backlight has different requirements, it may affect the number of lights, so those special requirements must be explained.
3. A very important parameter is the conductive connection of the LCD backlight, which needs to be provided by the customer regarding the situation of their own products. It’s usually an FPC connection, PCB pin connection, lead connection or pin connection that’s used to conduct. But of course, the most used is a pin connection.
4. Secondly, the customer also needs to provide voltage. The effects of different voltages varies in terms of how bright or dim the light is. In order keep the LCD backlight from burning or having a poor effect, the voltage must be provided.
5. The last parameter is the shape, the most common is the rectangular LCD backlight, but there are some other relatively grotesque shapes. A strangely shaped backlight is difficult to make, and the diaphragm will also be hard to make. So, if the client wants us to make it we need to confirm whether our factory can make this uniquely shaped LCD backlight in advance
The use of consumer electronics incorporating LCD-based screens including computers, laptops and smartphones is continuing to increase. However, the LED backlight modules emit extensive blue light that can damage retinal photoreceptors and RPE cells and alter circadian rhythms owing to its short wavelength and high energy, eventually becoming a health hazard. Here, we investigated the effects of the emitted light spectrum of LCDs on LED-induced retinal photoreceptor cell damage and elucidated the detailed mechanisms. As traditional blue light filters and blocking lenses may decrease the luminance of light and reduce the color and contrast sensitivity and visual quality, we alternatively designed LCDs with differing energy emission but the same luminance by adjusting the phosphor ratio and modulating the emitted light spectrum. We also established an index of LCD energy emission, termed OEEI, the value of which is represented by the radiant flux produced by each luminous flux and could be used to evaluate the light hazards. The results of the present study indicated that LCDs with higher OEEI caused stronger light-induced photoreceptor cell damage through the production of ROS and activation of the NF-κB pathway, along with upregulation of protein expression associated with inflammatory response and apoptosis.
In particular, exposure to an LCD with luminance of 300 nits for three days decreased the viability of 661W photoreceptor cells. However, compared to the effects of the LCD with low OEEI, LCD with higher OEEI induced increased levels of cell death and the percentage of apoptotic cells was also higher. Moreover, the effect was OEEI-intensity dependent. Based on the analysis of the emitted light spectrum, the major difference among the three OEEI groups was the radiance of shorter wavelength blue light and green light. Blue light energy emission was much higher in the high OEEI group than that in the medium and low OEEI groups. Although green light energy emission was also higher in the high OEEI group, the photoreceptor-derived cell damage caused by blue light was much more serious than that caused by green light [29]. LCD exposure-induced photoreceptor cell damage could, therefore, be mainly attributed to the level of emitted blue light energy.
Our study demonstrated that the decline of cell viability after LCD exposure was due to elevated cellular ROS formation and mitochondrial dysfunction. Oxygen radicals initiate free radical chain reactions and the oxidative stress results in cellular dysfunction and cell death [30,31]. The effect is stronger in the outer retina because choriocapillaries provide higher concentrations of oxygen. Therefore, 661W photoreceptor cells constitute a good model for studying these effects. In addition, mitochondrial dysfunction can serve as a predictor of cell injury and apoptosis as the mitochondrion is essential for cellular physiological functions and energy production. In the present study, JC-1 staining was used as the indicator of mitochondrial membrane potential damage [32]. Light induces retinal injury through the production of free radicals, oxidative stress, and the damage of mitochondrial membrane potential, as previously reported [15,16,33,34]. The results of our study revealed that lower OEEI exposure produced less ROS, induced less oxidative stress and mitochondrial damage, and subsequently led to decreased apoptosis and cell death compared to that from high OEEI exposure.
NF-κB consists of a family of transcription factors which play critical roles in immunity, inflammation, cell proliferation, differentiation, and cell survival. In order to elucidate the molecular mechanism of the increased oxidative stress and cell apoptosis caused by LCD with higher OEEI, we used western blot analysis and EMSA to evaluate the expression of inflammation and apoptosis-related proteins and the modulation of the NF-κB system. The results of our study revealed that the expression of proteins associated with oxidative stress, inflammation, and the apoptotic pathway all increased in 661W cells exposed to LCD with higher OEEI. In particular, iNOS and HO-1 comprise oxidative stress-related proteins that could be induced in an oxidative environment such as blue light exposure [35,36]. Both ICAM-1 and MCP-1 are pro-inflammatory cytokines that facilitate leukocyteendothelial transmigration, enhance inflammatory vascular permeability, advance cellular extravasation reaction, and promote signal transduction to produce inflammatory effects [37,38,39,40]. Therefore, ICAM-1 and MCP-1 function as strong pro-inflammatory mediators and could be used as indicators to assess the inflammatory status. In comparison, caspase-3 is a marker of cell apoptosis; notably, the cleavage forms of caspase-3 were obviously observed in the group with higher OEEI exposure. Among these, ICAM-1, iNOS, and, MCP-1 are regulated by NF-κB [41,42,43]; in turn, the NF-κB system can be induced by ROS production [44,45]. The result of EMSA in our study demonstrated that exposure to LCDs with higher OEEI activated the NF-κB pathway. Taken together, the findings of the present study suggested that LCD exposure induced oxidative stress and then upregulated the NF-κB pathway. Consequently, it further upregulated NF-κB downstream genes and enhanced the expression of oxidative stress, inflammation, and apoptosis-related proteins, finally inducing cell death. The effect was correlated with OEEI intensity, which also represented LCD energy emission, especially that of blue light.
Our study had some limitations. First, this was an in vitro study. We used 661W cell line as our model system and the cells were still dividing and not fully differentiated. 661W cells have the potential to differentiate into neuronal cells with the treatment of staurosporine [46]. Caspases are also involved in some non-apoptotic processes including cell differentiation [47]. The mechanisms of apoptosis and caspase-mediated cell death may not be the same as that in the well-differentiated human retinal photoreceptors. However, 661W cells express cone photoreceptor features and respond to light stimulation [48]. This cell line has been widely used as the model of light-induced retinal damage in several studies [25,26,27,28,29]. Based on our results, the cleavage forms of caspase-3 were obviously observed in medium and high OEEI group but not in the control or low OEEI group. It implied that apoptosis rather than cell division or differentiation played the major role in the expression of caspases. Further research with primary retinal cell culture or animal experiments may be needed to confirm our results. The exact effect on the human retina and other aspects of light hazards require further investigation. Second, the majority of our experiments were performed under the condition of 3-day exposure with a luminance of 300 nits. Our findings are not necessarily generalizable to other conditions such as higher luminance or longer exposure times. The chronic cumulative effects of daily blue light exposure may cause more photochemical damage. However, the luminance of displays for laptops and other mobile devices is usually between 200 and 300 nits on average. Our results therefore still provided useful information regarding LCD exposure-induced retinal damage in daily life. Third, the visible light spectrum and emitted energy spectrum of the LCDs in our experiments were fixed. We could not analyze the effect of other specific patterns of light spectra and determine the most appropriate light source to maintain eye health. Further studies with specific light spectrum modulation should be considered.